1
|
Moyers-Montoya ED, Castañeda-Muñoz MJ, Márquez-Olivas D, Miranda-Ruvalcaba R, Martínez-Pérez CA, García-Casillas PE, Montejo-López W, Nicolás-Vázquez MI, Escobedo-González RG. Theoretical-Cheminformatic Study of Four Indolylphytoquinones, Prospective Anticancer Candidates. Pharmaceuticals (Basel) 2024; 17:1595. [PMID: 39770437 PMCID: PMC11679286 DOI: 10.3390/ph17121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Breast cancer is a disease with a high mortality rate worldwide; consequently, urgent achievements are required to design new greener drugs, leaving natural products and their derivatives as good options. A constant antineoplastic effect has been observed when the phytoproduct contains an indole fragment. Methods: Therefore, the objective of this work was to carry out a thoughtful computational study to perform an appropriate evaluation of four novel molecules of the class of the 3-indolylquinones as phytodrug candidates for antineoplastic activity: thymoquinone (TQ), 2,6-dimethoxy-1,4-benzoquinone (DMQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (DMMQ), and 2,5-dihydroxy-1,4-benzoquinone (DHQ). It is important to highlight that the obtained computational results of the target compounds were compared-correlated with the theoretical and experimental literature data previously reported of several indolylquinones: indolylperezone, indolylisoperezone, indolylmenadione, and indolylplumbagin (IE-IH, respectively). Results: The results revealed that the studied structures possibly presented antineoplastic activity, in addition to the fact that the reactivity parameters showed that two of the evaluated compounds have the option to present IC50 values lower than or similar to 25 mg/mL, activity like that of indolylisoperezone; moreover, they show molecular coupling to PARP-1. Finally, the prediction of the calculated physicochemical parameters coincides with the Lipinski and Veber rules, indicating that the adsorption, metabolism, and toxicity parameters are acceptable for the studied compounds, obtaining high drug score values. Conclusions: Finally, a comparison between the proposed molecules and others previously synthesized was appropriately performed, establishing that the synthesis of the studied compounds and the determination of their pharmacological properties in an experimental manner are of interest.
Collapse
Affiliation(s)
- Edgar Daniel Moyers-Montoya
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Chihuahua, Mexico; (E.D.M.-M.); (C.A.M.-P.)
| | - María Jazmín Castañeda-Muñoz
- Centro Médico de Especialidades, Av. De las Américas #201 Nte. Col. Margaritas, Ciudad Juárez 32300, Chihuahua, Mexico;
| | - Daniel Márquez-Olivas
- Departamento de Mantenimiento Industrial y Nanotecnología, Universidad Tecnológica de Ciudad Juárez, Maestría en Ingeniería Industrial Sustentable, Av. Universidad Tecnológica No. 3051, Col. Lote Bravo II, Ciudad Juárez 32695, Chihuahua, Mexico;
| | - René Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida 1° de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico;
| | - Carlos Alberto Martínez-Pérez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Chihuahua, Mexico; (E.D.M.-M.); (C.A.M.-P.)
| | - Perla E. García-Casillas
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila, Mexico;
| | - Wilber Montejo-López
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida 1° de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico;
| | - René Gerardo Escobedo-González
- Departamento de Mantenimiento Industrial y Nanotecnología, Universidad Tecnológica de Ciudad Juárez, Maestría en Ingeniería Industrial Sustentable, Av. Universidad Tecnológica No. 3051, Col. Lote Bravo II, Ciudad Juárez 32695, Chihuahua, Mexico;
- Escuela de Ciencias e Ingeniería, Instituto Tecnológico y de Estudios Superiores de Monterrey, Bulevar Tomás Fernández 8945, Parques Industriales, Ciudad Juárez 32470, Chihuahua, Mexico
| |
Collapse
|
2
|
Tomar R, Mishra SS, Sahoo J, Rath SK. Isolation, chemical characterization, antimicrobial activity, and molecular docking studies of 2,6-dimethoxy benzoquinone isolated from medicinal plant Flacourtia jangomas. 3 Biotech 2024; 14:156. [PMID: 38766321 PMCID: PMC11096290 DOI: 10.1007/s13205-024-04002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
In the present investigation one compound, 2,6-dimethoxy benzoquinone (FJL-1), was isolated from the dichloromethane (DCM) fraction of the organic leaf extract of Flacourtia Jangomas for the first time. The compound structure was elucidated using extensive spectral analysis, including 1H, and 13C NMR. Furthermore, the DPPH and ABTS methods were used to evaluate the antioxidant activity of the organic extract, its fractions, and the isolated compound FJL-1. Antioxidant activity of the petroleum, ether, DCM, and methanol fractions of the organic extract and the isolated compound of F. Jangomas revealed moderate to strong radical scavenging ability. Additionally, the antimicrobial activity of FJL-1 against Staphylococcus aureus (MTCC 737 and MTCC 96 strains) was observed in an inhibition zone size of 21.6 ± 0.6 to 21.7 ± 0.58 mm showing potential inhibitory activity. The isolated compound FJL-1 shows excellent binding with the 2W9S proteins in terms of docking score compared with the drug Trimethoprim, which also exhibited similar types of interaction and potency against S. aureus. The leaves of F. jangomas can be considered a great source for the identification of numerous important phytoconstituents with potential uses in nutrition, aromatherapy, and the pharmaceutical sector. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04002-w.
Collapse
Affiliation(s)
- Ritu Tomar
- School of Pharmaceutical & Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand 248001 India
| | - Shashank Shekher Mishra
- School of Pharmaceutical & Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand 248001 India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NMIMS University, Mumbai, India
| | - Santosh Kumar Rath
- School of Pharmaceutical & Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
3
|
Scuto FR, Ciarlantini C, Chiappini V, Pietrelli L, Piozzi A, Girelli AM. Design of a 3D Amino-Functionalized Rice Husk Ash Nano-Silica/Chitosan/Alginate Composite as Support for Laccase Immobilization. Polymers (Basel) 2023; 15:3127. [PMID: 37514516 PMCID: PMC10383677 DOI: 10.3390/polym15143127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Recycling of agro-industrial waste is one of the major issues addressed in recent years aimed at obtaining products with high added value as a future alternative to traditional ones in the per-spective of a bio-based and circular economy. One of the most produced wastes is rice husk and it is particularly interesting because it is very rich in silica, a material with a high intrinsic value. In the present study, a method to extract silica from rice husk ash (RHA) and to use it as a carrier for the immobilization of laccase from Trametes versicolor was developed. The obtained mesoporous nano-silica was characterized by X-ray diffraction (XRD), ATR-FTIR spectroscopy, Scanning Elec-tron Microscopy (SEM), and Energy Dispersive X-ray spectroscopy (EDS). A nano-silica purity of about 100% was found. Nano-silica was then introduced in a cross-linked chitosan/alginate scaffold to make it more easily recoverable after reuse. To favor laccase immobilization into the composite scaffold, functionalization of the nano-silica with (γ-aminopropyl) triethoxysilane (APTES) was performed. The APTES/RHA nano-silica/chitosan/alginate (ARCA) composite al-lowed to obtain under mild conditions (pH 7, room temperature, 1.5 h reaction time) a robust and easily reusable solid biocatalyst with 3.8 U/g of immobilized enzyme which maintained 50% of its activity after six reuses. The biocatalytic system, tested for syringic acid bioremediation, was able to totally oxidize the contaminant in 24 h.
Collapse
Affiliation(s)
- Francesca Romana Scuto
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Clarissa Ciarlantini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Loris Pietrelli
- DAFNE Department, Tuscia University, Via Santa Maria in Gradi 4, 01100 Viterbo, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Anna M Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Malik S, Kaur K, Prasad S, Jha NK, Kumar V. A perspective review on medicinal plant resources for their antimutagenic potentials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62014-62029. [PMID: 34431051 DOI: 10.1007/s11356-021-16057-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal that medicinal plant resources are being explored for identifying potent antimutagenic as well as cancer preventing agents. There is mounting evidence that cancer and other mutation-related diseases can be prevented with the use of medicinal pant resources including crude extracts, active fractions, phytochemicals, and pure phytomolecules. These medicinal plant resources possessing antimutagenic potentials have been shown to target molecular mechanisms underlying the mutagenic impacts. Technological advents and high-throughput screening/activity methods have revolutionized this field, though several potent plants and their active principles have been reported as effective antimutagens. The translational success rate needs to be improved, but the trends are encouraging. In this review, we present the current understandings and updates on various mutagens in the environment, toxicities related/attributed to them, the resultant mutations (and cancer), and how medicinal plants come to the rescue. A perspective review has been presented on whether and how medicinal plant resources can be an effective approach for addressing mutagens in the environment. An account of medicinal plant resources used as antimutagenic agents has been given along with the underlying mechanism of action and their therapeutic potential in various models of cancer. Recent success stories, current challenges, and future prospects are discussed.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
5
|
Arimoto-Kobayashi S, Hida R, Fujii N, Mochioka R. Antimutagenic, anti-inflammatory, and antioxidative activities of the juice of Vitis ficifolia var. Ganebu, a woody vine in the grape family, known as Ryukyu-ganebu in Japan. Genes Environ 2021; 43:50. [PMID: 34772463 PMCID: PMC8588599 DOI: 10.1186/s41021-021-00225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mutation, inflammation, and oxidative damage including lipid-peroxidation are factors involved in the development of cancer. We investigated the antimutagenic, in vivo and in vitro anti-inflammatory, and antioxidative effects of the juice of Vitis ficifolia var. ganebu (known as Ryukyu-ganebu in Japan) harvested in Kuchinoshima island (hereafter, the juice is referred to as ganebu-K) in comparison with the juice of Vitis coignetiae (crimson glory vine, known as yamabudo in Japan; hereafter, the juice is referred to as yamabudo) which we found antimutagenic and anti-inflammatory effects. Results Ganebu-K inhibited the mutagenic activity of several carcinogens, MeIQx, IQ, Trp-P-2(NHOH), and MNNG, model compounds of tumor initiation. Using S. typhimurium YG7108, a strain lacking O6-methylguanine DNA methyltransferases, ganebu-K showed no significant inhibition of the mutagenicity of MNNG. Thus, DNA repair of O6-methylguanine produced by MNNG might be an antimutagenic target of the components in ganebu-K. Topical application of ganebu-K to the dorsal sides of mice resulted in potent suppression of acute edema induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Ganebu-K, but not yamabudo, exhibited significant inhibition of the induction of prostaglandin E2 (PGE2) induced by TPA. Components contained in ganebu-K, but not in yamabudo, might be responsible for the inhibition of the induction of PGE2. Ganebu-K inhibited in vivo lipid peroxidation and decreased the level of glutamic oxaloacetic transaminase induced by CCL4 treatment. Conclusions These results suggest that the active components in ganebu-K juice are not the same as those in yamabudo, and the components in ganebu-K are attractive candidates as chemopreventive agents.
Collapse
Affiliation(s)
- Sakae Arimoto-Kobayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8530, Okayama, Japan. .,Faculty of Pharmaceutical Sciences, Okayama University, 700-8530, Okayama, Japan.
| | - Ryoko Hida
- Faculty of Pharmaceutical Sciences, Okayama University, 700-8530, Okayama, Japan
| | - Nana Fujii
- Faculty of Pharmaceutical Sciences, Okayama University, 700-8530, Okayama, Japan
| | - Ryosuke Mochioka
- Faculty of Agriculture, University Farm, Kagawa University, 769-2304, Kagawa, Japan
| |
Collapse
|
6
|
Khan Y, Mulk Khan S, ul Haq I, Farzana F, Abdullah A, Mehmood Abbasi A, Alamri S, Hashem M, Sakhi S, Asif M, Shah H. Antioxidant potential in the leaves of grape varieties (Vitis vinifera L.) grown in different soil compositions. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Arimoto-Kobayashi S, Sasaki K, Hida R, Miyake N, Fujii N, Saiki Y, Daimaru K, Nakashima H, Kubo T, Kiura K. Chemopreventive effects and anti-tumorigenic mechanisms of 2,6-dimethoxy-1,4-benzoquinone, a constituent of Vitis coignetiae Pulliat (crimson glory vine, known as yamabudo in Japan), toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. Food Chem Toxicol 2021; 154:112319. [PMID: 34087405 DOI: 10.1016/j.fct.2021.112319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Previously, we isolated and identified anti-mutagenic and anti-inflammatory components from Vitis coignetiae (crimson glory vine, known as yamabudo in Japan) as 2,6-dimethoxy-1,4-benzoquinone (DBQ), fertaric acid and caftaric acid. We also reported that the oral intake of a partially purified fraction from yamabudo juice (yamabudo-fr) or DBQ affords significant protection against two-stage skin carcinogenesis in mice. In this study, we found that oral intake of yamabudo-fr or DBQ affords significant protection against a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse model of lung tumorigenesis. Furthermore, we investigated the anti-tumorigenic mechanisms of yamabudo juice and DBQ. NNK is known to be a DNA-methylating and alkylating agent; thus, we investigated the anti-tumorigenic mechanisms of yamabudo juice and DBQ in relation to DNA methylation. Pretreatment with yamabudo-fr or DBQ dose-dependently decreased formation of O6-methylguanine and N7-methylguanine in DNA of the A549 human lung epithelial-like cell line treated with a methylating agent, 1-methyl-3-nitro-1-nitrosoguanidine. Yamabudo juice and DBQ inhibited the mutagenicity of NNK in the Ames test using Salmonella typhimurium TA1535 but not S. typhimurium YG7108, an alkylguanine DNA alkyltransferase-deficient strain (same as TA1535 but Δadast::Kmr, Δogtst::Cmr). Yamabudo juice and DBQ might accelerate the repair of DNA damage caused by NNK and reduce DNA damage to cells. We also investigated the effects of yamabudo juice and DBQ on signaling pathways in A549 cells. With or without epidermal growth factor stimulation, phosphorylation of Erk1/2, Akt and Stat3 in A549 cells was significantly decreased in the presence of yamabudo juice or DBQ, indicating that yamabudo juice and DBQ suppressed PI3K/AKT, MAPK/ERK and JAK/STAT3 signaling pathways. These results suggest that both initiation and growth/progression steps in carcinogenesis, especially anti-oxidant effects, stimulation of repair of alkyl DNA adducts and suppressed growth signaling pathways are potential anti-tumorigenic targets of yamabudo juice and DBQ in NNK-induced lung tumorigenesis.
Collapse
Affiliation(s)
- Sakae Arimoto-Kobayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| | - Kensuke Sasaki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Ryoko Hida
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Naoko Miyake
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Nana Fujii
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yusuke Saiki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Kyohei Daimaru
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Hirono Nakashima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Toshio Kubo
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, 700-8530, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, 700-8530, Japan
| |
Collapse
|
8
|
Marinho TA, Oliveira MG, Menezes-Filho ACP, Castro CFS, Oliveira IMM, Borges LL, Melo-Reis PR, Silva-Jr NJ. Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of Anadenanthera peregrina stem bark. BRAZ J BIOL 2021; 82:e234476. [PMID: 33681898 DOI: 10.1590/1519-6984.234476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/03/2020] [Indexed: 02/05/2023] Open
Abstract
The Brazilian Cerrado biome consists of a great variety of endemic species with several bioactive compounds, and Anadenanthera peregrina (L.) Speg is a promising species. In this study, we aimed to perform phytochemical characterization and evaluate the antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli of the hydroethanolic extract of A. peregrina stem bark. The barks were collected in the Botanical Garden of Goiânia, Brazil. The hydroethanolic extract was obtained by percolation and subjected to physicochemical screening, total phenolic content estimation, high-performance liquid chromatography (HPLC) fingerprinting, and antioxidant (IC50 values were calculated for the 2,2-diphenyl-1-picrylhydrazyl assay - DPPH) and antibacterial activity determination. The pH of the extract was 5.21 and density was 0.956 g/cm3. The phytochemical screening indicated the presence of cardiac glycosides, organic acids, reducing sugars, hemolytic saponins, phenols, coumarins, condensed tannins, flavonoids, catechins, depsides, and depsidones derived from benzoquinones. The extract showed intense hemolytic activity. The total phenolic content was 6.40 g GAE 100 g-1. The HPLC fingerprinting analysis revealed the presence of gallic acid, catechin, and epicatechin. We confirmed the antioxidant activity of the extract. Furthermore, the extract did not inhibit the growth of E. coli colonies at any volume tested, but there were halos around S. aureus colonies at all three volumes tested. These results contribute to a better understanding of the chemical composition of A. peregrina stem bark and further support the medicinal applications of this species.
Collapse
Affiliation(s)
- T A Marinho
- Universidade Federal de Goiás - UFG, Rede Pró Centro-Oeste, Programa de Pós-graduação em Biotenologia e Biodiversidade - PGBB, Goiânia, GO, Brasil.,Instituto Federal de Educação, Ciência e Tecnologia de Goiás - IFG, Núcleo de Estudos e Pesquisas em Promoção da Saúde - NUPPS, Goiânia, GO, Brasil
| | - M G Oliveira
- Universidade Federal de Goiás - UFG, Programa de Pós-graduação em Ciências Farmacêticas, Goiânia, GO, Brasil
| | - A C P Menezes-Filho
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - C F S Castro
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - I M M Oliveira
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Genética, Goiânia, GO, Brasil
| | - L L Borges
- Universidade Estadual de Goiás - UEG, Programa de Pós-graduação em Recursos Naturais do Cerrado - RENAC, Anápolis, GO, Brasil
| | - P R Melo-Reis
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| | - N J Silva-Jr
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| |
Collapse
|
9
|
Xie X, Zu X, Laster K, Dong Z, Kim DJ. 2,6-DMBQ suppresses cell proliferation and migration via inhibiting mTOR/AKT and p38 MAPK signaling pathways in NSCLC cells. J Pharmacol Sci 2021; 145:279-288. [PMID: 33602509 DOI: 10.1016/j.jphs.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
2,6-Dimethoxy-1,4-benzoquinone (2,6-DMBQ) is the major bioactive compound found in fermented wheat germ extract. Although fermented wheat germ extract has been reported to show anti-proliferative and anti-metabolic effects in various cancers, the anticancer potential and molecular mechanisms exerted by 2,6-DMBQ have not been investigated in non-small cell lung cancer (NSCLC) cells. Here, we report that 2,6-DMBQ suppresses NSCLC cell growth and migration through inhibiting activation of AKT and p38 MAPK. 2,6-DMBQ significantly suppressed anchorage-dependent and independent cell growth. Additionally, 2,6-DMBQ induced G2 phase cell cycle arrest through inhibiting the expression and phosphorylation of cyclin B1 and CDC2, respectively. Furthermore, 2,6-DMBQ strongly suppressed NSCLC cell migration through induction of E-cadherin expression. To determine the molecular mechanism(s) exerted by 2,6-DMBQ upon NSCLC cell lines, various signaling kinases were screened; the results indicate that 2,6-DMBQ strongly inhibits the phosphorylation of AKT and p38 MAPK. Additionally, the growth kinetics of cells treated with an AKT or p38 MAPK inhibitor in combination with 2,6-DMBQ indicate that 2,6-DMBQ suppresses NSCLC cell growth and migration through inhibition of AKT and p38 MAPK. Taken together, our results suggest that 2,6-DMBQ is a potential anticancer reagent against NSCLC cells and could be useful for treating lung cancer patients.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450008, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Xueyin Zu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450008, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450008, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450008, China; The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, 450008, China; International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450008, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450008, China.
| |
Collapse
|
10
|
|
11
|
Zu X, Ma X, Xie X, Lu B, Laster K, Liu K, Dong Z, Kim DJ. 2,6-DMBQ is a novel mTOR inhibitor that reduces gastric cancer growth in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:107. [PMID: 32517736 PMCID: PMC7285595 DOI: 10.1186/s13046-020-01608-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Background Fermented wheat germ extract has been reported to exert various pharmacological activities, including anti-oxidant, anti-cell growth and cell apoptosis in various cancer cells. Although 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ) is a benzoquinone compound and found in fermented wheat germ extract, its anticancer effects and molecular mechanism(s) against gastric cancer have not been investigated. Methods Anticancer effects of 2,6-DMBQ were determined by MTT, soft agar, cell cycle and Annexin V analysis. Potential candidate proteins were screened via in vitro kinase assay and Western blotting. mTOR knockdown cell lines were established by lentiviral infection with shmTOR. The effect of 2,6-DMBQ on tumor growth was assessed using gastric cancer patient-derived xenograft models. Results 2,6-DMBQ significantly reduced cell growth and induced G1 phase cell cycle arrest and apoptosis in gastric cancer cells. 2,6-DMBQ reduced the activity of mTOR in vitro. The inhibition of cell growth by 2,6-DMBQ is dependent upon the expression of the mTOR protein. Remarkably, 2,6-DMBQ strongly reduced patient-derived xenograft gastric tumor growth in an in vivo mouse model. Conclusions 2,6-DMBQ is an mTOR inhibitor that can be useful for treating gastric cancer. It has therapeutic implications for gastric cancer patients.
Collapse
Affiliation(s)
- Xueyin Zu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Xiaoli Ma
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Xiaomeng Xie
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Bingbing Lu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China
| | - Zigang Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China. .,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China. .,International joint research center of cancer chemoprevention, Zhengzhou, China.
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
| |
Collapse
|