1
|
Wang J, Li F, Li W, Li Y, Zhang J, Qin S. Progress in Preparation Technology and Functional Research On Marine Bioactive Peptides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:42. [PMID: 39907808 DOI: 10.1007/s10126-024-10401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025]
Abstract
Marine bioactive peptides are a class of peptides derived from marine organisms that can optimize the body's metabolic environment and benefit the body's health. These peptides have attracted increasing amounts of attention due to their wide range of health-promoting effects. Additionally, they have the potential to ameliorate diseases such as hypertension, diabetes, influenza viruses, and inflammation and can be used as functional foods or nutritional supplements for the purpose of treating or alleviating diseases. This paper reviews the recent research progress on marine bioactive peptides, focusing on their production technologies and functions in biomaterials and drug development.
Collapse
Affiliation(s)
- Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, China
| | - Fengcheng Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, Shandong, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, 264003, P. R. China
| | - Yueming Li
- Qingdao Langyatai Group Co., Ltd, Qingdao, 266404, China
| | - Jian Zhang
- Qingdao Langyatai Group Co., Ltd, Qingdao, 266404, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, 264003, P. R. China.
| |
Collapse
|
2
|
Zhang Y, Li Y, Ren T, Xiao P, Duan JA. Novel and efficient techniques in the discovery of antioxidant peptides. Crit Rev Food Sci Nutr 2024; 64:11934-11948. [PMID: 37585700 DOI: 10.1080/10408398.2023.2245052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As a research hotspot in food science and nutrition, antioxidant peptides can function by scavenging free radicals, inhibiting peroxides, and chelating metal ions. Therefore, how to efficiently discover and screen antioxidant peptides has become a key issue in research and production. Traditional discovery methods are time-consuming and costly, but also challenging to resolve the quantitative structure-activity relationship of antioxidant peptides. Several novel techniques, including artificial intelligence, molecular docking, bioinformatics, quantum chemistry, phage display, switchSENSE, surface plasmon resonance, and fluorescence polarization, are emerging rapidly as solutions. These techniques possess efficient capability for the discovery of antioxidant peptides, even with the potential for high-throughput screening. In addition, the quantitative structure-activity relationship can be resolved. Notably, combining these novel techniques can overcome the drawbacks of a single one, thus improving efficiency and expanding the discovery horizon. This review has summarized eight novel and efficient techniques for discovering antioxidant peptides and the combination of techniques. This review aims to provide scientific evidence and perspectives for antioxidant peptide research.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Shekoohi N, Carson BP, Fitzgerald RJ. Antioxidative, Glucose Management, and Muscle Protein Synthesis Properties of Fish Protein Hydrolysates and Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21301-21317. [PMID: 39297866 PMCID: PMC11450812 DOI: 10.1021/acs.jafc.4c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
The marine environment is an excellent source for many physiologically active compounds due to its extensive biodiversity. Among these, fish proteins stand out for their unique qualities, making them valuable in a variety of applications due to their diverse compositional and functional properties. Utilizing fish and fish coproducts for the production of protein hydrolysates and bioactive peptides not only enhances their economic value but also reduces their potential environmental harm, if left unutilized. Fish protein hydrolysates (FPHs), known for their excellent nutritional value, favorable amino acid profiles, and beneficial biological activities, have generated significant interest for their potential health benefits. These hydrolysates contain bioactive peptides which are peptide sequences known for their beneficial physiological effects. These biologically active peptides play a role in metabolic regulation/modulation and are increasingly seen as promising ingredients in functional foods, nutraceuticals and pharmaceuticals, with potential to improve human health and prevent disease. This review aims to summarize the current in vitro, cell model (in situ) and in vivo research on the antioxidant, glycaemic management and muscle health enhancement properties of FPHs and their peptides.
Collapse
Affiliation(s)
- Niloofar Shekoohi
- Department
of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Brian P. Carson
- Department
of Physical Education and Sport Sciences, Faculty of Education and
Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health
Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Richard J. Fitzgerald
- Department
of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health
Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
4
|
Du J, Xiao M, Sudo N, Liu Q. Bioactive peptides of marine organisms: Roles in the reduction and control of cardiovascular diseases. Food Sci Nutr 2024; 12:5271-5284. [PMID: 39139935 PMCID: PMC11317662 DOI: 10.1002/fsn3.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) affect the quality of life or are fatal in the worst cases, resulting in a significant economic and social burden. Therefore, there is an urgent need to invent functional products or drugs for improving patient health and alleviating and controlling these diseases. Marine bioactive peptides reduce and control CVDs. Many of the predisposing factors triggering CVDs can be alleviated by consuming functional foods containing marine biopeptides. Therefore, improving CVD incidence through the use of effective biopeptide foods from marine sources has attracted increasing interest and attention. This review reports information on bioactive peptides derived from various marine organisms, focusing on the process of the separation, purification, and identification of biological peptides, biological characteristics, and functional food for promoting cardiovascular health. Increasing evidence shows that the bioactivity and safety of marine peptides significantly impact their storage, purification, and processing. It is feasible to develop further strategies involving functional foods to treat CVDs through effective safety testing methods. Future work should focus on producing high-quality marine peptides and applying them in the food and drug industry.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Miao Xiao
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Naomi Sudo
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Qinghua Liu
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
- Wisdom Lake Academy of PharmacyXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| |
Collapse
|
5
|
Xu B, Dong Q, Yu C, Chen H, Zhao Y, Zhang B, Yu P, Chen M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants (Basel) 2024; 13:479. [PMID: 38671926 PMCID: PMC11047381 DOI: 10.3390/antiox13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant peptides are a class of biologically active peptides with low molecular weights and stable antioxidant properties that are isolated from proteins. In this review, the progress in research on the activity evaluation, action mechanism, and structure-activity relationships of natural antioxidant peptides are summarized. The methods used to evaluate antioxidant activity are mainly classified into three categories: in vitro chemical, in vitro cellular, and in vivo animal methods. Also, the biological effects produced by these three methods are listed: the scavenging of free radicals, chelation of metal ions, inhibition of lipid peroxidation, inhibition of oxidative enzyme activities, and activation of antioxidant enzymes and non-enzymatic systems. The antioxidant effects of natural peptides primarily consist of the regulation of redox signaling pathways, which includes activation of the Nrf2 pathway and the inhibition of the NF-κB pathway. The structure-activity relationships of the antioxidant peptides are investigated, including the effects of peptide molecular weight, amino acid composition and sequence, and secondary structure on antioxidant activity. In addition, four computer-assisted methods (molecular docking, molecular dynamics simulation, quantum chemical calculations, and the determination of quantitative structure-activity relationships) for analyzing the structure-activity effects of natural peptides are summarized. Thus, this review lays a theoretical foundation for the development of new antioxidants, nutraceuticals, and cosmetics.
Collapse
Affiliation(s)
- Baoting Xu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Panling Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- Shanghai Fanshun Edible Fungus Professional Cooperative, Shanghai 201317, China
| |
Collapse
|
6
|
Gou F, Gao S, Li B. Lipid-Induced Oxidative Modifications Decrease the Bioactivities of Collagen Hydrolysates from Fish Skin: The Underlying Mechanism Based on the Proteomic Strategy. Foods 2024; 13:583. [PMID: 38397560 PMCID: PMC10888297 DOI: 10.3390/foods13040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Collagen peptides exhibit various bioactivities, including antioxidation and ACE inhibition. However, the bioactivities of collagen peptides decrease gradually due to oxidation deterioration during storage, and this degradation of bioactive peptides is rarely studied. In this study, the oxidative levels and the bioactivities of collagen peptides were investigated during an oxidative-induced storage accelerated by lipids. The results suggested that the oxidation of collagen peptides was divided into three stages. At the early stage, the carbonyl content of collagen peptides increased rapidly (from 2.32 to 3.72 μmol/g peptide), showing a close correlation with their bioactivities (for antioxidation, r = -0.947; for ACE inhibition, r = -0.911). The oxidation level in the middle stage continued but was stable, and the bioactivities decreased. At the later stage, the Schiff base and dityrosine content increased significantly and showed a strong correlation with the bioactivities (antioxidation, r = -0.820, -0.801; ACE inhibition, r = -0.779, -0.865). The amino acid and proteomic analyses showed that Met, Lys, and Arg were susceptible to oxidation and revealed their oxidative modification types. This study provided an insight into the dynamic oxidative modifications of collagen peptides, which were shown to correlate well with the change in bioactivities.
Collapse
Affiliation(s)
| | | | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (S.G.)
| |
Collapse
|
7
|
Wang P, Zhang Y, Hu J, Tan BK. Bioactive Peptides from Marine Organisms. Protein Pept Lett 2024; 31:569-585. [PMID: 39253911 DOI: 10.2174/0109298665329840240816062134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Marine organisms represent promising bioactive peptide resources with diverse biological activities such as antioxidant, antimicrobial, antihypertensive, anti-fatigue, and immunoregulatory activities. Despite many studies on marine bioactive peptides, there is a dearth of comprehensive review articles on the emerging trends that encompass the production techniques and the biological applications of marine bioactive peptides. In this review, we summarize the major research and findings related to marine bioactive peptides, encompassing aspects of their production, purification, biological activities, nanotechnology-based strategies, and their potential applications. Enzymatic hydrolysis currently stands out as the most commonly used method for producing marine bioactive peptides; the downstream purification process often includes a combination of multiple purification techniques. Due to their diverse biological properties, marine peptides have garnered considerable interest for industrial applications as active ingredients in the food, pharmaceutical, and cosmetics industries. Additionally, the incorporation of encapsulation strategies such as nano emulsion, nanoliposome, and microemulsions holds promise for significantly enhancing the bioavailability and bioactivity of marine peptides. Future research should also prioritize the systematic identification and validation of the potential health benefits of marine peptides by both in vitro and in vivo animal models, along with the conduct of human clinical trials.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bee Kang Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
8
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Prakash Nirmal N, Singh Rajput M, Bhojraj Rathod N, Mudgil P, Pati S, Bono G, Nalinanon S, Li L, Maqsood S. Structural characteristic and molecular docking simulation of fish protein-derived peptides: Recent updates on antioxidant, anti-hypertensive and anti-diabetic peptides. Food Chem 2023; 405:134737. [DOI: 10.1016/j.foodchem.2022.134737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
|
10
|
Okagu IU, Udenigwe CC. Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon 2022; 8:e10861. [PMID: 36217466 PMCID: PMC9547200 DOI: 10.1016/j.heliyon.2022.e10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the involvement of oxidative stress in the etiology of many non-communicable diseases, food-derived antioxidant peptides (FDAPs) are strong candidates for nutraceutical development for disease prevention and management. This paper reviews current evidence on the transepithelial transport and cellular mechanisms of antioxidant activities of FDAPs. Several FDAPs have multiple health benefits such as anti-inflammatory and anti-photoaging activities, in addition to antioxidant properties through which they protect cellular components from oxidative damage. Some FDAPs have been shown to permeate the intestinal epithelium, which could facilitate their bioavailability and physiological bioactivities. Molecular mechanisms of FDAPs include suppression of oxidative stress as evidenced by reduction in intracellular reactive oxygen species production, lipid peroxidation and apoptotic protein activation as well as increase in antioxidant defense mechanisms (enzymatic and non-enzymatic). Since many FDAPs have demonstrated promising antioxidant activity, future investigation should focus on further elucidation of molecular mechanisms and human studies to explore their practical application for the prevention and management of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
11
|
Noman A, Wang Y, Zhang C, Yin L, Abed SM. Antioxidant Activities of Optimized Enzymatic Protein Hydrolysates from Hybrid Sturgeon ( Huso dauricus × Acipenser schrenckii) Prepared Using Two Proteases. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Anwar Noman
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Agricultural Engineering, Faculty of Agriculture, Foods and Environment, Sana’a University, Sana’a, Yemen
| | - Yuxia Wang
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Chao Zhang
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Liguo Yin
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Sherif M. Abed
- Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural Science, Arish University, North Sinai, Egypt
| |
Collapse
|
12
|
Identification of Antioxidant Peptides Derived from Tilapia (Oreochromis niloticus) Skin and Their Mechanism of Action by Molecular Docking. Foods 2022; 11:foods11172576. [PMID: 36076761 PMCID: PMC9455858 DOI: 10.3390/foods11172576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Antioxidants, which can activate the body’s antioxidant defence system and reduce oxidative stress damage, are important for maintaining free radical homeostasis between oxidative damage and antioxidant defence. Six antioxidant peptides (P1–P6) were isolated and identified from the enzymatic hydrolysate of tilapia skin by ultrafiltration, reversed-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). Moreover, the scavenging mechanism of the identified peptides against DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS (2-azido-bis (3-ethylbenzothiazoline-6-sulfonic acid) was studied by molecular docking. It was found that Pro, Ala and Tyr were the characteristic amino acids for scavenging free radicals, and hydrogen bonding and hydrophobic interactions were the main interactions between the free radicals and antioxidant peptides. Among them, the peptide KAPDPGPGPM exhibited the highest DPPH free radical scavenging activity (IC50 = 2.56 ± 0.15 mg/mL), in which the hydrogen bond between the free radical DDPH and Thr-6 was identified as the main interaction, and the hydrophobic interactions between the free radical DDPH and Ala, Gly and Pro were also identified. The peptide GGYDEY presented the highest scavenging activity against ABTS (IC50 = 9.14 ± 0.08 mg/mL). The key structures for the interaction of this peptide with the free radical ABTS were identified as Gly-1 and Glu-5 (hydrogen bond sites), and the amino acids Tyr and Asp provided hydrophobic interactions. Furthermore, it was determined that the screened peptides are suitable for applications as antioxidants in the food industry, exhibit good water solubility and stability, are likely nonallergenic and are nontoxic. In summary, the results of this study provide a theoretical structural basis for examining the mechanism of action of antioxidant peptides and the application of enzymatic hydrolysates from tilapia skin.
Collapse
|
13
|
Wang Q, Yang Z, Zhuang J, Zhang J, Shen F, Yu P, Zhong H, Feng F. Antiaging function of Chinese pond turtle (Chinemys reevesii) peptide through activation of the Nrf2/Keap1 signaling pathway and its structure-activity relationship. Front Nutr 2022; 9:961922. [PMID: 35938097 PMCID: PMC9355154 DOI: 10.3389/fnut.2022.961922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Chinese pond turtle is a traditional nourishing food with high nutritional value and bioactivity and has been considered a dietary remedy for prolonging the lifespan since ancient times. However, only limited information about their effects on longevity is available. This study was performed to assess the antioxidant activities and antiaging potential of Chinese pond turtle peptide (CPTP) using Drosophila melanogaster model and uncover the possible mechanisms underlying the beneficial effects. CPTP exhibited excellent antioxidant capability in vitro with IC50 values of 3.31, 1.93, and 9.52 mg/ml for 1,1-diphenyl-2-pycryl-hydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazo-line-6-sulfonic acid) diammonium salt (ABTS), and hydroxyl radical scavenging, respectively. In vivo, 0.8% of CPTP significantly extended the mean and median lifespan of female flies by 7.66 and 7.85%, followed by enhanced resistance to oxidative and heat stress. Besides, CPTP remarkably increased the antioxidant enzyme activities and diminished the peroxide product accumulation. Furthermore, CPTP upregulated the relative mRNA expression of antioxidant-related genes, including nuclear factor-erythroid-2-like 2 (Nrf2) and its downstream target genes, while downregulated the expression of Kelch-like ECH-associated protein 1 (Keap1). Taken together, CPTP displayed promising potential in both antioxidant and antiaging effects on flies by targeting the Nrf2/Keap1 pathway. Further peptide sequence determination revealed that 89.23% of peptides from the identified sequences in CPTP could exert potential inhibitory effects on Keap1. Among these peptides, ten representative peptide sequences could actively interact with the binding sites of Keap1-Nrf2 interaction through hydrogen bonds, van der Walls, hydrophobic interactions, and electrostatic interactions. Conclusively, CPTP could be utilized as health-promoting bioactive peptide with antioxidant and antiaging capacities.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zherui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Peng Yu
- Yuyao Lengjiang Turtle Industry, Ningbo, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Hao Zhong,
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Fengqin Feng,
| |
Collapse
|
14
|
Physiological and Clinical Aspects of Bioactive Peptides from Marine Animals. Antioxidants (Basel) 2022; 11:antiox11051021. [PMID: 35624884 PMCID: PMC9137753 DOI: 10.3390/antiox11051021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Biological molecules in nutraceuticals and functional foods have proven physiological properties to treat human chronic diseases. These molecules contribute to applications in the food and pharmaceutical industries by preventing food spoilage and cellular injury. Technological advancement in the screening and characterization of bioactive peptides has enabled scientists to understand the associated molecules. Consistent collaboration among nutritionists, pharmacists, food scientists, and bioengineers to find new bioactive compounds with higher therapeutic potential against nutrition-related diseases highlights the potential of the bioactive peptides for food and pharmaceutic industries. Among the popular dietary supplements, marine animals have always been considered imperative due to their rich nutritional values and byproduct use in the food and pharmaceutical industries. The bioactive peptides isolated from marine animals are well-known for their higher bioactivities against human diseases. The physiological properties of fish-based hydrolyzed proteins and peptides have been claimed through in vitro, in vivo, and clinical trials. However, systematic study on the physiological and clinical significance of these bioactive peptides is scarce. In this review, we not only discuss the physiological and clinical significance of antioxidant and anticancer peptides derived from marine animals, but we also compare their biological activities through existing in vitro and in vivo studies.
Collapse
|
15
|
Amino acids imprinted ZIF-8s for the highly efficient and selective adsorption of antioxidant peptides from silkworm pupa protein. Food Res Int 2022; 157:111406. [DOI: 10.1016/j.foodres.2022.111406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022]
|
16
|
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 2022; 21:1803-1842. [PMID: 35150206 DOI: 10.1111/1541-4337.12917] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Fish processing industries result in an ample number of protein-rich byproducts, which have been used to produce protein hydrolysate (PH) for human consumption. Chemical, microbial, and enzymatic hydrolysis processes have been implemented for the production of fish PH (FPH) from diverse types of fish processing byproducts. FPH has been reported to possess bioactive active peptides known to exhibit various biological activities such as antioxidant, antimicrobial, angiotensin-I converting enzyme inhibition, calcium-binding ability, dipeptidyl peptidase-IV inhibition, immunomodulation, and antiproliferative activity, which are discussed comprehensively in this review. Appropriate conditions for the hydrolysis process (e.g., type and concentration of enzymes, time, and temperature) play an important role in achieving the desired level of hydrolysis, thus affecting the functional and bioactive properties and stability of FPH. This review provides an in-depth and comprehensive discussion on the sources, process parameters, purification as well as functional and bioactive properties of FPHs. The most recent research findings on the impact of production parameters, bitterness of peptide, storage, and food processing conditions on functional properties and stability of FPH were also reported. More importantly, the recent studies on biological activities of FPH and in vivo health benefits were discussed with the possible mechanism of action. Furthermore, FPH-polyphenol conjugate, encapsulation, and digestive stability of FPH were discussed in terms of their potential to be utilized as a nutraceutical ingredient. Last but not the least, various industrial applications of FPH and the fate of FPH in terms of limitations, hurdles, future research directions, and challenges have been addressed.
Collapse
Affiliation(s)
| | | | - Mithun Singh Rajput
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Liu Y, Xie YP, Ma XY, Liu LN, Ke YJ. Preparation and properties of antioxidant peptides from wampee seed protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Hu Y, Yang J, He C, Wei H, Wu G, Xiong H, Ma Y. Fractionation and purification of antioxidant peptides from abalone viscera by a combination of Sephadex G‐15 and Toyopearl HW‐40F chromatography. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yaqin Hu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Jiahong Yang
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Haocheng Wei
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Guohong Wu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Ying Ma
- Fisheries College of Jimei University Xiamen 361021 China
| |
Collapse
|
19
|
Zhu Z, Chen Y, Jia N, Zhang W, Hou H, Xue C, Wang Y. Identification of three novel antioxidative peptides from Auxenochlorella pyrenoidosa protein hydrolysates based on a peptidomics strategy. Food Chem 2021; 375:131849. [PMID: 34942500 DOI: 10.1016/j.foodchem.2021.131849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Auxenochlorella pyrenoidosa is recognized as a potential sustainable protein material in food industry, however, its application remains still very limited. Herein, this study aimed to investigate the antioxidative properties of Auxenochlorella pyrenoidosa protein hydrolysates and identify novel antioxidative peptides from protein hydrolysates through a workflow mainly including enzymatic hydrolysis, peptidome quantification, quantitative structure-activity relationship (QSAR) modeling, in silico screening, and validation. Three novel antioxidative peptides including AGWACLVG, IDLAY and YPLDL were identified from protein hydrolysates by papain with the hydrolysis time of 4 h, in which, AGWACLVG showed strong 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity with the IC50 value of 68.88 µM and Trolox equivalent antioxidative capacity of 6.20 ± 0.23 mmol TE/g. This study suggested that Auxenochlorella pyrenoidosa protein hydrolysates could be used as potential antioxidative ingredients in food industry, and the identification of novel antioxidative peptides would contribute to the construction of more robust QSAR models in the future.
Collapse
Affiliation(s)
- Zihao Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuyang Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Nan Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenhan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Chen L, Li D, Zhu C, Rong Y, Zeng W. Characterisation of antioxidant peptides from enzymatic hydrolysate of golden melon seeds protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Chuchu Zhu
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Wenhua Zeng
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| |
Collapse
|
21
|
Vogel C, Paglia EB, Moroni LS, Demiate IM, Prestes RC, Kempka AP. Swine plasma peptides obtained using pepsin: In silico and in vitro properties and biological activities. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1981880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Cristine Vogel
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Eduarda Baggio Paglia
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Liziane Schittler Moroni
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Ivo Mottin Demiate
- Department of Food Engineering, Ponta Grossa State University–UEPG, Ponta Grossa, Brazil
| | - Rosa Cristina Prestes
- Department of Technology and Food Science, Federal University of Santa Maria–UFSM, Santa Maria, Brazil
| | - Aniela Pinto Kempka
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| |
Collapse
|
22
|
Purification and Identification of Novel Xanthine Oxidase Inhibitory Peptides Derived from Round Scad ( Decapterus maruadsi) Protein Hydrolysates. Mar Drugs 2021; 19:md19100538. [PMID: 34677437 PMCID: PMC8538066 DOI: 10.3390/md19100538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to investigate the xanthine oxidase (XO) inhibitory effects of peptides purified and identified from round scad (Decapterus maruadsi) hydrolysates (RSHs). In this study, RSHs were obtained by using three proteases (neutrase, protamex and alcalase). Among them, the RSHs of 6-h hydrolysis by neutrase displayed the strongest XO inhibitory activity and had an abundance of small peptides (<500 Da). Four novel peptides were purified by immobilized metal affinity chromatography and identified by nano-high-performance liquid chromatography mass/mass spectrometry. Their amino acid sequences were KGFP (447.53 Da), FPSV (448.51 Da), FPFP (506.59 Da) and WPDGR (629.66 Da), respectively. Then the peptides were synthesized to evaluate their XO inhibitory activity. The results indicated that the peptides of both FPSV (5 mM) and FPFP (5 mM) exhibited higher XO inhibitory activity (22.61 ± 1.81% and 20.09 ± 2.41% respectively). Fluorescence spectra assay demonstrated that the fluorescence quenching mechanism of XO by these inhibitors (FPSV and FPFP) was a static quenching procedure. The study of inhibition kinetics suggested that the inhibition of both FPSV and FPFP was reversible, and the type of their inhibition was a mixed one. Molecular docking revealed the importance of π-π stacking between Phe residue (contained in peptides) and Phe914 (contained in the XO) in the XO inhibitory activity of the peptides.
Collapse
|
23
|
Recent developments on production, purification and biological activity of marine peptides. Food Res Int 2021; 147:110468. [PMID: 34399466 DOI: 10.1016/j.foodres.2021.110468] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
Marine peptides are one of the richest sources of structurally diverse bioactive compounds and a considerable attention has been drawn towards their production and bioactivity. However, there is a paucity in consolidation of emerging trends encompassing both production techniques and biological application. Herein, we intend to review the recent advancements on different production, purification and identification technologies used for marine peptides along with presenting their potential health benefits. Bibliometric analysis revealed a growing number of scientific publications on marine peptides (268 documents per year) with both Asia (37.2%) and Europe (33.1%) being the major contributors. Extraction and purification by ultrafiltration and enzymatic hydrolysis, followed by identification by chromatographic techniques coupled with an appropriate detector could yield a high content of peptides with improved bioactivity. Moreover, the multifunctional health benefits exerted by marine peptides including anti-microbial, antioxidant, anti-hypertension, anti-diabetes and anti-cancer along with their structure-activity relationship were presented. The future perspective on marine peptide research should focus on finding improved separation and purification technologies with enhanced selectivity and resolution for obtaining more novel peptides with high yield and low cost. In addition, by employing encapsulation strategies such as nanoemulsion and nanoliposome, oral bioavailability and bioactivity of peptides can be greatly enhanced. Also, the potential health benefits that are demonstrated by in vitro and in vivo models should be validated by conducting human clinical trials for a technology transfer from bench to bedside.
Collapse
|
24
|
Zhong R, Lu X, Zhong J, Chen L, Cheng W, Liang P. Influence of Maillard Reaction in Volatile Flavor Compounds of Blue Round Scad ( Decapterus maruadsi) Enzymatic Hydrolysate. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1910762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ji Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
25
|
Cai X, Chen S, Liang J, Tang M, Wang S. Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism. Food Chem Toxicol 2021; 148:111965. [PMID: 33388406 DOI: 10.1016/j.fct.2020.111965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
Peptides derived from crimson snapper scales (CSSPs) were reported to possess excellent free radical scavenging activities in vitro. In present study, the anti-aging and anti-oxidative stress effects of CSSPs were evaluated in Drosophila melanogaster models. Results showed that the addition of CSSPs in the diets of normal Drosophila could effectively extend their lifespan and improve the motor ability of aged Drosophila. Moreover, CSSPs could protect Drosophila from oxidative damage induced by H2O2, paraquat and UV irradiation. The extension of lifespan was found to be associated with the effects of CSSPs in improving the antioxidant defense system of Drosophila, manifesting as the reduction of oxidation products MDA and PCO, the elevated activities of T-SOD, CAT and GSH-Px, and the upregulated expression of antioxidant related genes after CSSPs supplemented. Furthermore, CSSPs at 6 mg/mL significantly downregulated mTOR signaling pathway and activated autophagy in aged male Drosophila, and the inhibition on mTOR activation was probably mediated by the antioxidant effects of CSSPs. Our findings suggest that CSSPs have the potential in making dietary supplements against natural aging and oxidative stress in organisms.
Collapse
Affiliation(s)
- Xixi Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Shengyang Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Jieping Liang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Mingyu Tang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
26
|
Liu Z, Shi Y, Liu H, Jia Q, Liu Q, Tu J. Purification and Identification of Pine Nut (Pinus yunnanensis Franch.) Protein Hydrolysate and Its Antioxidant Activity in Vitro and in Vivo. Chem Biodivers 2020; 18:e2000710. [PMID: 33289247 DOI: 10.1002/cbdv.202000710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
In this study, the pine nut (Pinus yunnanensis Franch.) protein was hydrolyzed by alkaline protease and trypsin to prepare pine nut protein hydrolysate (PNPH). The chemical, intracellular and in vivo antioxidant capacity of PNPH were evaluated. PNPH owned the ability of scavenging free radicals, and it could protect the HepG2 cells from oxidative damage by preserving cell viability. Moreover, PNPH could reduce the malondialdehyde (MDA) content and improved the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in serum, heart and liver of aging mice induced by D-galactose. Further, the PNPH was stepwise purified and identified, and 15 peptides were identified from purified fraction in PNPH. The three-dimension structures of identified peptides were predicted. Among all identified peptides, peptide 3, 7, 8 and 11 were presumed to possess good antioxidant activity. Overall, PNPH and purified peptides isolated from PNPH have potential application prospects in the field of natural antioxidants and anti-aging functional foods.
Collapse
Affiliation(s)
- Zitian Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yuming Shi
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Huiping Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qi Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qingrun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jianqiu Tu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
27
|
He C, Sun Z, Qu X, Cao J, Shen X, Li C. A comprehensive study of lipid profiles of round scad (Decapterus maruadsi) based on lipidomic with UPLC-Q-Exactive Orbitrap-MS. Food Res Int 2020; 133:109138. [DOI: 10.1016/j.foodres.2020.109138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
28
|
Liu Q, Yang M, Zhao B, Yang F. Isolation of antioxidant peptides from yak casein hydrolysate. RSC Adv 2020; 10:19844-19851. [PMID: 35520408 PMCID: PMC9054160 DOI: 10.1039/d0ra02644a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 01/10/2023] Open
Abstract
Enzymatic hydrolysis of protein is a principal method to obtain antioxidant peptides. A yak casein hydrolysate (YCH) was prepared by alcalase and trypsin digestion. An ultrafiltration membrane system was used to divide the hydrolysate into four molecular weight fractions; YCH-4 (<3 kDa) had the highest antioxidant activity. Fraction YCH-4 was separated into six subfractions by gel filtration chromatography; reverse-phase high performance liquid chromatography (RP-HPLC) was then used to partition sixteen antioxidant peptide subfractions. Liquid chromatography/electrospray tandem mass spectrometry (LC-ESI-MS/MS) was used to determine the amino acid sequence of a purified antioxidant peptide to be Arg-Glu-Leu-Glu-Glu-Leu (787.41 Da). Finally, a synthetic Arg-Glu-Leu-Glu-Glu-Leu peptide was evaluated for its superoxide anion and hydroxyl radical scavenging activity (IC50 = 0.52 and 0.69 mg mL-1), which confirmed the activity of the native purified peptide. Our results suggested that isolation and purification of antioxidant peptides from yak casein could be an important means to obtain natural antioxidant peptides.
Collapse
Affiliation(s)
- Qianxia Liu
- College of Food Science and Engineering, Gansu Agricultural University No. 1 Yingmen Village, Anning District Lanzhou 730070 Gansu Province China +86-0931-7631201
| | - Min Yang
- College of Science, Gansu Agricultural University No. 1 Yingmen Village 730070 Lanzhou Gansu Province China
| | - Baotang Zhao
- College of Food Science and Engineering, Gansu Agricultural University No. 1 Yingmen Village, Anning District Lanzhou 730070 Gansu Province China +86-0931-7631201
| | - Fumin Yang
- College of Food Science and Engineering, Gansu Agricultural University No. 1 Yingmen Village, Anning District Lanzhou 730070 Gansu Province China +86-0931-7631201
| |
Collapse
|
29
|
Cespedes-Acuña CL, Wei ZJ. X th International Symposium on Natural Products Chemistry and Applications (2019 X ISNPCA Chillan Chile). Food Chem Toxicol 2020; 140:111316. [PMID: 32246955 DOI: 10.1016/j.fct.2020.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello, Avenue, Chillan, Chile.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
30
|
Hu XM, Wang YM, Zhao YQ, Chi CF, Wang B. Antioxidant Peptides from the Protein Hydrolysate of Monkfish ( Lophius litulon) Muscle: Purification, Identification, and Cytoprotective Function on HepG2 Cells Damage by H 2O 2. Mar Drugs 2020; 18:E153. [PMID: 32164197 PMCID: PMC7142609 DOI: 10.3390/md18030153] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the work, defatted muscle proteins of monkfish (Lophius litulon) were separately hydrolyzed by pepsin, trypsin, and in vitro gastrointestinal (GI) digestion methods, and antioxidant peptides were isolated from proteins hydrolysate of monkfish muscle using ultrafiltration and chromatography processes. The antioxidant activities of isolated peptides were evaluated using radical scavenging and lipid peroxidation assays and H2O2-induced model of HepG2 cells. In which, the cell viability, reactive oxygen species (ROS) content, and antioxidant enzymes and malondialdehyde (MDA) levels were measured for evaluating the protective extent on HepG2 cells damaged by H2O2. The results indicated that the hydrolysate (MPTH) prepared using in vitro GI digestion method showed the highest degree of hydrolysis (27.24 ± 1.57%) and scavenging activity on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (44.54 ± 3.12%) and hydroxyl radical (41.32 ± 2.73%) at the concentration of 5 mg protein/mL among the three hydrolysates. Subsequently, thirteen antioxidant peptides (MMP-1 to MMP-13) were isolated from MPTH. According to their DPPH radical and hydroxyl radical scavenging activity, three peptides with the highest antioxidant activity were selected and identified as EDIVCW (MMP-4), MEPVW (MMP-7), and YWDAW (MMP-12) with molecular weights of 763.82, 660.75, and 739.75 Da, respectively. EDIVCW, MEPVW, and YWDAW showed high scavenging activities on DPPH radical (EC50 0.39, 0.62, and 0.51 mg/mL, respectively), hydroxyl radical (EC50 0.61, 0.38, and 0.32 mg/mL, respectively), and superoxide anion radical (EC50 0.76, 0.94, 0.48 mg/mL, respectively). EDIVCW and YWDAW showed equivalent inhibiting ability on lipid peroxidation with glutathione in the linoleic acid model system. Moreover, EDIVCW, MEPVW, and YWDAW had no cytotoxicity to HepG2 cells at the concentration of 100.0 µM and could concentration-dependently protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These present results indicated that the protein hydrolysate and isolated antioxidant peptides from monkfish muscle, especially YWDAW could serve as powerful antioxidants applied in the treatment of some liver diseases and healthcare products associated with oxidative stress.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| |
Collapse
|