1
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
2
|
Zhang Y, Li G, Zhao Y, Dai X, Hu M, Cao H, Huang K, Yang F. Inhibition of calcium imbalance protects hepatocytes from vanadium exposure-induced inflammation by mediating mitochondrial-associated endoplasmic reticulum membranes in ducks. Poult Sci 2023; 102:103013. [PMID: 37856907 PMCID: PMC10591013 DOI: 10.1016/j.psj.2023.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023] Open
Abstract
Vanadium (V) is an essential mineral element in animals, but excessive V can lead to many diseases, affecting the health of humans and animals. However, the molecular crosstalk between mitochondria-associated endoplasmic reticulum membranes (MAMs) and inflammation under V exposure is still at the exploratory stage. This study was conducted to determine the molecular crosstalk between MAMs and inflammation under V exposure in ducks. In this study, duck hepatocytes were treated with NaVO3 (0 μM, 100 μM, and 200 μM) and 2-aminoethyl diphenyl borate (2-APB) (IP3R inhibitor) alone or in combination for 24 h. The data showed that V exposure-induced cell vacuolization, enlarged intercellular space, and decreased density and viability. Meanwhile, hydrogen peroxide (H2O2), malonaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and reactive oxygen species (ROS) levels were upregulated under V treatment. In addition, excessive V could lead to a marked reduction in the MAMs structure, destruction of the membrane structure and overload of intracellular Ca2+ and mitochondrial Ca2+. Moreover, V treatment resulted in notable upregulation of the levels of MAMs-relevant factors (IP3R, Mfn2, Grp75, MCU, VDAC1) but downregulated the levels of IL-18, IL-1β, and lactate dehydrogenase (LDH) in the cell supernatant. Additionally, it also significantly elevated the levels of inflammation-relevant factors (NLRP3, ASC, caspase-1, MAVS, IL-18, IL-1β, and TXNIP). However, the inhibition of IP3R expression attenuated the V-induced variations in the above indicators. Collectively, our results revealed that the maintenance of calcium homeostasis could protect duck hepatocytes from V-induced inflammation injury via MAMs.
Collapse
Affiliation(s)
- Yiling Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanqing Zhao
- The Second People's Hospital, Jingdezhen 333099, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kai Huang
- Jiangxi Agricultural Engineering College, Zhangshu 331200, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Rivas-García L, López-Varela A, Quiles JL, Montes-Bayón M, Aranda P, Llopis J, Sánchez-González C. Elucidating the Therapeutic Potential of Bis(Maltolato)OxoVanadium(IV): The Protective Role of Copper in Cellular Metabolism. Int J Mol Sci 2023; 24:ijms24119367. [PMID: 37298322 DOI: 10.3390/ijms24119367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Vanadium (V) is a trace mineral whose biological activity, role as a micronutrient, and pharmacotherapeutic applications remain unknown. Over the last years, interest in V has increased due to its potential use as an antidiabetic agent mediated by its ability to improve glycemic metabolism. However, some toxicological aspects limit its potential therapeutic application. The present study aims to evaluate the effect of the co-treatment with copper (Cu) and bis(maltolato)oxovanadium(IV) (BMOV) as a possible strategy to reduce the toxicity of BMOV. Treating hepatic cells with BMOV reduced cell viability under the present conditions, but cell viability was corrected when cells were co-incubated with BMOV and Cu. Additionally, the effect of these two minerals on nuclear and mitochondrial DNA was evaluated. Co-treatment with both metals reduced the nuclear damage caused by BMOV. Moreover, treatment with these two metals simultaneously tended to reduce the ND1/ND4 deletion of the mitochondrial DNA produced with the treatment using BMOV alone. In conclusion, these results showed that combining Cu and V could effectively reduce the toxicity associated with V and enhance its potential therapeutic applications.
Collapse
Affiliation(s)
- Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Alfonso López-Varela
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - María Montes-Bayón
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Pilar Aranda
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| |
Collapse
|
4
|
Kaya M, Çavuşoğlu K, Yalçin E, Acar A. DNA fragmentation and multifaceted toxicity induced by high-dose vanadium exposure determined by the bioindicator Allium test. Sci Rep 2023; 13:8493. [PMID: 37231203 PMCID: PMC10212953 DOI: 10.1038/s41598-023-35783-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, the toxicity of vanadium (VCI3) in Allium cepa L. was studied. Germination-related parameters, mitotic index (MI), catalase (CAT) activity, chromosomal abnormalities (CAs), malondialdehyde (MDA) level, micronucleus (MN) frequency and superoxide dismutase (SOD) activity were investigated. The effects of VCI3 exposure on the DNA of meristem cells were investigated with the help of comet assay, and the relationships between physiological, cytogenetic and biochemical parameters were revealed by correlation and PCA analyses. A. cepa bulbs were germinated with different concentrations of VCI3 for 72 h. As a result, the maximum germination (100%), root elongation (10.4 cm) and weight gain (6.85 g) were determined in the control. VCI3 treatment caused significant decreases in all tested germination-related parameters compared to the control. The highest percentage of MI (8.62%) was also observed in the control. No CAs were found in the control, except for a few sticky chromosomes and unequal distribution of chromatin (p > 0.05). VCI3 treatment caused significant decreases in MI and increases in the frequencies of CAs and MN, depending on the dose. Similarly, the comet assay showed that DNA damage scores increased with increasing VCI3 doses. The lowest root MDA (6.50 µM/g) level and SOD (36.7 U/mg) and CAT (0.82 OD240nmmin/g) activities were also measured in the control. VCI3 treatment caused significant increases in root MDA levels and antioxidant enzyme activities. Besides, VCI3 treatment induced anatomical damages such as flattened cell nucleus, epidermis cell damage, binuclear cell, thickening in the cortex cell wall, giant cell nucleus, damages in cortex cell and unclear vascular tissue. All examined parameters showed significant negative or positive correlations with each other. PCA analysis confirmed the relations of investigated parameters and VCI3 exposure.
Collapse
Affiliation(s)
- Mehmet Kaya
- Institute of Science, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey.
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| |
Collapse
|
5
|
Effect of Bis(maltolato)oxovanadium(IV) on Zinc, Copper, and Manganese Homeostasis and DMT1 mRNA Expression in Streptozotocin-Induced Hyperglycemic Rats. BIOLOGY 2022; 11:biology11060814. [PMID: 35741335 PMCID: PMC9219771 DOI: 10.3390/biology11060814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Our aim was to examine whether vanadium (IV) corrects alterations in zinc, copper and manganese homeostasis, observed in streptozotocin-induced hyperglycemic rats, and whether such changes are related to divalent metal transporter 1 (DMT1) mRNA expression, and antioxidant and proinflammatory parameters. Four groups of Wistar rats were examined: control; hyperglycemic (H); hyperglycemic treated with 1 mg V/day (HV); and hyperglycemic treated with 3 mg V/day (HVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(IV) for five weeks. Zinc, copper and manganese were measured in food, excreta, serum and tissues. DMT1 mRNA expression was quantified in the liver. Hyperglycemic rats showed increased Zn and Cu absorption and content in the liver, serum, kidneys and femurs; DMT1 expression also increased (p < 0.05 in all cases). HV rats showed no changes compared to H rats other than decreased DMT1 expression (p < 0.05). In the HVH group, decreased absorption and tissular content of studied elements (p < 0.05 in all cases) and DMT1 expression compared to H (p < 0.05) were observed. Liver zinc, copper and manganese content correlated positively with glutathione peroxidase activity and negatively with catalase activity (p < 0.05 in both cases). In conclusion, treatment with 3 mg V/d reverted the alterations in zinc and copper homeostasis caused by hyperglycemia, possibly facilitated by decreased DMT1 expression.
Collapse
|
6
|
Aparicio VA, Baena-García L, Flor-Alemany M, Martínez-González LJ, Varela-López A, Sánchez C, Quiles JL. Differences in maternal and neonatal cardiometabolic markers and placenta status by foetal sex. The GESTAFIT project. WOMEN'S HEALTH 2022; 18:17455057221117976. [PMID: 35989614 PMCID: PMC9393354 DOI: 10.1177/17455057221117976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aims: To explore the differences in some maternal-neonatal metabolic markers and
placenta status by foetal sex. Methods: One hundred thirty-nine Caucasian pregnant women from the GESTAFIT project
and their new-borns were included in the present cross-sectional study.
Serum cardiometabolic markers (i.e. lipid and glycaemic profile and uric
acid) were analysed at late pregnancy and at birth. In placenta, telomeres
length, proportion of deleted mitochondrial-DNA and mitochondrial-DNA
density, some minerals and interleukin 8, epidermal growth factor,
fibroblast growth factor-2 and vascular endothelial growth factor were
measured. The study was run between November 2015 and April 2018. Results: Mothers carrying a male showed higher serum triglycerides than mothers
carrying a female at late pregnancy (p < .05). Serum
total and low-density lipoprotein cholesterol were greater in males’
umbilical cord blood artery compared to females’ new-borns (both,
p < .05). Mothers of males and male new-borns
presented higher uric acid than mothers of females and female new-borns at
birth (p < .05). Female’s placentas presented greater
placental-newborn weight ratio, manganese content and fibroblast growth
factor-2 (all, p ⩽ .05), and evidence of statistical
significance in telomeres length, which were 17% longer
(p = .076). Conclusion: Our findings show weak differences in some cardiometabolic and placental
status markers by foetal sex. Notwithstanding, we observed a slightly more
proatherogenic profile in both, mothers carrying males’ foetuses and male
new-borns. We also found lower serum uric acid and better placenta status in
mothers carrying a female. These findings indicate that foetal sex might
need to be considered for a more personalized follow-up of pregnancies.
Collapse
Affiliation(s)
- Virginia A Aparicio
- Department of Physiology, Institute of Nutrition and Food Technology and Biomedical Research Centre, University of Granada, Granada, Spain
- Sport and Health University Research Centre, University of Granada, Granada, Spain
| | - Laura Baena-García
- Sport and Health University Research Centre, University of Granada, Granada, Spain
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Institute of Biosanitary Research (IBS), Granada, Spain
| | - Marta Flor-Alemany
- Department of Physiology, Institute of Nutrition and Food Technology and Biomedical Research Centre, University of Granada, Granada, Spain
- Sport and Health University Research Centre, University of Granada, Granada, Spain
| | - Luis J Martínez-González
- GENYO: Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology and Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Sánchez
- Department of Physiology, Institute of Nutrition and Food Technology and Biomedical Research Centre, University of Granada, Granada, Spain
- Sport and Health University Research Centre, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology and Biomedical Research Centre, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Branca JJV, Carrino D, Paternostro F, Gulisano M, Becatti M, Di Cesare Mannelli L, Pacini A. Antioxidant support to ameliorate the oxaliplatin-dependent microglial alteration: morphological and molecular study. Eur J Histochem 2021; 65. [PMID: 34755507 PMCID: PMC8607276 DOI: 10.4081/ejh.2021.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Oxaliplatin is a third-generation chemotherapy drug mainly used for colorectal cancer treatment. However, it is also known to trigger neuropathy whose underlying neurobiological mechanisms are still under investigation and currently available treatments show limited efficacy. It is now established that neurons are not the only cell type involved in chronic pain and that glial cells, mainly astrocytes and microglia, are involved in the initiation and maintenance of neuropathy. Among all the pathogenetic factors involved in neuropathic pain, an oxaliplatin-dependent oxidative stress plays a predominant role. In our study, the antioxidant properties of magnesium (Mg), manganese (Mn) and zinc (Zn) salts were evaluated in order to counteract microglial activation induced by oxaliplatin. The antioxidant efficacy of these metals was evaluated by the means of molecular and morphological assays on the BV-2 microglial cell line. Our data clearly show that Mg, Mn and Zn are able to prevent oxaliplatin-dependent microglial alterations by reducing both oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jacopo J V Branca
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio, University of Florence.
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence.
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| |
Collapse
|
8
|
Bayrak BB, Tunali S, Bal-Demirci T, Ulkuseven B, Yanardag R. Glycoprotein levels and oxidative lung injury in experimental diabetes: effect of oxovanadium(IV) complex based on thiosemicarbazone. Toxicol Mech Methods 2021; 31:581-588. [PMID: 34240667 DOI: 10.1080/15376516.2021.1941462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diabetes mellitus (DM) is chronic and metabolic disorder, which is mainly attributed by hyperglycemia. Vanadium salts and their oxo-complexes have been shown to possess insulin-mimetic and anti-diabetic activities in animal models and diabetic patients. The main goal of this study was to investigate the protective effect of oxovanadium(IV) complex based on thiosemicarbazone (VOL) [L: (N(1)-2,4-dihydroxybenzylidene-N-(4)-2-hydroxybenzylidene-S-methyl-isothiosemicarbazidato-oxovanadium(IV)] on glycoprotein components levels and oxidative lung injury of streptozotocin (STZ)-induced diabetic rats. Male Swiss albino rats were separated into four groups. Group I (n = 5): Control (normal) animals, Group II (n = 5): Control animals administered with VOL, Group III (n = 6): STZ-induced diabetic animals, and Group IV (n = 5): STZ-induced diabetic rats treated with VOL. VOL was given to the experimental animals by gavage at a dose of 0.2 mM/kg body weight every day for 12 days. Diabetes was induced by single intraperitoneal injection of STZ (65 mg/kg body weight). On the 12th day, lung tissue samples were taken. Glycoprotein components, advanced oxidation protein products, protein carbonyl, hydroxyproline levels, and prolidase, arginase, xanthine oxidase, catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and adenosine deaminase activities significantly increased whereas aryl esterase, paraoxonase-1, carbonic anhydrase, Na+/K+-ATPase activities remarkably decreased in lung tissue of diabetic rats. Treatment with VOL reversed these effects showing a beneficial effect. The present study shows that VOL has a protective effect against diabetes-induced lung damage as well as on abnormal glycoprotein component levels.
Collapse
Affiliation(s)
- Bertan Boran Bayrak
- Department of Chemistry, Division of Biochemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sevim Tunali
- Department of Chemistry, Division of Biochemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Tulay Bal-Demirci
- Department of Chemistry, Division of Inorganic Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Bahri Ulkuseven
- Department of Chemistry, Division of Inorganic Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Division of Biochemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
9
|
Sánchez-González C, Rivas-García L, Rodríguez-Nogales A, Algieri F, Gálvez J, Aranda P, Montes-Bayón M, Llopis J. Vanadium Decreases Hepcidin mRNA Gene Expression in STZ-Induced Diabetic Rats, Improving the Anemic State. Nutrients 2021; 13:nu13041256. [PMID: 33920401 PMCID: PMC8069891 DOI: 10.3390/nu13041256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes is a disease with an inflammatory component that courses with an anemic state. Vanadium (V) is an antidiabetic agent that acts by stimulating insulin signaling. Hepcidin blocks the intestinal absorption of iron and the release of iron from its deposits. We aim to investigate the effect of V on hepcidin mRNA expression and its consequences on the hematological parameters in streptozotocin-induced diabetic Wistar rats. Control healthy rats, diabetic rats, and diabetic rats treated with 1 mgV/day were examined for five weeks. The mineral levels were measured in diet and serum samples. Hepcidin expression was quantified in liver samples. Inflammatory and hematological parameters were determined in serum or whole blood samples. The inflammatory status was higher in diabetic than in control rats, whereas the hematological parameters were lower in the diabetic rats than in the control rats. Hepcidin mRNA expression was significantly lower in the V-treated diabetic rats than in control and untreated diabetic rats. The inflammatory status remained at a similar level as the untreated diabetic group. However, the hematological profile improved after the V-treatment, reaching similar levels to those found in the control group. Serum iron level was higher in V-treated than in untreated diabetic rats. We conclude that V reduces gene expression of hepcidin in diabetic rats, improving the anemic state caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sánchez-González
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
- Correspondence: ; Tel.: +34-958241000 (ext. 20320)
| | - Lorenzo Rivas-García
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - Alba Rodríguez-Nogales
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Francesca Algieri
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Julio Gálvez
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Pilar Aranda
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain;
| | - Juan Llopis
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| |
Collapse
|
10
|
Ultra-Small Iron Nanoparticles Target Mitochondria Inducing Autophagy, Acting on Mitochondrial DNA and Reducing Respiration. Pharmaceutics 2021; 13:pharmaceutics13010090. [PMID: 33445442 PMCID: PMC7827814 DOI: 10.3390/pharmaceutics13010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
The application of metallic nanoparticles (materials with size at least in one dimension ranging from 1 to 100 nm) as a new therapeutic tool will improve the diagnosis and treatment of diseases. The mitochondria could be a therapeutic target to treat pathologies whose origin lies in mitochondrial dysfunctions or whose progression is dependent on mitochondrial function. We aimed to study the subcellular distribution of 2-4 nm iron nanoparticles and its effect on mitochondrial DNA (mtDNA), mitochondrial function, and autophagy in colorectal cell lines (HT-29). Results showed that when cells were exposed to ultra-small iron nanoparticles, their subcellular fate was mainly mitochondria, affecting its respiratory and glycolytic parameters, inducing the migration of the cellular state towards quiescence, and promoting and triggering the autophagic process. These effects support the potential use of nanoparticles as therapeutic agents using mitochondria as a target for cancer and other treatments for mitochondria-dependent pathologies.
Collapse
|
11
|
Effects of vanadium (sodium metavanadate) and aflatoxin-B1 on cytochrome p450 activities, DNA damage and DNA methylation in human liver cell lines. Toxicol In Vitro 2020; 70:105036. [PMID: 33164849 DOI: 10.1016/j.tiv.2020.105036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023]
Abstract
Vanadium is considered as "possibly carcinogenic to humans" (V2O5, IARC Group 2B), yet uncertainties persist related to the toxicity mechanisms of the multiple forms of vanadium. Exposure to vanadium often co-occurs with other metals or with organic compounds that can be transformed by cytochrome p450 (CYP) enzymes into DNA-reactive carcinogens. Therefore, effects of a soluble form of vanadium (sodium metavanadate, NaVO3) and aflatoxin-B1 (AFB1) were tested separately and together, for induction of CYP activities, DNA damage (γH2AX and DNA alkaline unwinding assays), and DNA methylation changes (global genome and DNA repeats) in HepaRG or HepG2 liver cell lines. NaVO3 (≥ 2.3 μM) reduced CYP1A1 and CYP3A4 activities and induced DNA damage, butcaused important cell proliferation only in HepaRG cells. As a binary mixture, NaVO3 did not modify the effects of AFB1. There was no reproducible effect of NaVO3 (<21 μM) on DNA methylation in AluYb8, satellite-α, satellite-2, and by the luminometric methylation assay, but DNA methylation flow-cytometry signals in HepG2 cells (25-50 μM) increased at the G1 and G2 cell cycle phases. In conclusion, cell lines responded differently to NaVO3 supporting the importance of investigating more than one cell line, and a carcinogenic role of NaVO3 might reside at low concentrations by stimulating the proliferation of tumorigenic cells.
Collapse
|
12
|
Pimpão C, da Silva IV, Mósca AF, Pinho JO, Gaspar MM, Gumerova NI, Rompel A, Aureliano M, Soveral G. The Aquaporin-3-Inhibiting Potential of Polyoxotungstates. Int J Mol Sci 2020; 21:2467. [PMID: 32252345 PMCID: PMC7177757 DOI: 10.3390/ijms21072467] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Polyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Andreia F. Mósca
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jacinta O. Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria; (N.I.G.); (A.R.)
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria; (N.I.G.); (A.R.)
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|