1
|
Lu EH, Rusyn I, Chiu WA. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:28-62. [PMID: 39390665 PMCID: PMC11614695 DOI: 10.1080/10937404.2024.2412571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
2
|
Chen J, Chen Z, Wang W, Wang L, Zheng J, Wu S, Pan Y, Li S, Zhao J, Cai Z. Effects of Commonly used Surfactants, Poloxamer 188 and Tween 80, on the Drug Transport Capacity of Intestinal Glucose Transporters. AAPS PharmSciTech 2024; 25:163. [PMID: 38997614 DOI: 10.1208/s12249-024-02881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Some glycoside drugs can be transported through intestinal glucose transporters (IGTs). The surfactants used in oral drug preparations can affect the function of transporter proteins. This study aimed to investigate the effect of commonly used surfactants, Poloxamer 188 and Tween 80, on the drug transport capacity of IGTs. Previous studies have shown that gastrodin is the optimal drug substrate for IGTs. Gastrodin was used as a probe drug to evaluate the effect of these two surfactants on intestinal absorption in SD rats through pharmacokinetic and in situ single-pass intestinal perfusion. Then, the effects of the two surfactants on the expression of glucose transporters and tight-junction proteins were examined using RT-PCR and western blotting. Additionally, the effect of surfactants on intestinal permeability was evaluated through hematoxylin-eosin staining. The results found that all experimental for Poloxamer 188 (0.5%, 2.0% and 8.0%) and Tween 80 (0.1% and 2.0%) were not significantly different from those of the blank group. However, the AUC(0-∞) of gastrodin increased by approximately 32% when 0.5% Tween 80 was used. The changes in IGT expression correlated with the intestinal absorption of gastrodin. A significant increase in the expression of IGTs was observed at 0.5% Tween 80. In conclusion, Poloxamer 188 had minimal effect on the drug transport capacity of IGTs within the recommended limits of use. However, the expression of IGTs increased in response to 0.5% Tween 80, which significantly enhanced the drug transport capacity of IGTs. However, 0.1% and 2.0% Tween 80 had no significant effect.
Collapse
Affiliation(s)
- Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wentao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liyang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqiong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuru Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
3
|
Kerhoas M, Le Vée M, Carteret J, Jouan E, Tastet V, Bruyère A, Huc L, Fardel O. Inhibition of human drug transporter activities by succinate dehydrogenase inhibitors. CHEMOSPHERE 2024; 358:142122. [PMID: 38663675 DOI: 10.1016/j.chemosphere.2024.142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 μM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 μM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 μM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.
Collapse
Affiliation(s)
- Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France; Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, F-Marne-La-Vallée, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
4
|
Aju CD, A L A, P MM, Raicy MC, Reghunath R, Gopinath G. Emerging nitrate contamination in groundwater: Changing phase in a fast-growing state of India. CHEMOSPHERE 2024; 357:141964. [PMID: 38615956 DOI: 10.1016/j.chemosphere.2024.141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The consumption of nitrate-contaminated groundwater is often associated with potential health risks, particularly in children. This study aimed to assess the hydrochemistry and nitrate contamination in groundwater of Kerala state, India for the years 2010 and 2018 and evaluate the potential human health risks due to nitrate exposure in adults, and children through oral ingestion and dermal contact pathways. Nitrate-contaminated zones were identified by spatial mapping of nitrate concentration based on groundwater quality data of 324 wells. Groundwater is typically acidic to slightly alkaline, and the electrical conductivity (EC) varied from 33 to 1180 μS/cm in 2010 and 34.6-2500 mg/L in 2018 indicating a noticeable increase over the years. Most samples fall within low salt enrichment category. The nitrate concentration in groundwater varied from 0 to 173 mg/L with a mean of 15.4 mg/L during 2010 and 0 to 244 with a mean of 20.3 mg/L during 2018. Though nitrate concentrations show uneven spatial distributions due to both natural and anthropogenic sources, the spatial clustering of higher concentrations remains almost same in both periods. In 2010, non-carcinogenic risk, as measured by Health Index Total (HITotal) values in groundwater for the investigated region, ranged from 0.005 to 4.170 (mean of 0.349) for males, 0.005 to 4.928 (mean of 0.413) for females, and 0.008 to 7.243 (mean of 0.607) for children, while in 2018, the corresponding values varied from 0.001 to 5.881 (mean of 0.501) for males, 0.002 to 6.950 (mean of 0.592) for females, and 0.003 to 10.215 (mean of 0.870) for children, indicating a substantial increase in risk, for females and children. Greater health risk is observed in children during both the periods. The findings emphasize the need for proper water quality management, especially in regions with higher vulnerability to nitrate pollution, to safeguard human health and well-being.
Collapse
Affiliation(s)
- C D Aju
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India; Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India; Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, India
| | - Achu A L
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, India.
| | - Mohammed Maharoof P
- PG Department of Applied Geology, GEMS Arts and Science College, Kadungapuram P.O, Ramapuram, Malappuram, Kerala, 679 321, India
| | - M C Raicy
- Hydrology and Climatology Research Group, Centre for Water Resources Development and Management (CWRDM), Kozhikode, 673 571, India
| | - Rajesh Reghunath
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India; International and Inter-University Centre for Natural Resources Management (IIUCNRM), University of Kerala, Thiruvananthapuram, 695 581, Kerala, India
| | - Girish Gopinath
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, India
| |
Collapse
|
5
|
Chiu WA. Invited Perspective: Uneven Progress Addressing Population Variability in Human Health Risk Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:31305. [PMID: 38498339 PMCID: PMC10947099 DOI: 10.1289/ehp13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Weihsueh A. Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Zillien C, Groenveld T, Schut O, Beeltje H, Blanco-Ania D, Posthuma L, Roex E, Ragas A. Assessing city-wide pharmaceutical emissions to wastewater via modelling and passive sampling. ENVIRONMENT INTERNATIONAL 2024; 185:108524. [PMID: 38458114 DOI: 10.1016/j.envint.2024.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
With increasing numbers of chemicals used in modern society, assessing human and environmental exposure to them is becoming increasingly difficult. Recent advances in wastewater-based epidemiology enable valuable insights into public exposure to data-poor compounds. However, measuring all >26,000 chemicals registered under REACH is not just technically unfeasible but would also be incredibly expensive. In this paper, we argue that estimating emissions of chemicals based on usage data could offer a more comprehensive, systematic and efficient approach than repeated monitoring. Emissions of 29 active pharmaceutical ingredients (APIs) to wastewater were estimated for a medium-sized city in the Netherlands. Usage data was collected both on national and local scale and included prescription data, usage in health-care institutions and over-the-counter sales. Different routes of administration were considered as well as the excretion and subsequent in-sewer back-transformation of conjugates into respective parent compounds. Results suggest model-based emission estimation on a city-level is feasible and in good agreement with wastewater measurements obtained via passive sampling. Results highlight the need to include excretion fractions in the conceptual framework of emission estimation but suggest that the choice of an appropriate excretion fraction has a substantial impact on the resulting model performance.
Collapse
Affiliation(s)
- Caterina Zillien
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands.
| | - Thijs Groenveld
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands
| | - Odin Schut
- Open University, Department of Environmental Science, Heerlen, the Netherlands
| | - Henry Beeltje
- TNO, Environmental Modelling, Sensing and Analysis, Utrecht, the Netherlands
| | - Daniel Blanco-Ania
- Radboud University, Department of Synthetic Organic Chemistry, Nijmegen, the Netherlands
| | - Leo Posthuma
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands; National Institute for Public Health and the Environment (RIVM), Centre for Sustainability, Environment and Health, Bilthoven, the Netherlands
| | - Erwin Roex
- National Institute for Public Health and the Environment (RIVM), Centre for Zoonoses and Environmental Microbiology, Bilthoven, the Netherlands
| | - Ad Ragas
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O. Interactions of organophosphate flame retardants with human drug transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115348. [PMID: 37597291 DOI: 10.1016/j.ecoenv.2023.115348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé), France.
| |
Collapse
|
8
|
Tastet V, Le Vée M, Bruyère A, Fardel O. Interactions of human drug transporters with chemical additives present in plastics: Potential consequences for toxicokinetics and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121882. [PMID: 37236587 DOI: 10.1016/j.envpol.2023.121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics; they also handle endogenous compounds, including hormones and metabolites. Chemical additives present in plastics interact with human drug transporters, which may have consequences for the toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, to which humans are highly exposed. The present review summarizes key findings about this topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The relatively low human concentration of plastic additives from environmental or dietary exposure is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter interactions and their consequences for human toxicokinetics and toxicity of plastic additives, although even low concentrations of pollutants (in the nM range) may have clinical effects. Existing data about interactions of plastic additives with drug transporters remain somewhat sparse and incomplete. A more systematic characterization of plasticizer-transporter relationships is needed. The potential effects of chemical additive mixtures towards transporter activities and the identification of transporter substrates among plasticizers, as well as their interactions with transporters of emerging relevance deserve particular attention. A better understanding of the human toxicokinetics of plastic additives may help to fully integrate the possible contribution of transporters to the absorption, distribution, metabolism and excretion of plastics-related chemicals, as well as to their deleterious effects towards human health.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
9
|
Cattaneo I, Astuto MC, Binaglia M, Devos Y, Dorne JLCM, Ana FA, Fernandez DA, Garcia-Vello P, Kass GE, Lanzoni A, Liem AKD, Panzarea M, Paraskevopulos K, Parra Morte JM, Tarazona JV, Terron A. Implementing New Approach Methodologies (NAMs) in food safety assessments: Strategic objectives and actions taken by the European Food Safety Authority. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Turco L, Santori N, Buratti FM, Dorne JLCM, Testai E. Congeners-Specific Intestinal Absorption Of Microcystins In An In Vitro 3D Human Intestinal Epithelium: The Role Of Influx/Efflux Transporters. FRONTIERS IN TOXICOLOGY 2022; 4:883063. [PMID: 35990858 PMCID: PMC9388863 DOI: 10.3389/ftox.2022.883063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Microcystins constitute a group of over 200 variants and are increasingly considered as emerging toxins in food and feed safety, particularly with regards to sea-food and fish consumption. Toxicity of MCs is congener-specific, being characterised by different acute potencies, likely related to the differential activity of metabolic enzymes and transporters proteins involved in their cellular uptake. However, the active transport of MCs across intestinal membranes has not been fully elucidated. Our results, obtained using a fit for purpose 3D human reconstructed intestinal epithelium, provide new information on the complex mechanisms involved in the absorption of 5 MC variants’: it is indeed characterised by the equilibrium between uptake and extrusion, since the selected congeners are substrates of both influx and efflux proteins. In the range of tested nominal concentrations (10–40 µM) fully representative of relevant exposure scenarios, none of the active tested transporters were saturated. The comparison of permeability (Papp) values of MCs variants highlighted a dose independent relationship for MC-LR, -YR and -RR (Papp x 10–7 ranged from 2.95 to 3.54 cm/s), whereas -LW and–LF showed a dose dependent increase in permeability reaching Papp values which were similar to the other congeners at 40 µM. MC-RR, -LR, -YR show absorption values around 5% of the administered dose. Due to their lipophilicity, MC-LW and -LF were also detected within the cellular compartment. The intestinal uptake was only partially attributable to OATPs, suggesting the involvement of additional transporters. Regarding the efflux proteins, MCs are not P-gp substrates whereas MRP2 and to a lesser extent Breast cancer resistance protein are active in their extrusion. Despite the presence of GST proteins, as an indication of metabolic competence, in the intestinal tissue, MC-conjugates were never detected in our experimental settings.
Collapse
Affiliation(s)
- Laura Turco
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
- *Correspondence: Laura Turco,
| | - Nicoletta Santori
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
| | - Franca M. Buratti
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
| | | | - Emanuela Testai
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
| |
Collapse
|
11
|
Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022; 132:105197. [DOI: 10.1016/j.yrtph.2022.105197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
|
12
|
Enge AM, Kaltner F, Gottschalk C, Kin A, Kirstgen M, Geyer J, These A, Hammer H, Pötz O, Braeuning A, Hessel-Pras S. Organic Cation Transporter I and Na + /taurocholate Co-Transporting Polypeptide are Involved in Retrorsine- and Senecionine-Induced Hepatotoxicity in HepaRG cells. Mol Nutr Food Res 2021; 66:e2100800. [PMID: 34826203 DOI: 10.1002/mnfr.202100800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Indexed: 01/05/2023]
Abstract
SCOPE 1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites that are found in many plant species throughout the world. They are of concern for risk assessment as consumption of contaminated foodstuff can cause severe liver damage. Of late, transporter-mediated uptake and transport has advanced as a vital determinant of PA toxicity. In this study, the authors investigate a transporter-mediated uptake of PAs and its implications in PA toxicity. METHODS AND RESULTS We show that transporter expression levels are significantly affected by treatment with the PAs senecionine (Sc) and retrorsine (Re) in the human hepatoma cell line HepaRG. Furthermore, the specific contribution to PA uptake of the two transporters Na+ /taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter I (SLC22A1), both belonging to the heterogeneous solute carrier super family, is investigated by means of a siRNA-mediated knockdown approach. Knockdown of both uptake transporters result in reduced uptake of Re and Sc in a time-dependent manner and attenuated PA-mediated cytotoxic effects in HepaRG cells. CONCLUSION Our results confirm previous findings of active transport mechanisms of PAs into hepatocytes and highlight the importance of toxicokinetic studies for the risk assessment of PAs.
Collapse
Affiliation(s)
- Anne-Margarethe Enge
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Florian Kaltner
- Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.,Institute of Food Chemistry and Food Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 17-19, 35392, Giessen, Germany
| | - Christoph Gottschalk
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.,Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Angelina Kin
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Michael Kirstgen
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Joachim Geyer
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Helen Hammer
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Oliver Pötz
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
13
|
OpenCYP: An open source database exploring human variability in activities and frequencies of polymophisms for major cytochrome P-450 isoforms across world populations. Toxicol Lett 2021; 350:267-282. [PMID: 34352333 DOI: 10.1016/j.toxlet.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
The open source database "OpenCYP database" has been developed based on the results of extensive literature searches from the peer-reviewed literature. OpenCYP provides data on human variability on baseline of activities and polymophism frequencies for selected cytochrome P-450 isoforms (CYP1A2, CYP2A6, CYP2D6, CYP3A4/3A5 and CYP3A7) in healthy adult populations from world populations. CYP enzymatic activities were generally expressed as the metabolic ratio (MR) between an unchanged probe drug and its metabolite(s) in urine or plasma measured in healthy adults. Data on other age groups were very limited and fragmented, constituting an important data gap. Quantitative comparisons were often hampered by the different experimental conditions used. However, variability was quite limited for CYP1A2, using caffeine as a probe substrate, with a symmetrical distribution of metabolic activity values. For CYP3A4, human variability was dependent on the probe substrate itself with low variability when data considering the dextromethorphan/demethilathed metabolite MR were used and large variability when the urinary 6β-hydroxycortisol/cortisol ratio was used. The largest variability in CYP activity was shown for CYP2D6 activity, after oral dosing of dextromethorphan, for which genetic polymorphisms are well characterised and constitute a significant source of variability. It is foreseen that the OpenCYP database can contribute to promising tools to support the further development of QIVIVE and PBK models for human risk assessment of chemicals particularly when combined with information on isoform-specific content in cells using proteomic approaches.
Collapse
|
14
|
Di Consiglio E, Darney K, Buratti FM, Turco L, Vichi S, Testai E, Lautz LS, Dorne JLCM. Human Variability in Carboxylesterases and carboxylesterase-related Uncertainty Factors for Chemical Risk Assessment. Toxicol Lett 2021; 350:162-170. [PMID: 34256091 DOI: 10.1016/j.toxlet.2021.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Carboxylesterases (CES) are an important class of enzymes involved in the hydrolysis of a range of chemicals and show large inter-individual variability in vitro. An extensive literature search was performed to identify in vivo probe substrates for CES1 and CES2 together with their protein content and enzymatic activity. Human pharmacokinetic (PK) data on Cmax, clearance, and AUC were extracted from 89 publications and Bayesian meta-analysis was performed using a hierarchical model to derive CES-related variability distributions and related uncertainty factors (UF). The CES-related variability indicated that 97.5% of healthy adults are covered by the kinetic default UF (3.16), except for clopidogrel and dabigatran etexilate. Clopidogrel is metabolised for a small amount by the polymorphic CYP2C19, which can have an impact on the overall pharmacokinetics, while the variability seen for dabigatran etexilate might be due to differences in the absorption, since this can be influenced by food intake. The overall CES-related variability was moderate to high in vivo (<CV 50%), which might be due to possible polymorphism in the enzyme but also to the small sample size available per chemical. The presented CES-related variability can be used in combination with in vitro data to derive pathway-specific distributions.
Collapse
Affiliation(s)
- E Di Consiglio
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena 299, Roma, Italy
| | - K Darney
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94701, France.
| | - F M Buratti
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena 299, Roma, Italy
| | - L Turco
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena 299, Roma, Italy
| | - S Vichi
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena 299, Roma, Italy
| | - E Testai
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena 299, Roma, Italy
| | - L S Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94701, France; Wageningen Food Safety Research, Akkermaalsbos 2, 6708WB, Wageningen, the Netherlands
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| |
Collapse
|
15
|
Buratti FM, Darney K, Vichi S, Turco L, Di Consiglio E, Lautz LS, Béchaux C, Dorne JLCM, Testai E. Human variability in glutathione-S-transferase activities, tissue distribution and major polymorphic variants: Meta-analysis and implication for chemical risk assessment. Toxicol Lett 2020; 337:78-90. [PMID: 33189831 DOI: 10.1016/j.toxlet.2020.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The input into the QIVIVE and Physiologically-Based kinetic and dynamic models of drug metabolising enzymes performance and their inter-individual differences significantly improve the modelling performance, supporting the development and integration of alternative approaches to animal testing. Bayesian meta-analyses allow generating and integrating statistical distributions with human in vitro metabolism data for quantitative in vitro-in vivo extrapolation. Such data are lacking on glutathione-S-transferases (GSTs). This paper reports for the first time results on the human variability of GST activities in healthy individuals, their tissue localisation and the frequencies of their major polymorphic variants by means of extensive literature search, data collection, data base creation and meta-analysis. A limited number of papers focussed on in vivo GST inter-individual differences in humans. Ex-vivo total GST activity without discriminating amongst isozymes is generally reported, resulting in a high inter-individual variability. The highest levels of cytosolic GSTs in humans are measured in the kidney, liver, adrenal glands and blood. The frequencies of GST polymorphisms for cytosolic isozymes in populations of different geographical ancestry were also presented. Bayesian meta-analyses to derive GST-related uncertainty factors provided uncertain estimates, due to the limited database. Considering the relevance of GST activities and their pivotal role in cellular adaptive response mechanisms to chemical stressors, further studies are needed to identify GST probe substrates for specific isozymes and quantify inter-individual differences.
Collapse
Affiliation(s)
- Franca Maria Buratti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Keyvin Darney
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94700, France
| | - Susanna Vichi
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Turco
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Emma Di Consiglio
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Leonie S Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94700, France
| | - Camille Béchaux
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94700, France
| | | | - Emanuela Testai
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
16
|
Blessinger T, Davis A, Chiu WA, Stanek J, Woodall GM, Gift J, Thayer KA, Bussard D. Application of a unified probabilistic framework to the dose-response assessment of acrolein. ENVIRONMENT INTERNATIONAL 2020; 143:105953. [PMID: 32768806 PMCID: PMC7877001 DOI: 10.1016/j.envint.2020.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In quantitative chemical risk assessment, a reference value is an estimate of an exposure to a chemical that is "likely to be without appreciable risk." Because current "deterministic" approaches do not quantitatively characterize the likelihood or severity of harm, the National Academies has recommended using reference values derived from a risk-specific dose that are treated as random variables, with probability distributions characterizing uncertainty and variability. OBJECTIVES In order to build familiarity and address issues needed for routine and standardized derivation of probabilistic risk-specific dose distributions, a case example applying the unified probabilistic framework presented in Chiu and Slob (2015) is developed for acrolein. This case study is based on an updated systematic evidence map of literature (Keshava et al., 2020) identifying nasal lesions reported in Dorman et al. (2008) as the most appropriate endpoint and study for reference value derivation. METHODS The probability distribution was calculated for the risk-specific dose, which in this implementation of the approach was calculated for the dose at which 1% of the human population is estimated to experience minimal lesions, and a probabilistic reference value was computed as the 5th percentile of this distribution. A deterministic reference value was also derived for comparison, and a sensitivity analysis of the probabilistic reference value was conducted investigating alternative assumptions for the point of departure type and exposure duration. RESULTS The probabilistic reference value of 6 × 10-4 mg/m3 was slightly lower than the deterministic reference value of 8 × 10-4 mg/m3, and the risk-specific dose distribution had an uncertainty spanning a factor of 137 (95th-5th percentile ratio). Sensitivity analysis yielded slightly higher probabilistic reference values ranging between 9 × 10-4 mg/m3 and 2 × 10-3 mg/m3. CONCLUSIONS Using a probabilistic approach for deriving a reference value allows quantitative characterization of the severity, incidence, and uncertainty of effects at a given dose. The results can be used to inform risk management decisions and improve risk communication.
Collapse
Affiliation(s)
- Todd Blessinger
- Center for Public Health and Environmental Assessment (CPHEA), United States Environmental Protection Agency (US EPA), Mail code 8623R, 1200 Pennsylvania Ave NW, Washington, DC 20460, USA.
| | - Allen Davis
- Center for Public Health and Environmental Assessment (CPHEA), United States Environmental Protection Agency (US EPA), Mail code 8623R, 1200 Pennsylvania Ave NW, Washington, DC 20460, USA.
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, 4458 TAMU, Texas A&M University, College Station, TX 77843-4458, USA.
| | - John Stanek
- CPHEA, 109 T.W. Alexander Drive, US EPA, Mail code B243-01, Research Triangle Park, NC 27711, USA.
| | - George M Woodall
- CPHEA, 109 T.W. Alexander Drive, US EPA, Mail code B243-01, Research Triangle Park, NC 27711, USA.
| | - Jeff Gift
- CPHEA, 109 T.W. Alexander Drive, US EPA, Mail code B243-01, Research Triangle Park, NC 27711, USA.
| | - Kristina A Thayer
- CPHEA, 109 T.W. Alexander Drive, US EPA, Mail code B243-01, Research Triangle Park, NC 27711, USA.
| | - David Bussard
- Office of the Science Advisor, Policy and Engagement, US EPA, 1300 Pennsylvania Ave NW, Mail code 8104R, Washington, DC 20460, USA.
| |
Collapse
|
17
|
Kasteel EEJ, Darney K, Kramer NI, Dorne JLCM, Lautz LS. Human variability in isoform-specific UDP-glucuronosyltransferases: markers of acute and chronic exposure, polymorphisms and uncertainty factors. Arch Toxicol 2020; 94:2637-2661. [PMID: 32415340 PMCID: PMC7395075 DOI: 10.1007/s00204-020-02765-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023]
Abstract
UDP-glucuronosyltransferases (UGTs) are involved in phase II conjugation reactions of xenobiotics and differences in their isoform activities result in interindividual kinetic differences of UGT probe substrates. Here, extensive literature searches were performed to identify probe substrates (14) for various UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and UGT2B15) and frequencies of human polymorphisms. Chemical-specific pharmacokinetic data were collected in a database to quantify interindividual differences in markers of acute (Cmax) and chronic (area under the curve, clearance) exposure. Using this database, UGT-related uncertainty factors were derived and compared to the default factor (i.e. 3.16) allowing for interindividual differences in kinetics. Overall, results show that pharmacokinetic data are predominantly available for Caucasian populations and scarce for other populations of different geographical ancestry. Furthermore, the relationships between UGT polymorphisms and pharmacokinetic parameters are rarely addressed in the included studies. The data show that UGT-related uncertainty factors were mostly below the default toxicokinetic uncertainty factor of 3.16, with the exception of five probe substrates (1-OH-midazolam, ezetimibe, raltegravir, SN38 and trifluoperazine), with three of these substrates being metabolised by the polymorphic isoform 1A1. Data gaps and future work to integrate UGT-related variability distributions with in vitro data to develop quantitative in vitro-in vivo extrapolations in chemical risk assessment are discussed.
Collapse
Affiliation(s)
- E E J Kasteel
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, 3508 TD, Utrecht, The Netherlands.
| | - K Darney
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - N I Kramer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, 3508 TD, Utrecht, The Netherlands
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126, Parma, Italy
| | - L S Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| |
Collapse
|