1
|
Yang T, Zhang Y, Zhong J, Zhang R, Xu Z, Xiao F, Huang J, Hong F. Analysis of the association between mixed exposure to multiple metals and comorbidity of hypertension and abnormal bone mass: Baseline data from the Chinese multi-ethnic cohort study (CMEC). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118212. [PMID: 40253878 DOI: 10.1016/j.ecoenv.2025.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Comorbidity represents an increasingly significant public health challenge. While numerous studies have confirmed the association between metals and both hypertension and osteopenia, the relationship between the multi-faceted effects of mixed metal exposure and the comorbidity of hypertension with abnormal bone mass, as well as age-specific associations, remains unclear. This study utilized baseline data from the China Multi-Ethnic Cohort Study, investigating 9870 Chinese ethnic minorities (Dong and Miao) aged 30-79 years. We measured 17 urinary metal levels using inductively coupled plasma mass spectrometry. The study employed Least Absolute Shrinkage and Selection Operator (LASSO) penalized regression and Bayesian Kernel Machine Regression (BKMR) models to explore the association between urinary metals and comorbidity of hypertension and abnormal bone mass risk. In single-metal models, urinary nickel and zinc levels showed positive correlations with hypertension-related bone mass reduction risk, with ORs and 95 % CIs of 1.23 (1.01, 1.50) and 1.56 (1.27, 1.90), respectively. LASSO regression identified 11 urinary metals (aluminum, cobalt, chromium, copper, iron, manganese, lithium, lead, strontium, vanadium, and zinc) associated with hypertension and abnormal bone mass comorbidity. These selected metals were incorporated into subsequent analyses. BKMR analysis revealed an overall negative effect of metal mixtures on hypertension and abnormal bone mass comorbidity when all metals were fixed at their 50th percentiles. Vanadium and lithium showed negative correlations with the comorbidity. In subgroup analyses, age-stratified groups demonstrated consistent overall negative effects of metal mixtures on the comorbidity. Notably, in individuals over 60 years old, aluminum additionally exhibited a negative association alongside vanadium. Interactions were observed among metals in mixed exposures. Increasing urinary aluminum concentrations attenuated the negative correlation between manganese and hypertension-bone mass abnormality comorbidity. Similarly, increasing manganese concentrations weakened the positive association between urinary zinc and the comorbidity. In individuals under 60 years old, consistent with the general population, increasing urinary aluminum concentrations at P50 levels of other metals diminished the protective effect of manganese against hypertension-bone mass abnormality comorbidity. Interactions were identified between aluminum and lithium, and between manganese and zinc. This study provides substantial evidence linking mixed urinary metal exposure to hypertension and bone mass comorbidity, exploring the multifaceted effects of mixed metal exposure. These findings contribute to a deeper understanding of the role of metal exposure in chronic disease comorbidity, offering a scientific foundation and new directions for preventing and controlling hypertension and bone mass comorbidity, as well as informing public health policy formulation from an environmental metal perspective.
Collapse
Affiliation(s)
- Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yuxin Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jianqin Zhong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Renhua Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Zixuan Xu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Fei Xiao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jing Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Lv X, Xia Z, Yao X, Shan Y, Wang N, Zeng Q, Liu X, Huang X, Fu X, Jin Y, Ma M. Modification Effects of Microorganisms and Enzymes on Egg Components: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25462-25480. [PMID: 39526490 DOI: 10.1021/acs.jafc.4c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In eggs, there are several components: eggshell (ES), eggshell membrane (ESM), egg white (EW), and egg yolk (EY). Many modification methods exist, such as thermal treatment, high pressure, freeze-thaw cycles, ultrasonic treatment, ozonation, phosphorylation, and acylation, all aimed at improving the functional properties of EW and EY. Additionally, microorganism and enzyme modifications have proven effective in enhancing the functional properties of EW and EY. ES and ESM are unique components of eggs. The eggshell is rich in calcium carbonate, while the eggshell membrane is rich in protein. The effective utilization of ES and ESM can help promote economic income in the poultry industry and benefit the environment. Research on the modification of ES and ESM has shown that microorganisms and enzymes have the potential to improve their functional properties. After modification, egg components can be utilized in the production of egg-based and other food products for improved performance. Furthermore, enzyme modification of egg components can produce bioactive peptides, which have the potential to treat specific diseases and may even be used in the biomedical field. This review primarily focuses on the effects of microorganisms and enzymes on the modification of egg components and summarizes the roles of microbial and enzymatic modifications in this context.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nannan Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
3
|
Pinheiro Júnior JEG, Sosa PM, das Neves BHS, Vassallo DV, Peçanha FM, Miguel-Castro M, Mello-Carpes PB, Wiggers GA. Egg White Hydrolysate Mitigates Cadmium-induced Neurological Disorders and Oxidative Damage. Neurochem Res 2024; 49:1603-1615. [PMID: 38353895 PMCID: PMC11106117 DOI: 10.1007/s11064-024-04110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 05/21/2024]
Abstract
We aimed to investigate whether the consumption of Egg White Hydrolysate (EWH) acts on nervous system disorders induced by exposure to Cadmium (Cd) in rats. Male Wistar rats were divided into (a) Control (Ct): H2O by gavage for 28 days + H2O (i.p. - 15th - 28th day); (b) Cadmium (Cd): H2O by gavage + CdCl2 - 1 mg/kg/day (i.p. - 15th - 28th day); (c) EWH 14d: EWH 1 g/kg/day by gavage for 14 days + H2O (i.p.- 15th - 28th day); (d) Cd + EWH cotreatment (Cd + EWHco): CdCl2 + EWH for 14 days; (e) EWH 28d: EWH for 28 days; (f) EWHpre + Cd: EWH (1st - 28th day) + CdCl2 (15th - 28th day). At the beginning and the end of treatment, neuromotor performance (Neurological Deficit Scale); motor function (Rota-Rod test); ability to move and explore (Open Field test); thermal sensitivity (Hot Plate test); and state of anxiety (Elevated Maze test) were tested. The antioxidant status in the cerebral cortex and the striatum were biochemically analyzed. Cd induces anxiety, and neuromotor, and thermal sensitivity deficits. EWH consumption prevented anxiety, neuromotor deficits, and alterations in thermal sensitivity, avoiding neuromotor deficits both when the administration was performed before or during Cd exposure. Both modes of administration reduced the levels of reactive species, and the lipid peroxidation increased by Cd and improved the striatum's antioxidant capacity. Pretreatment proved to be beneficial in preventing the reduction of SOD activity in the cortex. EWH could be used as a functional food with antioxidant properties capable of preventing neurological damage induced by Cd.
Collapse
Affiliation(s)
- José Eudes Gomes Pinheiro Júnior
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, BR 472 - km 592, Uruguaiana, 97500-970, Rio Grande do Sul, Brazil
| | - Priscila Marques Sosa
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, BR 472 - km 592, Uruguaiana, 97500-970, Rio Grande do Sul, Brazil
| | - Ben-Hur Souto das Neves
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, BR 472 - km 592, Uruguaiana, 97500-970, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Vitória, 29040-090, Espírito Santo, Brazil
| | - Franck Maciel Peçanha
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, BR 472 - km 592, Uruguaiana, 97500-970, Rio Grande do Sul, Brazil
| | - Marta Miguel-Castro
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, 28049, Spain.
| | - Pâmela Billig Mello-Carpes
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, BR 472 - km 592, Uruguaiana, 97500-970, Rio Grande do Sul, Brazil
| | - Giulia Alessandra Wiggers
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, BR 472 - km 592, Uruguaiana, 97500-970, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Zhao L, Yin J, Huan J, Han X, Zhao D, Song J, Wang L, Zhang H, Pan B, Niu Q, Lu X. A Bayesian network for estimating hypertension risk due to occupational aluminum exposure. Chronic Dis Transl Med 2024; 10:130-139. [PMID: 38872757 PMCID: PMC11166680 DOI: 10.1002/cdt3.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Background The correlation between metals and hypertension, such as sodium, zinc, potassium, and magnesium, has been confirmed, while the relationship between aluminum and hypertension is not very clear. This study aimed to evaluate the correlation between plasma aluminum and hypertension in electrolytic aluminum workers by the Bayesian networks (BN). Methods In 2019, 476 male workers in an aluminum factory were investigated. The plasma aluminum concentration of workers was measured by inductively coupled plasma mass spectrometry. The influencing factors on the prevalence of hypertension were analyzed by the BN. Results The prevalence of hypertension was 23.9% in 476 male workers. The risk of hypertension from plasma aluminum in the Q2, Q3, and Q4 groups was 5.20 (1.90-14.25), 6.92 (2.51-19.08), and 7.33 (2.69-20.01), respectively, compared with that in the Q1 group. The risk of hypertension from the duration of exposure to aluminum of >10 years was 2.23 (1.09-4.57), compared without aluminum exposure. Area under the curve was 0.80 of plasma aluminum and the duration of exposure to aluminum was based on covariates, indicating that aluminum exposure had important predictive value in the prevalence of hypertension in the occupational population. The results of the study using the BN model showed that if the plasma aluminum of all participants was higher than Q4 (≥47.86 µg/L) and the participants were drinking, smoking, diabetes, central obesity, dyslipidemia, and aged >50 years, the proportion of hypertension was 71.2%. Conclusions The prevalence of hypertension increased significantly with the increase of plasma aluminum level.
Collapse
Affiliation(s)
- Le Zhao
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Jinzhu Yin
- Sinopharm Tongmei General HospitalShanxi Health Commission Key Laboratory of Nervous System Disease Prevention and TreatmentDatongShanxiChina
| | - Jiaping Huan
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Xiao Han
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Dan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
- Sixth Hospital of Shanxi Medical University (General Hospital of Tisco)TaiyuanShanxiChina
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
5
|
Tinkov AA, Skalny AV, Domingo JL, Samarghandian S, Kirichuk AA, Aschner M. A review of the epidemiological and laboratory evidence of the role of aluminum exposure in pathogenesis of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117740. [PMID: 38007081 DOI: 10.1016/j.envres.2023.117740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
The objective of the present study was to review the epidemiological and laboratory evidence on the role of aluminum (Al) exposure in the pathogenesis of cardiovascular diseases. Epidemiological data demonstrated an increased incidence of cardiovascular diseases (CVD), including hypertension and atherosclerosis in occupationally exposed subjects and hemodialysis patients. In addition, Al body burden was found to be elevated in patients with coronary heart disease, hypertension, and dyslipidemia. Laboratory studies demonstrated that Al exposure induced significant ultrastructural damage in the heart, resulting in electrocardiogram alterations in association with cardiomyocyte necrosis and apoptosis, inflammation, oxidative stress, inflammation, and mitochondrial dysfunction. In agreement with the epidemiological findings, laboratory data demonstrated dyslipidemia upon Al exposure, resulting from impaired hepatic lipid catabolism, as well as promotion of low-density lipoprotein oxidation. Al was also shown to inhibit paraoxonase 1 activity and to induce endothelial dysfunction and adhesion molecule expression, further promoting atherogenesis. The role of Al in hypertension was shown to be mediated by up-regulation of NADPH-oxidase, inhibition of nitric oxide bioavailability, and stimulation of renin-angiotensin-aldosterone system. It has been also demonstrated that Al exposure targets cerebral vasculature, which may be considered a link between Al exposure and cerebrovascular diseases. Findings from other tissues lend support that ferroptosis, pyroptosis, endoplasmic reticulum stress, and modulation of gut microbiome and metabolome are involved in the development of CVD upon Al exposure. A better understanding of the role of the cardiovascular system as a target for Al toxicity will be useful for risk assessment and the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, 9319774446, Iran
| | - Anatoly A Kirichuk
- Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
6
|
Filetti FM, Schereider IRG, Wiggers GA, Miguel M, Vassallo DV, Simões MR. Cardiovascular Harmful Effects of Recommended Daily Doses (13 µg/kg/day), Tolerable Upper Intake Doses (0.14 mg/kg/day) and Twice the Tolerable Doses (0.28 mg/kg/day) of Copper. Cardiovasc Toxicol 2023:10.1007/s12012-023-09797-3. [PMID: 37254026 DOI: 10.1007/s12012-023-09797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
Copper is essential for homeostasis and regulation of body functions, but in excess, it is a cardiovascular risk factor since it increases oxidative stress. The objective of this study was to evaluate the effects of exposure to the recommended daily dose (13 µg/kg/day), upper tolerable dose (0.14 mg/kg/day) and twice the upper tolerable dose (0.28 mg/kg/day) via i.p. over 4 weeks on the vascular reactivity of aortic rings and the contraction of LV papillary muscles of male Wistar rats. It was also determined whether the antioxidant peptide from egg white hydrolysate (EWH) prevents these effects. Copper exposure at the doses evaluated did not change weight gain of male Wistar rats, the reactivity of the aortic rings or the cardiac mass. The dose of 0.13 µg/kg/day did not reduce the force of contraction, but it impaired the time derivatives of force. Doses of 0.14 and 0.28 mg/kg/day reduced the force of contraction, the inotropic response to calcium and isoproterenol, the postrest contraction and the peak and plateau of tetanized contractions. EWH treatment antagonized these effects. These results suggest that copper, even at the dose described as upper tolerable, can impair cardiac contraction without altering vascular reactivity. Antioxidative stress therapy with EWH reversed these harmful effects, suggesting a possible strategy for the amelioration of these effects.
Collapse
Affiliation(s)
- Filipe Martinuzo Filetti
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil.
- Nursing Course, College FAVENI, Venda Nova Do Imigrante, ES, CEP 29375-000, Brazil.
| | - Ingridy Reinholz Grafites Schereider
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Federal University of Pampa, BR 472, Km 592, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marta Miguel
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Dalton Valentim Vassallo
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
- Health Science Center of Vitória-EMESCAM, Vitória, ES, CEP 29045-402, Brazil
| | - Maylla Ronacher Simões
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| |
Collapse
|
7
|
Piagette JT, Pinheiro Júnior JEG, Kanaan SHH, Herrera CT, Bastilhos LO, Peçanha FM, Vassallo DV, Miguel-Castro M, Wiggers GA. Pretreatment with egg white hydrolysate protects resistance arteries from damage induced after treatment with accidental cadmium exposure values. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
8
|
Dietary Egg White Hydrolysate Prevents Male Reproductive Dysfunction after Long-Term Exposure to Aluminum in Rats. Metabolites 2022; 12:metabo12121188. [PMID: 36557226 PMCID: PMC9786572 DOI: 10.3390/metabo12121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Aluminum (Al) is a non-essential metal omnipresent in human life and is considered an environmental toxicant. Al increases reactive oxygen production and triggers immune responses, contributing to chronic systemic inflammation development. Here, we have tested whether an egg white hydrolysate (EWH) with potential bioactive properties can protect against changes in reproductive function in rats exposed to long-term Al dietary levels at high and low doses. Male Wistar rats received orally: low aluminum level group-AlCl3 at 8.3 mg/kg b.w. for 60 days with or without EWH (1 g/kg/day); high aluminum level group-AlCl3 at 100 mg/kg b.w. for 42 days with or without EWH (1 g/kg/day). The co-administration of EWH prevented the increased Al deposition surrounding the germinative cells, reducing inflammation and oxidative stress in the reproductive organs. Furthermore, the daily supplementation with EWH maintained sperm production and sperm quality similar to those found in control animals, even after Al exposure at a high dietary contamination level. Altogether, our results suggest that EWH could be used as a protective agent against impairment in the reproductive system produced after long-term exposure to Al at low or high human dietary levels.
Collapse
|
9
|
ROS Suppression by Egg White Hydrolysate in DOCA-Salt Rats—An Alternative Tool against Vascular Dysfunction in Severe Hypertension. Antioxidants (Basel) 2022; 11:antiox11091713. [PMID: 36139783 PMCID: PMC9495903 DOI: 10.3390/antiox11091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the potential for lowering blood pressure and beneficial effects on mesenteric resistance arteries (MRA) and conductance vessels (aorta) produced by dietary supplementation of an egg white hydrolysate (EWH) in rats with severe hypertension induced by deoxycorticosterone plus salt treatment (DOCA-salt), as well as the underlying mechanisms involved. The DOCA-salt model presented higher blood pressure, which was significantly reduced by EWH. The impaired acetylcholine-induced relaxation and eNOS expression observed in MRA and aorta from DOCA-salt rats was ameliorated by EWH. This effect on vessels (MRA and aorta) was related to the antioxidant effect of EWH, since hydrolysate intake prevented the NF-κB/TNFα inflammatory pathway and NADPH oxidase-induced reactive oxygen species (ROS) generation, as well as the mitochondrial source of ROS in MRA. At the plasma level, EWH blocked the higher ROS and MDA generation by DOCA-salt treatment, without altering the antioxidant marker. In conclusion, EWH demonstrated an antihypertensive effect in a model of severe hypertension. This effect could be related to its endothelium-dependent vasodilator properties mediated by an ameliorated vessel’s redox imbalance and inflammatory state.
Collapse
|
10
|
Matsuoka R, Sugano M. Health Functions of Egg Protein. Foods 2022; 11:2309. [PMID: 35954074 PMCID: PMC9368041 DOI: 10.3390/foods11152309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Egg protein is a remarkably abundant source of protein, with an amino acid score of 100 and the highest net protein utilization rate. However, there have been relatively fewer studies investigating the health benefits of egg protein. In this review, we have summarized the available information regarding the health benefits of egg proteins based on human studies. In particular, studies conducted on the characteristics of egg whites, as they are high in pure protein, have reported their various health functions, such as increases in muscle mass and strength enhancement, lowering of cholesterol, and visceral fat reduction. Moreover, to facilitate and encourage the use of egg white protein in future, we also discuss its health functions. These benefits were determined by developing an egg white hydrolysate and lactic-fermented egg whites, with the latter treatment simultaneously improving the egg flavor. The health benefits of the protein hydrolysates from the egg yolk (bone growth effect) and eggshell membrane (knee join pain-lowering effect) have been limited in animal studies. Therefore, the consumption of egg protein may contribute to the prevention of physical frailty and metabolic syndromes.
Collapse
Affiliation(s)
| | - Michihiro Sugano
- Kyushu University, Fukuoka 819-0395, Japan;
- Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
- Chair of the Japan Egg Science Society, Tokyo 182-0002, Japan
| |
Collapse
|
11
|
Moraes PZ, Júnior JEGP, Martinez CS, Moro CR, da Silva GC, Rodriguez MD, Simões MR, Junior FB, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Multi-functional egg white hydrolysate prevent hypertension and vascular dysfunction induced by cadmium in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Zhang Y, Huan J, Gao D, Xu S, Han X, Song J, Wang L, Zhang H, Niu Q, Lu X. Blood pressure mediated the effects of cognitive function impairment related to aluminum exposure in Chinese aluminum smelting workers. Neurotoxicology 2022; 91:269-281. [PMID: 35654245 DOI: 10.1016/j.neuro.2022.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the effects that the Al on blood pressure and the effect of hypertension in aluminum-induced cognitive impairment in electrolytic aluminum worker. METHODS The study was conducted 392 male aluminum electrolytic workers in an aluminum plant of China. The concentration of alumina dust in the air of the electrolytic aluminum workshop is 1.07mg/m3-2.13mg/m3. According to the Permissible concentration-Time Weighted Average of alumina dust is 4mg/ m3, which does not exceed the standard. The blood pressure of the workers was measured. The plasma aluminum concentration of workers was determined by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Cognitive functions were measured using MMSE (Mini-Mental State Examination), VFT (Verbal Fluency Test), ATIME (Average Reaction Time), FOM (Fuld Object Memory Evaluation), DST (Digit Span Test), CDT (Clock Drawing Test) scales. Modified Poisson regression was used to analyze the risk of hypertension and cognitive impairment with different plasma aluminum concentrations. Generalized linear regression model was used to analyze the relationship between aluminum and cognitive function, blood pressure and cognitive function. Causal Mediation Analysis was used to analyze the mediation effect of blood press in aluminum-induced cognitive impairment. RESULTS Plasma aluminum appeared to be a risk factor for hypertension (PR (prevalence ratio) = 1.630, 95%-CI (confidence interval): 1.103 to 2.407), systolic blood pressure (PR = 1.578, 95%-CI: 1.038 to 2.399) and diastolic blood pressure (PR = 1.842, 95%-CI: 1.153 to 2.944). And plasma aluminum increased by e-fold, the scores of MMSE and VFT decreased by 0.630 and 2.231 units respectively and the time of ATIME increased by 0.029 units. In addition, generalized linear regression model showed that blood press was negatively correlated with the scores of MMSE and VFT. Finally, causal Mediation Analysis showed that hypertension was a part of the mediating factors of aluminum-induced decline in MMSE score, and the mediating effects was 16.300% (7.100%, 33.200%). In addition, hypertension was a part of the mediating factors of aluminum-induced decline in VFT score, and the mediating effects was 9.400% (2.600%, 29.000%) CONCLUSION: Occupational aluminum exposure increases the risk of hypertension and cognitive impairment. And hypertension may be a mediating factor of cognitive impairment caused by aluminum exposure.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; Center for Disease Control and Prevention, Linfen, Shanxi, China
| | - Jiaping Huan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Dan Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shimeng Xu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Zhang X, Chelliappan B, S R, Antonysamy M. Recent Advances in Applications of Bioactive Egg Compounds in Nonfood Sectors. Front Bioeng Biotechnol 2021; 9:738993. [PMID: 34976961 PMCID: PMC8716877 DOI: 10.3389/fbioe.2021.738993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Egg, a highly nutritious food, contains high-quality proteins, vitamins, and minerals. This food has been reported for its potential pharmacological properties, including antibacterial, anti-cancer, anti-inflammatory, angiotensin-converting enzyme (ACE) inhibition, immunomodulatory effects, and use in tissue engineering applications. The significance of eggs and their components in disease prevention and treatment is worth more attention. Eggs not only have been known as a "functional food" to combat diseases and facilitate the promotion of optimal health, but also have numerous industrial applications. The current review focuses on different perceptions and non-food applications of eggs, including cosmetics. The versatility of eggs from an industrial perspective makes them a potential candidate for further exploration of several novel components.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Centre of Molecular and Environmental Biology, University of Minho, Department of Biology, Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brindha Chelliappan
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Department of Microbiology, PSG College of Arts & Science, Bharathiar University, Coimbatore, India
| | - Rajeswari S
- Department of Microbiology, PSG College of Arts & Science, Bharathiar University, Coimbatore, India
| | - Michael Antonysamy
- Department of Microbiology, PSG College of Arts & Science, Bharathiar University, Coimbatore, India
| |
Collapse
|
14
|
ELBini-Dhouib I, Doghri R, Ellefi A, Degrach I, Srairi-Abid N, Gati A. Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer's Disease. Molecules 2021; 26:3011. [PMID: 34070220 PMCID: PMC8158738 DOI: 10.3390/molecules26103011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Despite research efforts, currently there are no effective pharmacotherapeutic options for the prevention and treatment of AD. Recently, numerous studies highlighted the beneficial effects of curcumin (CUR), a natural polyphenol, in the neuroprotection. Especially, its dual antioxidant and anti-inflammatory properties attracted the interest of researchers. In fact, besides its antioxidant and anti-inflammatory properties, this biomolecule is not degraded in the intestinal tract. Additionally, CUR is able to cross the blood-brain barrier and could therefore to be used to treat neurodegenerative pathologies associated with oxidative stress, inflammation and apoptosis. The present study aimed to assess the ability of CUR to induce neuronal protective and/or recovery effects on a rat model of neurotoxicity induced by aluminum chloride (AlCl3), which mimics the sporadic form of Alzheimer's disease. Our results showed that treatment with CUR enhances pro-oxidant levels, antioxidant enzymes activities and anti-inflammatory cytokine production and decreases apoptotic cells in AlCl3-exposed hippocampus rats. Additionally, histopathological analysis of hippocampus revealed the potential of CUR in decreasing the hallmarks in the AlCl3-induced AD. We also showed that CUR post-treatment significantly improved the behavioral, oxidative stress and inflammation in AlCl3-exposed rats. Taken together, our data presented CUR as a nutraceutical potential through its protective effects that are more interesting than recovery ones in sporadic model of AD.
Collapse
Affiliation(s)
- Ines ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, 1002 Tunis, Tunisia; (A.E.); (N.S.-A.)
| | - Raoudha Doghri
- Laboratory of Anatomo-Pathology, Institut Salah Azaiez, 1006 Tunis, Tunisia;
| | - Amenallah Ellefi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, 1002 Tunis, Tunisia; (A.E.); (N.S.-A.)
| | - Imen Degrach
- Animal Unit, Institut Pasteur de Tunis, 1002 Tunis, Tunisia;
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, 1002 Tunis, Tunisia; (A.E.); (N.S.-A.)
| | - Asma Gati
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia;
| |
Collapse
|
15
|
Miguel M, Vassallo DV, Wiggers GA. Bioactive Peptides and Hydrolysates from Egg Proteins as a New Tool for Protection Against Cardiovascular Problems. Curr Pharm Des 2021; 26:3676-3683. [PMID: 32216734 DOI: 10.2174/1381612826666200327181458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
The aim of the present work is to review the potential beneficial effects of dietary supplementation with bioactive egg protein hydrolysates or peptides on cardiometabolic changes associated with oxidative stress. The development of nutritionally improved food products designed to address specific health concerns is of particular interest because many bioactive food compounds can be potentially useful in various physiological functions such as for reducing oxidative stress. The results presented suggest that egg hydrolysates or derived peptides could be included in the diet to prevent and/or reduce some cardiometabolic complications associated with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación em Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Dalton V Vassallo
- Department of Physiological Sciences, Universidade Federal do Espirito Santo and School of Medicine of Santa Casa de Misericordia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitoria, Espirito Santo, Brazil
| | - Giulia A Wiggers
- Cardiovascular Physiology Research Group, Federal University of Pampa, BR 472 - Km 592 - PO box 118. Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|