1
|
Hemmatparast H, Mofarahe ZS, Abdollahifar MA, Ezi S, Khanjari G, Amini NB, Niakan Z, Raee P, Moghaddam MH, Fathi M, Vakili K, Beirami A, Hasanzadeh M, Hajibeygi R, Aliaghaei A, Sani M, Norouzian M. Elderberry diet improves sperm quality and histological parameters of testicular tissue in adult male rats exposed to methamphetamine. Tissue Cell 2025; 93:102732. [PMID: 39832437 DOI: 10.1016/j.tice.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Psychotropic stimulants like methamphetamine (METH) have an impact on the physiology, behavior, and psychology of human beings and can damage the reproductive and neuroendocrine systems in them. These deleterious impacts include a temporary drop in the relative weight of the testis along with adverse effects on spermatogenesis. Sambucus nigra, also known as elderberry (EB) or sweet elder, is a source of bioactive compounds that has drawn growing attention for its potential beneficial impact in preventing and treating several diseases. In this experimental research, 36 adult male rats were classified into three groups: (1) control, (2) METH, and (3) METH receiving the EB diet. The rats were injected with METH at a dose of 20 mg/kg for 28 days during treatment with the EB diet. Then, the rats were euthanized, and their sperm samples were collected for sperm parameters analysis. Afterward, the testis samples were taken for histopathological experimentations, immunohistochemistry against TNF-α and caspase-3, and serum testosterone levels. Our findings indicated largely improved sperm and stereological parameters, like spermatogonia, primary spermatocyte, round spermatid, and Leydig cells, and an increased serum testosterone level in the METH group receiving the EB diet compared to the other METH group. The results also revealed a significantly decreased TNF-α and caspase-3 expression in the METH+EB group compared to the METH group. In conclusion, the EB diet is regarded as an alternative treatment for improving the spermatogenesis process in reproductive toxicity induced by METH exposure.
Collapse
Affiliation(s)
- Haleh Hemmatparast
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samira Ezi
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Ghazal Khanjari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nahal Babaeian Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Niakan
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amirreza Beirami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maral Hasanzadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ramtin Hajibeygi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Aliaghaei
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Sani
- SNSI-SaniNeuroSapiens Institute, Hanover, Germany.
| | - Mohsen Norouzian
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lin B, Huang G. Chemical modification and antioxidant activity of Wendan peel polysaccharide. Sci Rep 2025; 15:6258. [PMID: 39979601 PMCID: PMC11842558 DOI: 10.1038/s41598-025-91124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/18/2025] [Indexed: 02/22/2025] Open
Abstract
Wendan peel polysaccharide (PP) was modified using different chemical methods. The acetylation modification of PP using acetic anhydride method resulted in a degree of substitution of 0.42 for acetylated Wendan peel polysaccharide (Ac-PP). The phosphate method was used to phosphorylate PP, and successfully obtained phosphorylated Wendan peel polysaccharide (P-PP) with a degree of substitution of 0.21. The carboxymethylation modification of PP was carried out using isopropanol-chloroacetic acid method, and the degree of substitution of carboxymethylated Wendan peel polysaccharide (CM-PP) obtained after modification was 0.77. In order to further confirm the success of the three modification methods, nuclear magnetic resonance and infrared analysis methods were used to analyze the three derivatives, and it was found that all three derivatives had characteristic absorption peaks and functional groups, indicating that the chemical modification was successful. The antioxidant activity of PP and three chemically modified products were evaluated by measuring their ability to scavenge different free radicals. The experimental results indicated that not all chemical modifications could significantly enhance the antioxidant activity of polysaccharides. In the experiment, when vitamin C (Vc) was used as the control group, the antioxidant capacity of P-PP was more prominent. At a concentration of 3.2 mg/mL, the scavenging rate of P-PP on DPPH free radicals could reach 72.50%, and the scavenging rate on superoxide anions was 69.38%.These results indicated that the antioxidant activity of modified polysaccharides was improved, which might be due to the introduction of new active functional groups through chemical modification, thereby altering the structure of polysaccharides.
Collapse
Affiliation(s)
- Bobo Lin
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
3
|
An H, Lin B, Huang F, Wang N. Advances in the study of polysaccharides from Anemarrhena asphodeloides Bge.: A review. Int J Biol Macromol 2024; 282:136999. [PMID: 39476924 DOI: 10.1016/j.ijbiomac.2024.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Anemarrhena asphodeloides Bge. (AA), a traditional Chinese medicine, is used clinically to treat inflammation, diabetes, osteoporosis, and tumors. Polysaccharides are the most abundant components in AA, and have antioxidant, immunomodulatory, anti-inflammatory, hypoglycemic, anti-osteoporosis, and laxative effects. It is necessary to conduct a comprehensive analysis on the structure and pharmacological activity of the polysaccharides from AA (PAAs). This review systematically summarizes the structural characteristics of PAAs, including the monosaccharide compositions, molecular weights, and backbone structures. We discuss the relationship between the structure and pharmacological activities of PAAs. The chemical modification methods of PAAs, including zinc chelation, carboxymethylation, and sulfation, are then reviewed. This review may offer new insights for research on the PAAs and polysaccharides with similar structures.
Collapse
Affiliation(s)
- Huan An
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Feihua Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Nani Wang
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
4
|
Chen S, Song S, Tan Y, He S, Ren X, Li Z, Liu Y. Optimization of ultrasonic-assisted debittering of Ganoderma lucidum using response surface methodology, characterization, and evaluation of antioxidant activity. PeerJ 2024; 12:e17943. [PMID: 39421421 PMCID: PMC11485051 DOI: 10.7717/peerj.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/19/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) has gained increasing attention as a potential health care product and food source. However, the bitter taste of G. lucidum has limited its development and utilization for the food industry. Methonds The response surface methodology was employed to optimize the inclusion conditions for the debittering of G. lucidum. The effects of 2-hydroxypropyl-β-cyclodextrin concentration (12-14 g/mL), ultrasound temperature (20-40 °C and host-guest ratio (1:1-2:1) on response variables were studied. The physical characteristics of inclusion complexes prepared through spray drying and freeze drying were analyzed. The antioxidant activity of the different treated samples was subsequently investigated. Results Study results showed that, in comparison to the control group, the inclusion solution displayed a significantly enhanced taste profile under optimal processing conditions, exhibiting an 80.74% reduction in bitterness value. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) studies indicated the successful formation of inclusion compounds. The moisture content and bulk density of spray-dried powder were found to be significantly superior to those of freeze-dried powder (p < 0.05). In comparison to the diluted solution, the inclusion liquid demonstrated a 20.27%, 30.01% and 36.55% increase in ferric ion reducing antioxidant power (FRAP), hydroxyl radical scavenging and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging respectively. Further, the DPPH clearance of microencapsulated powder was not significantly different from that of tocopherol at a concentration of 25 mg/mL. Conclusions In summary, the study provides theoretical basis and methodological guidance to eliminate the bitterness of G. lucidum, and therefore provide potential options to the use of G. lucidum as a food source.
Collapse
Affiliation(s)
- Shuting Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shiying Song
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Yumei Tan
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shengling He
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Xiyi Ren
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
| | - Yongxiang Liu
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| |
Collapse
|
5
|
Shah IA, Kavitake D, Tiwari S, Devi PB, Reddy GB, Jaiswal KK, Jaiswal AK, Shetty PH. Chemical modification of bacterial exopolysaccharides: Antioxidant properties and health potentials. Curr Res Food Sci 2024; 9:100824. [PMID: 39263207 PMCID: PMC11388717 DOI: 10.1016/j.crfs.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
In recent years, there has been a burgeoning interest in the utilization of microbial exopolysaccharides (EPS) because of the added advantage of their renewable, biocompatible, and biodegradable nature in addition to intended applications. The endowed properties of bacterial EPS make them valuable candidates for a wide array of industrial applications. Modification of native EPS is known to enhance various physico-chemical and functional properties. Various modifications such as physical, chemical, biological, and enzymatic modifications were practiced improving the bioactivity of EPS. This paper comprehensively aims to review the most recent chemical modification techniques employed to modify the physico-chemical and functional changes of bacterial EPS in comparison with the unmodified forms. Chemical modification entails strategic alterations to the structure and properties of EPS through various synthetic and semi-synthetic methodologies. Emphasis is given to the antioxidant potential and functional role of these EPS derivatives in human health. Antioxidant properties reveal a significant augmentation in activity compared to their native counterparts. Such enhancement holds a strong promise for potential benefits and therapeutic applications. Chemical derivatives of EPS with overwhelming functional benefits could surely encourage EPS application, particularly as potential hydrocolloids in industrial and biomedical contexts.
Collapse
Affiliation(s)
- Irshad Ahmad Shah
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - Digambar Kavitake
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, 500007, India
| | - Swati Tiwari
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, 500007, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland
| | | |
Collapse
|
6
|
Zhang XX, Zhang WW, Ni ZJ, Thakur K, Zhang JG, Khan MR, Xu WD, Wei ZJ. Effects of different chemical modifications on physicochemical and antioxidation properties of Lycium barbarum seed dreg polysaccharides. Food Chem X 2024; 22:101271. [PMID: 38495455 PMCID: PMC10944119 DOI: 10.1016/j.fochx.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Recent studies have witnessed that chemical modification can improve the physicochemical and functional properties of plants' polysaccharides. Herein, we modified the natural Lycium barbarum seed dreg polysaccharides (LBSDPs) by sulfation (S-LBSDPs), phosphorylation (P-LBSDPs), and carboxymethylation (C-LBSDPs), and evaluated the chemical composition and antioxidant activity of their derivatives. Natural polysaccharides and their derivatives exhibited typical polysaccharide absorption peaks and characteristic group absorption peaks in FT-IR spectra along with maximum UV absorption. After modification, the total sugar and protein contents of the derivatives were decreased, whereas the uronic acid content was increased. Among the three derivatives, sulfated polysaccharides displayed excellent thermal stability. S-LBSDP and P-LBSDP showed the highest ABTS radical scavenging and reducing power while S-LBSDPs and C-LBSDPs showed better DPPH radical scavenging effect, and P-LBSDPs showed considerable Fe2+ chelating ability. Our data indicate that chemical modifications can impart a positive effect on the antioxidant potential of plant-derived polysaccharides.
Collapse
Affiliation(s)
- Xiu-Xiu Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Wang-Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Kiran Thakur
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jian-Guo Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wen-Di Xu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
7
|
Pedrosa LDF, Fabi JP. Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science. PLANTS (BASEL, SWITZERLAND) 2024; 13:1721. [PMID: 38999561 PMCID: PMC11243750 DOI: 10.3390/plants13131721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Plants are a core part of cultural identity, as part of a diet, decorations, ceremonies, or as medicinal agents. Empirical knowledge regarding plants and their healing potential has existed worldwide for centuries. With the advance of science and technology, not only is the refinement of such sources or isolation of specific compounds possible, but these compounds can also be characterized based on their natural occurrence. Besides their importance for plant metabolism and structure, polysaccharides have been demonstrated to have substantial positive human health impacts on inflammation, metabolism, oxidative stress, and others. As an inherent part of plant cell walls, many polysaccharides from medicinal herbs, such as fructans, glucans, and pectins, have been extracted and analyzed for their structure and function. However, a review summarizing a significant portion of these studies was still unavailable. This review helps to fill the knowledge gap between polysaccharide bioactivity, their structure, and their plant matrix sources, focusing on historical medicinal usage.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers), Sâo Paulo 05508-080, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
8
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Mao X, Chen J, Yao Y, Liu D, Wang H, Chen Y. Progress in phosphorylation of natural products. Mol Biol Rep 2024; 51:697. [PMID: 38802698 DOI: 10.1007/s11033-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Natural medicines are a valuable resource for the development of new drugs. However, factors such as low solubility and poor bioavailability of certain constituents have hindered their efficacy and potential as pharmaceuticals. Structural modification of natural products has emerged as an important research area for drug development. Phosphorylation groups, as crucial endogenous active groups, have been extensively utilized for structural modification and development of new drugs based on natural molecules. Incorporating phosphate groups into natural molecules not only enhances their stability, bioavailability, and pharmacological properties, but also improves their biological activity by altering their charge, hydrogen bonding, and spatial structure. This review summarizes the phosphorylation mechanism, modification approaches, and biological activity enhancement of natural medicines. Notably, compounds such as polysaccharides, flavonoids, terpenoids, anthraquinones, and coumarins exhibit increased antioxidation, anticancer, antiviral, immune regulatory, Antiaging, enzyme inhibition, bacteriostasis, liver protection, and lipid-lowering effects following phosphorylation modification.
Collapse
Affiliation(s)
- Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Defu Liu
- Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Haiying Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Xie L, Chen T, Li H, Xiao J, Wang L, Kim SK, Huang Z, Xie J. An Exopolysaccharide from Genistein-Stimulated Monascus Purpureus: Structural Characterization and Protective Effects against DSS-Induced Intestinal Barrier Injury Associated with the Gut Microbiota-Modulated Short-Chain Fatty Acid-TLR4/MAPK/NF-κB Cascade Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7476-7496. [PMID: 38511260 DOI: 10.1021/acs.jafc.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease is a major health problem that can lead to prolonged damage to the digestive system. This study investigated the effects of an exopolysaccharide from genistein-stimulated Monascus purpureus (G-EMP) in a mouse model of colitis to clarify its molecular mechanisms and identified its structures. G-EMP (Mw = 56.4 kDa) was primarily consisted of → 4)-α-D-Galp-(1 →, → 2,6)-α-D-Glcp-(1→ and →2)-β-D-Manp-(1 → , with one of the branches being α-D-Manp-(1 →. G-EMP intervention reduced the loss of body weight, degree of colonic damage and shortening, disease activity index scores, and histopathology scores, while restoring goblet cell production and oxidative homeostasis, repairing colonic functions, and regulating inflammatory cytokines. RNA sequencing and Western blot analysis indicated that G-EMP exerts anti-inflammatory properties by suppressing the TLR4/MAPK/NF-κB inflammatory signaling pathway. G-EMP modulated the gut microbiota by improving its diversities, elevating the relative abundances of beneficial bacteria, declining the Firmicutes/Bacteroidota value, and regulating the level of short-chain fatty acids (SCFAs). Correlation analysis demonstrated strong links between SCFAs, gut microbiota, and the inflammatory response, indicating the potential of G-EMP to prevent colitis.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jindan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
11
|
Zhu X, Yang G, Shen Y, Niu L, Peng Y, Chen H, Li H, Yang X. Physicochemical Properties and Biological Activities of Quinoa Polysaccharides. Molecules 2024; 29:1576. [PMID: 38611855 PMCID: PMC11013414 DOI: 10.3390/molecules29071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/14/2024] Open
Abstract
Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.
Collapse
Affiliation(s)
- Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haiting Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Xinquan Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| |
Collapse
|
12
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
13
|
Xie L, Chen T, Qi X, Li H, Xie J, Wang L, Xie J, Huang Z. Exopolysaccharides from Genistein-Stimulated Monascus purpureus Ameliorate Cyclophosphamide-Induced Intestinal Injury via PI3K/AKT-MAPKs/NF-κB Pathways and Regulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12986-13002. [PMID: 37611142 DOI: 10.1021/acs.jafc.3c03186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Exopolysaccharides from genistein-stimulated Monascus purpureus (G-EMP) exhibited immunomodulatory potential in vitro, but whether it had immune-enhancing effects in vivo and its potential mechanism are not yet known. Here, the immunomodulatory effects of G-EMP were investigated by establishing an immunosuppressed mouse model treated with cyclophosphamide (Cy). The results suggested that G-EMP effectively alleviated the signs of weight reduction and diet reduction caused by Cy, increased fecal water content and splenic index, and decreased the oxidative stress of the liver. Simultaneously, G-EMP improved Cy-induced intestinal injury by restoring villus length, increasing the number of cupped cells, upregulating the expression of mucin and tight junction proteins, and downregulating the ratio of apoptotic proteins (Bax/Bcl-2). It also boosted the levels of mouse colonic cytokines, CD4+ and CD8+ T cells. Additionally, G-EMP markedly enhanced immunomodulation via the activation of PI3K/AKT-MAPKs/NF-κB signal pathways. Furthermore, G-EMP intervention displayed a positive association with most immunological indexes by elevating the levels of short-chain fatty acids, varying gut microbiota composition, and enhancing beneficial bacteria (Lactobacillaceae, Prevotellaceae, and S24-7). These findings demonstrated that G-EMP can strengthen immunity, repair intestinal mucosal damage, regulate gut microbiota, and be a potential source of prebiotics.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
14
|
Xie L, Shen M, Huang R, Liu X, Yu Y, Lu H, Xie J. Apoptosis of colon cancer CT-26 cells induced polysaccharide from Cyclocarya paliurus and its phosphorylated derivative via intrinsic mitochondrial passway. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
15
|
Zhang W, Duan W, Huang G, Huang H. Ultrasonic-assisted extraction, analysis and properties of mung bean peel polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 98:106487. [PMID: 37327689 PMCID: PMC10422121 DOI: 10.1016/j.ultsonch.2023.106487] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
In order to improve the yield of mung bean peel polysaccharide, on the basis of single-factor experiments, the ultrasonic assisted extraction conditions were optimized by response surface methodology (RSM). The results showed that under the conditions of material-liquid ratio of 1: 40, temperature 77 °C, ultrasonic power 216 W and extraction time 47 min, the extraction rate of mung bean peel polysaccharide was the best, which was 2.55 %. The extracted polysaccharide was phosphorylated and its antioxidant activity in vitro was studied. The results suggested that the modified polysaccharide had a significant scavenging effect on hydroxyl radicals and enhanced the ability of anti-lipid peroxidation, which offered ideas and methods for the development and application of mung bean peel polysaccharide.
Collapse
Affiliation(s)
- Wenting Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Wei Duan
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
16
|
Shen Y, Peng Y, Zhu X, Li H, Zhang L, Kong F, Wang J, Yu D. The phytochemicals and health benefits of Cyclocarya paliurus (Batalin) Iljinskaja. Front Nutr 2023; 10:1158158. [PMID: 37090775 PMCID: PMC10115952 DOI: 10.3389/fnut.2023.1158158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Cyclocarya paliurus (C. paliurus), a nutritional and nutraceutical resource for human and animal diets, has been constantly explored. The available biological components of C. paliurus were triterpenoids, polysaccharides, and flavonoids. Recent studies in phytochemical-phytochemistry; pharmacological-pharmacology has shown that C. paliurus performed medicinal value, such as antihypertensive, antioxidant, anticancer, antimicrobial, anti-inflammatory and immunological activities. Furthermore, C. paliurus and its extracts added to drinks would help to prevent and mitigate chronic diseases. This review provides an overview of the nutritional composition and functional applications of C. paliurus, summarizing the research progress on the extraction methods, structural characteristics, and biological activities. Therefore, it may be a promising candidate for developing functional ingredients in traditional Chinese medicine. However, a more profound understanding of its active compounds and active mechanisms through which they perform biological activities is required. As a result, the plant needs further investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liwen Zhang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fanlei Kong
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jia Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Jia Wang,
| | - Di Yu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Di Yu,
| |
Collapse
|
17
|
Yu S, Duan M, Zeng R, Chen F, Zhong W, Sun J, Xu J, Li D, Zheng Y, Liu X, Pang J, Wu C. Preparation, characterization and biological activity of phosphorylated surface deacetylated chitin nanofibers. Int J Biol Macromol 2023; 233:123492. [PMID: 36736984 DOI: 10.1016/j.ijbiomac.2023.123492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Phosphorylation is a key route to achieve varieties of biological activities for polysaccharides. Here, we report the phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) using the sodium tripolyphosphate/sodium trimetaphosphate (STPP/STMP) method. Response surface methodology (RSM) was employed to optimize in this study. Under optimal conditions, a maximum degree of substitution (DS) of 0.13 was obtained. In addition, the structures of PS-ChNFs were investigated by Fourier transform infrared spectroscopy (FT-IR), Nuclear Magnetic Resonance spectra (NMR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and (Energy Dispersive Spectroscopy-mapping) EDS-mapping. The findings revealed that the FT-IR spectroscopy and XPS analysis confirmed the appearance of phosphate groups in PS-ChNFs. The 31P NMR results indicate that the PS-ChNFs structure has characteristic peaks of P elements. SEM images showed that PS-ChNFs had a rough surface with many cavities, but the P elements on the surface of the EDS-mapping are uniformly distributed throughout the sample without any enrichment. Antioxidant and antibacterial test showed that PS-ChNFs had significant scavenging effect on free radicals and antibacterial effect. The above results indicate that the chemical modification of PS-ChNFs was successful.
Collapse
Affiliation(s)
- Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Ronghuai Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fujie Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jishuai Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Xiaoyan Liu
- School of Food and Health, Beijing Technology and Business University; Beijing 100048, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
18
|
Yang H, Meng H, Xie L, Huang Z. Contribution of Quercetin to the Composition and Antioxidant Properties of Monascus Exopolysaccharides. Foods 2023; 12:foods12051004. [PMID: 36900521 PMCID: PMC10001060 DOI: 10.3390/foods12051004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Exopolysaccharides are important metabolites of Monascus with healthy activities. However, the low production level limits their applications. Hence, the aim of this work was to increase the yield of exopolysaccharides (EPS) and optimize liquid fermentation by adding flavonoids. The EPS yield was optimized via both medium composition and culture conditions. The optional fermentation conditions achieved for EPS production of 7.018 g/L were 50 g/L sucrose, 3.5 g/L yeast extract, 1.0 g/L MgSO4·7H2O, 0.9 g/L KH2PO4, 1.8 g/L K2HPO4·3H2O, 1 g/L quercetin, and 2 mL/L Tween-80, with pH 5.5, inoculum size 9%, seed age 52 h, shaking speed 180 rpm, and fermentation culture 100 h, respectively. Furthermore, the addition of quercetin increased EPS production by 11.66%. The results also showed little citrinin residue in the EPS. The exopolysaccharides' composition and antioxidant capacity of quercetin-modified exopolysaccharides were then preliminarily investigated. The addition of quercetin changed the composition of the exopolysaccharides and the molecular weight (Mw). In addition, the antioxidant activity of Monascus exopolysaccharides was monitored using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+), and -OH. Monascus exopolysaccharides have good scavenging ability of DPPH and -OH. Furthermore, quercetin increased the scavenging ABTS+ ability. Overall, these findings provide a potential rationale for the application of quercetin in improving the EPS yield.
Collapse
Affiliation(s)
- Haiyun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hui Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
19
|
Miao W, Huang R, Huang X, Gao F, Leng X, Li Q. Physicochemical Properties and In Vivo Hepatoprotective Effect of Polysaccharides from Grape Pomace. Antioxidants (Basel) 2023; 12:antiox12020394. [PMID: 36829953 PMCID: PMC9952491 DOI: 10.3390/antiox12020394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Here, the polysaccharides from grape pomace, a by-product in the wine industry, were characterized and evaluated in vitro and in vivo. The polysaccharides were extracted and studied using spectroscopic and chemical methods. The results revealed that GPPs are rich in arabinose, galactose and glucuronic acid and are heteropolysaccharides without protein and nucleic acid, containing α-glycoside bonds with irregular clusters on the surface. In vitro antioxidant activity assays indicated that GPPs have concentration-dependent antioxidant activity. In vivo, GPPs markedly decreased the levels of TNF-a, IL-6, ALT, AST and MDA in serum and liver tissues and restored the levels of SOD, CAT and GSH. Additionally, further histopathological examination confirmed that GPPs could mitigate the injury of liver induced by CCl4. Our results demonstrate that GPPs had antioxidant and hepatoprotective effects, and they are expected to be a potential ingredient for functional foods or hepatoprotective drugs.
Collapse
Affiliation(s)
- Wenjun Miao
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Rong Huang
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Huang
- Instrumental Analysis Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Fei Gao
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangpeng Leng
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiu Li
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
20
|
Novel exopolysaccharide produced by the marine dinoflagellate Heterocapsa AC210: Production, characterization, and biological properties. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
21
|
Wang L, Lian J, Zheng Q, Wang L, Wang Y, Yang D. Composition analysis and prebiotics properties of polysaccharides extracted from Lepista sordida submerged cultivation mycelium. Front Microbiol 2023; 13:1077322. [PMID: 36713178 PMCID: PMC9879602 DOI: 10.3389/fmicb.2022.1077322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
In this paper, Lepista sordida polysaccharides (LSP) were separated from Lepista sordida (L. sordida) mainly using the Ultrasonic-Micro Wave Synergy Extraction (UMSE) method and purified by graded alcohol precipitation. Three polysaccharide components: 40%-LSP-UMSE, 60%-LSP-UMSE, and 80%-LSP-UMSE were obtained and further analyzed the physicochemical properties, structural characteristics, and antioxidant activity. And the effects on the proliferation of Lactobacillus casei of three polysaccharide components were studied. The characteristic absorption peaks and the β-glycosidic bond of three polysaccharide components were the direct expression at UV 200 nm using UV and FT-IR spectroscopy. The three polysaccharide components were mainly composed of glucose, mannose, galactose, and ribose using high-performance liquid chromatography (HPLC) analysis. The antioxidant activity study revealed that the polysaccharides obtained by the UMSE method had better antioxidant activity compared to the traditional "Hot Water Extraction (HWE)" method. In addition, the polysaccharide components promoted the proliferation of L. casei to some extent. 40%-LSP-UMSE, 80%-LSP-UMSE as the carbon source had better acid production than the control inulin. Three LSP-UMSE used as a carbon source compared with glucose for culturing L. casei could significantly improve its tolerance to bile salts. Results are helpful to develop the bioactive polysaccharides from Lepista sordida and beneficial to develop a unique health and functional product in the future.
Collapse
|
22
|
Geographical discrimination of Cyclocarya paliurus tea for origin traceability based on multielement analysis by ICP-OES and chemometrics multivariate. CHINESE HERBAL MEDICINES 2023; 15:63-68. [PMID: 36875438 PMCID: PMC9975610 DOI: 10.1016/j.chmed.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Objective This paper focused on the geographical discrimination of Cyclocarya paliurus tea for origin traceability based on multielement analysis by ICP-OES and chemometrics multivariate. Methods In this study, eleven trace element concentrations were determined by ICP-OES and processed by multivariate statistical analysis. Results Based on ANOVA, the mean concentrations of 10 elements except Co differed significantly among six origins. Pearson's correlation analysis showed that 11 pairs of elements have a positive significant correlation and 12 pairs have a negative significant correlation. The geographical origins were effectively differentiated using the eleven elements combined with PCA. And the S-LDA model offered a 100% differentiation rate. Conclusion The overall results suggested that the combination of multielement analysis by ICP-OES and chemometrics multivariate could trace the geographical origins of tea. And the paper can provide reference for quality control and quality evaluation of C. paliurus in the future.
Collapse
|
23
|
Protective effects of edible insect protein extracts from Protaetia brevitarsis against H2O2-induced oxidative stress in mouse C2C12 myoblast cells. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Chen Q, Zhang J, Wang Y, Wang R, Hao X, Wang R, Zheng Y, An X, Qi J. Feruloyl oligosaccharides, isolated from bacterial fermented wheat bran, exhibit antioxidant effects in IPEC-J2 cells and zebrafish model. Food Sci Nutr 2023; 11:295-306. [PMID: 36655114 PMCID: PMC9834851 DOI: 10.1002/fsn3.3061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023] Open
Abstract
Feruloyl oligosaccharides (FOs) were produced by solid-state fermentation of wheat bran using Bacillus subtilis, Bacillus licheniformis, and Saccharomyces cerevisiae, and its antioxidant activity was investigated using IPEC-J2 cells and zebrafish embryo model. Preliminary structure analysis revealed that FOs has an average molecular weight of 11.81 kDa and consists of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose. The obtained FOs possess superior reducing power and DPPH and hydroxyl free radical scavenging activities. In IPEC-J2 cells, antioxidant enzymes activities and GSH level were significantly increased, while MDA level was reduced by FOs. Further studies showed that FOs achieved the aforementioned effects by activating Nrf2 signaling pathway. In zebrafish embryo, FOs effectively suppressed ROS production, lipid peroxidation, and cell death by increasing SOD and GSH-Px activities. Our findings suggested that FOs from solid-state fermented wheat bran with mixed bacteria can be used as an antioxidant food additive or drugs.
Collapse
Affiliation(s)
- Qiuyan Chen
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Jia Zhang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Yuan Wang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Ruifang Wang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Xiran Hao
- Kailu County Animal Husbandry and Fisheries WorkstationTongliaoChina
| | - Ruxin Wang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
| | - Yue Zheng
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Xiaoping An
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Jingwei Qi
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| |
Collapse
|
25
|
Wan C, Jiang H, Tang MT, Zhou S, Zhou T. Purification, physico-chemical properties and antioxidant activity of polysaccharides from Sargassum fusiforme by hydrogen peroxide/ascorbic acid-assisted extraction. Int J Biol Macromol 2022; 223:490-499. [PMID: 36356868 DOI: 10.1016/j.ijbiomac.2022.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The biological activities of Sargassum fusiforme polysaccharides (SFP) were affected significantly by the extraction method. In order to screen the optimum extraction technology for SFP with high yield and biological activities, six extraction methods, including hot water extraction (HWE), acid-assisted extraction (ACAE), alkali-assisted extraction (ALAE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE) and hydrogen peroxide/ascorbic acid-assisted extraction (HAE) were compared for the preparation of SFP. Based on the yield and in vitro antioxidant activity of the crude polysaccharides obtained by the six extraction methods, HAE was selected for the extraction of SFP. The SFP prepared by HAE (H-SFP) was purified by cellulose DEAE-52 ion-exchange chromatography, obtaining two purified fractions, namely H-SFP3 and H-SFP5. The analyses of their chemical composition, physico-chemical properties and the antioxidant capacity were performed. It was found that the crude SFP and the purified fractions possessed considerable ability to scavenge DPPH, hydroxyl and ABTS•+ radicals. These polysaccharide fractions were also found to effectively reduce the reactive oxygen species (ROS) level and increase the superoxide dismutase (SOD) activity in H2O2-induced oxidative stress RAW264.7 cells. The SFP prepared by the HAE has the potential as a natural non-toxic antioxidant and can be used as an ingredient in functional foods.
Collapse
Affiliation(s)
- Cheng Wan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Hui Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Meng-Ting Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, United Kingdom
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
26
|
Huo N, Ameer K, Wu Z, Yan S, Jiang G, Ramachandraiah K. Preparation, characterization, structural analysis and antioxidant activities of phosphorylated polysaccharide from Sanchi ( Panax notoginseng) flower. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4603-4614. [PMID: 36276535 PMCID: PMC9579234 DOI: 10.1007/s13197-022-05539-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, phosphorylation effects on the monosaccharide composition, structural attributes, morphology and radical-scavenging activities of Sanchi (Panax notoginseng) flower polysaccharides were investigated. Sanchi flower phosphorylated polysaccharides mainly comprised of Man, Rha, GluA, GalA, Glu, Gal and Xyl, but lacked GluN, Rib, Arab and Fuc in their compositions. FTIR analysis of phosphorylated polysaccharides showed an emergence of new absorption peak around spectral region of 1254 cm-1. NMR and FTIR analyses were indicative of the successful phosphorylation of the Sanchi flower polysaccharides. The introduction of phosphate groups into polysaccharides led to the induction of pore-like structures in polysaccharides configuration. Phosphorylation of polysaccharides led to concentration-dependent increasing tendencies in radical-scavenging activities. These findings demonstrated the positive impact of phosphorylation on Sanchi flower polysaccharides, which could potentially be used as a therapeutic agent.
Collapse
Affiliation(s)
- Nailin Huo
- School of Public Health, Jilin Medical University, Jilin, 132013 China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100 Pakistan
| | - Zhaogen Wu
- School of Public Health, Jilin Medical University, Jilin, 132013 China
| | - Shengnan Yan
- Jilin Zixin Pharmaceutical Industrial Co., Ltd., Changchun, 130000 China
| | - Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin, 132013 China
| | | |
Collapse
|
27
|
Wang X, Wang Z, Shen M, Yi C, Yu Q, Chen X, Xie J, Xie M. Acetylated polysaccharides: Synthesis, physicochemical properties, bioactivities, and food applications. Crit Rev Food Sci Nutr 2022; 64:4849-4864. [PMID: 36382653 DOI: 10.1080/10408398.2022.2146046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polysaccharides are biomacromolecular widely applied in the food industry, as gelling agents, thickeners and health supplements. As hydrophobic groups, acetyls provide amphiphilicity to polysaccharides with numerous hydroxyl groups, which greatly expand the presence of polysaccharides in organic organisms and various chemical environments. Acetylation could result in diverseness and promotion of the structure of polysaccharides, which improve the physicochemical properties and biological activities. High efficient and environmentally friendly access to acetylated derivatives of different polysaccharides is being explored. This review discusses and summarizes acetylated polysaccharides in terms of synthetic methods, physicochemical properties and biological activities and emphasizes the structure-effect relationships introduced by acetyl groups to reveal the potential mechanism of acetylated polysaccharides. Acetyls with different contents and substitution sites could change the molecular weight, monosaccharide composition and spatial architecture of polysaccharides, resulting in differences among properties such as water solubility, emulsification and crystallinity. Coupled with acetyls, polysaccharides have increased antioxidant, immunomodulatory, antitumor, and pro-prebiotic capacities. In addition, their possible applications have also been discussed in green food materials, bioactive ingredient carriers and functional food products, indicating that acetylated polysaccharides hold a clear vision in food health and industrial development.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhijun Wang
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chen Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Xie L, Wang G, Xie J, Chen X, Xie J, Shi X, Huang Z. Enhancement of functional activity and biosynthesis of exopolysaccharides in Monascus purpureus by genistein treatments. Curr Res Food Sci 2022; 5:2228-2242. [PMID: 36425595 PMCID: PMC9678808 DOI: 10.1016/j.crfs.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The exopolysaccharides (EPS) produced by the edible medicinal fungus Monascus purpureus (EMP) become the center of growing interest due to their techno-functional properties and their numerous applications in the food industries; however, the low EPS yields limit its application. In this study, the effect of genistein supplementation on the production, rheological and antioxidant properties of EPS by M. purpureus and its biosynthesis mechanism were explored. The results indicated that the addition of genistein (3 g/L) generated a 110% and 59% increase in the maximum mycelial biomass and EPS yield, respectively. The genistein supplementation group (G-EMP) had higher molar percentages of Xyl and Man, and significantly decreased molecule weight and particle size of EPS, which resulted in stronger antioxidant effect and cell growth promotion. Rheological analysis showed that both EMP and G-EMP demonstrated pseudoplastic fluid behavior and G-EMP exhibited strong gel-like elastic behavior (G' > G"). Furthermore, genistein not only facilitated the production of EPS by regulating cell membrane permeability, enhancing cellular respiratory metabolism and monosaccharide precursor synthesis pathways, and enhancing antioxidant enzyme activity to reduce oxidative stress damage, but also affected the composition of the monosaccharides by increasing enzyme activity in the underlying synthesis pathways. These findings expand the application of M. purpureus resources and provide a paradigm for future study of the structural and functional characteristics of EPS. Genistein (3 g/L) significantly stimulate yield of biomass and exopolysaccharides (EPS) from M. purpureus. The physicochemical and rheological properties of EPS were significantly changed. Their antioxidant and cytoprotective effect were compared. A possible mechanism for the response of genistein to increase EPS yield is proposed.
Collapse
|
29
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
30
|
Xie L, Xie J, Chen X, Tao X, Xie J, Shi X, Huang Z. Comparative transcriptome analysis of Monascus purpureus at different fermentation times revealed candidate genes involved in exopolysaccharide biosynthesis. Food Res Int 2022; 160:111700. [PMID: 36076402 DOI: 10.1016/j.foodres.2022.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Exopolysaccharides (EPS), metabolites of the medicinal edible fungus Monascus purpureus, have antioxidant, immunomodulatory, and anti-inflammatory effects. However, the biosynthetic mechanism of EPS from M. purpureus is still unclear, which hinders its utilization. In this study, the fermentation conditions of M. purpureus were optimized and comparative transcriptomic analysis was performed to understand the mechanisms and effects of fermentation on EPS synthesis. The optimal medium composition was 40 g/L mannose, 4 g/L yeast powder, 1 g/L MgSO4·7H2O, 0.8 g/L KH2PO4, 1.6 g/L K2HPO4·3H2O, and 2 mL/L Tween 80, and the optimal cultivation conditions were an inoculum of 7 %, culture temperature 30 °C, initial pH 6.0, and 180 rpm for 4 d. A total of 8095 unigenes were obtained, and 17 key enzymes for EPS synthesis were identified. Interestingly, 12 carbohydrate metabolism subcategories were enriched in the group with 4 days of fermentation compared to 2 days, with most of the differentially expressed genes (DEGs) being upregulated, but only nine carbohydrate metabolism subcategories were enriched with longer fermentation time, with all DEGs being downregulated. This study provides a theoretical basis for enhancing the EPS content and reveals the dynamics of EPS synthesis in M. purpureus, providing important targets for future EPS molecular modifications and gene knockdown studies.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - XianXiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
31
|
Song L, Wang J, Gong M, Zhang Y, Li Y, Wu X, Qin L, Duan Y. Detoxification technology and mechanism of processing with Angelicae sinensis radix in reducing the hepatotoxicity induced by rhizoma Dioscoreae bulbiferae in vivo. Front Pharmacol 2022; 13:984858. [PMID: 36249801 PMCID: PMC9554241 DOI: 10.3389/fphar.2022.984858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizoma Dioscoreae Bulbiferae (RDB) was effective on relieving cough and expectorant but accompanied by severe toxicity, especially in hepatotoxicity. A previous study found that processing with Angelicae Sinensis Radix (ASR) reduced RDB-induced hepatotoxicity. However, up to now, the optimized processing process of ASR-processed RDB has not been explored or optimized, and the detoxification mechanism is still unknown. This study evaluated the detoxification technology and possible mechanism of processing with ASR on RDB-induced hepatotoxicity. The optimized processing process of ASR-processed RDB was optimized by the content of diosbulbin B (DB), the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histopathological analysis. The processing detoxification mechanism was evaluated by detecting the antioxidant levels of nuclear factor E2 related factor 2 (Nrf2) and its downstream heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), glutamylcysteine ligase catalytic subunit (GCLM), and the levels of downstream antioxidant factors of Nrf2. Besides, the antitussive and expectorant efficacy of RDB was also investigated. This work found that processing with ASR attenuated RDB-induced hepatotoxicity, which can be verified by reducing the levels of ALT, AST, and ALP, and reversing the pathological changes of liver histomorphology. And the optimized processing process of ASR-processed RDB is “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min.” Further results corroborated that the intervention of processed products of ASR-processed RDB remarkably upregulated the Nrf2/HO-1/NQO1/GCLM protein expression levels in liver, and conserved antitussive and expectorant efficacy of RDB. The above findings comprehensively indicated that the optimized processing process of ASR-processed RDB was “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min,” and the processing detoxification mechanism involved enhancing the level of Nrf2-mediated antioxidant defense in liver as a key target organ.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junming Wang,
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yaqian Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
32
|
Zhang X, Liu T, Wang X, Zhou L, Qi J, An S. Structural characterization, antioxidant activity and anti-inflammatory of the phosphorylated polysaccharide from Pholiota nameko. Front Nutr 2022; 9:976552. [PMID: 36118783 PMCID: PMC9471013 DOI: 10.3389/fnut.2022.976552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel polysaccharide (SPN) was extracted by high-temperature pressure method and purified by a DEAE-52 column and a Sephadx G-100 gel column. PPN was obtained after phosphorylation of SPN. The differences of structural features, antioxidant activity, and anti-inflammatory effect of the two polysaccharides were investigated by chemical methods and RAW 264.7 cell model. SPN (Mw = 15.8 kDa) and PPN (Mw = 27.7 kDa) are an acidic polysaccharide with β-pyranose configuration, mainly containing rhamnose, mannose, glucose, arabinose, and galacose. FI-IR, NMR, and SEM spectra showed phosphorylation of SPN changed its structure. In methylation analysis, the major chains of SPN and PPN were 1,4-linked Glcp, 1,6-linked Galp, 1,2-linked Rhap, and 1.6-linked Manp with terminals of t-linked Glcp, t-linked Araf. The side chain of SPN was 1,4,6-linked Galp, 1,2,5-linked Araf, while the side chain of PPN was 1,4,6-linked Galp, 1,2,4-linked Glcp. In antioxidant activity experiments, the free radical scavenging rate of PPN was stronger than that of SPN. Also, PPN always has better anti-inflammatory on RAW 264.7 cells induced by LPS than that of SPN in same concentration, and it plays an anti-inflammatory role by inhibiting PI3K/AKT/mTOR pathway. The results indicated polysaccharide could significantly improve its antioxidant and anti-inflammatory function after phosphorylation. This study provides a potentially antioxidant and anti-inflammatory health food and drug.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Tingting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Lanying Zhou
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Ji Qi
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Siyu An
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| |
Collapse
|
33
|
Gao L, Zhao X, Liu M, Zhao X. Characterization and Antibacterial Activities of Carboxymethylated Paramylon from Euglena gracilis. Polymers (Basel) 2022; 14:polym14153022. [PMID: 35893986 PMCID: PMC9332863 DOI: 10.3390/polym14153022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Paramylon from Euglena gracilis (EGP) is a polymeric polysaccharide composed of linear β-1,3 glucan. EGP has been proved to have antibacterial activity, but its effect is weak due to its water insolubility and high crystallinity. In order to change this deficiency, this experiment carried out carboxymethylated modification of EGP. Three carboxymethylated derivatives, C-EGP1, C-EGP2, and C-EGP3, with a degree of substitution (DS) of 0.14, 0.55, and 0.78, respectively, were synthesized by varying reaction conditions, such as the mass of chloroacetic acid and temperature. Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) analysis confirmed the success of the carboxymethylated modification. The Congo red (CR) experiment, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetry (TG) were used to study the conformation, surface morphology, crystalline nature, and thermostability of the carboxymethylated EGP. The results showed that carboxymethylation did not change the triple helix structure of the EGP, but that the fundamental particles’ surface morphology was destroyed, and the crystallization area and thermal stability decreased obviously. In addition, the water solubility test and antibacterial experiment showed that the water solubility and antibacterial activity of the EGP after carboxymethylation were obviously improved, and that the water solubility of C-EGP1, C-EGP2, and C-EGP3 increased by 53.31%, 75.52%, and 80.96% respectively. The antibacterial test indicated that C-EGP3 had the best effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with minimum inhibitory concentration (MIC) values of 12.50 mg/mL and 6.25 mg/mL. The diameters of the inhibition zone of C-EGP3 on E. coli and S. aureus were 11.24 ± 0.15 mm and 12.05 ± 0.09 mm, and the antibacterial rate increased by 41.33% and 43.67%.
Collapse
|
34
|
Zhao J, Wang Z, Xu D, Sun X. Advances on Cyclocarya paliurus polyphenols: Extraction, structures, bioactivities and future perspectives. Food Chem 2022; 396:133667. [PMID: 35853374 DOI: 10.1016/j.foodchem.2022.133667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Cyclocaryapaliurus (C. paliurus) is an edible and medicinal plant, distributed in southern China. As a kind of new food raw material, the leaves of C. paliurus are processed as tea products in daily life. C. paliurus is recognized as a good source to polyphenols, showing excellent bioactivities, which has attracted more and more attention. Polyphenols are important functional bioactive components in C. paliurus. C. paliurus polyphenols perform nutritional functions in anti-diabetes, anti-hyperlipidemic, anti-obesity, anti-oxidant, and other activities. In this review, we summarize the research progress of extraction technologies, structural characteristics, and bioactivities of C. paliurus polyphenols. Other potential functions of C. paliurus polyphenols are prospected. This review provides a reference for further research and applications of C. paliurus polyphenols in a field of functional food and medicines.
Collapse
Affiliation(s)
- Jinjin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zhangtie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Deping Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Liu X, Liu J, Liu C, Zhang X, Zhao Z, Xu J, Zhang X, Zhou K, Gao P, Li D. Selenium-containing polysaccharides isolated from Rosa laevigata Michx fruits exhibit excellent anti-oxidant and neuroprotective activity in vitro. Int J Biol Macromol 2022; 209:1222-1233. [PMID: 35472363 DOI: 10.1016/j.ijbiomac.2022.04.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
Selenium-containing polysaccharides have potential as an organic selenium dietary supplement, owing to their low toxicity, few side effects, and easy absorption attributes. In this study, we isolated two novel homogeneous selenium-containing polysaccharides from Rosa laevigata Michx fruits (Se-RLFPs). Results from primary structural analysis revealed that Se-RLFPs were α - pyranose, and were both composed of rhamnose, xylose, glucose with an average molecular weight of 24 and 16 KDa, respectively. Selenium contents in Se-RLFP-I and Se-RLFP-II were 16.49 μg/g and 21.61 μg/g, respectively. Results from analysis of antioxidant and neuroprotective activity of the polysaccharides revealed that Se-RLFPs had a radical scavenging effect. Specifically, they effectively protected SH-SY5Y cells from H2O2-induced damage by enhancing antioxidant enzyme activities (SOD), total antioxidant capacity (T-AOC) and suppressing malondialdehyde (MDA) levels. Western blots showed that the underlying mechanisms of action may be related to the Nrf2/HO-1 signaling pathway. Taken together, these results suggested that Se-RLFPs have potential as a pharmaceutical agent for treatment of neurodegenerative diseases (NDDs) or as a selenium-complementary ingredient in functional foods.
Collapse
Affiliation(s)
- Xuegui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Juan Liu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Changfeng Liu
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Xue Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Ziwei Zhao
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Jianing Xu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Xingyue Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Ke Zhou
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Pingyi Gao
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China; College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China.
| | - Danqi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China; Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| |
Collapse
|
36
|
Zheng Q, Chen J, Yuan Y, Zhang X, Li L, Zhai Y, Gong X, Li B. Structural characterization, antioxidant, and anti-inflammatory activity of polysaccharides from Plumula Nelumbinis. Int J Biol Macromol 2022; 212:111-122. [PMID: 35594937 DOI: 10.1016/j.ijbiomac.2022.05.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/18/2022]
Abstract
A polysaccharide from Plumula Nelumbinis (PNP), was isolated and purified. PNP had a molecular weight of 450 kDa and consisted five monosaccharides, including rhamnose, galacturonic acid, xylose, galactose, and arabinose. The methylation and nuclear magnetic resonance (NMR) analysis revealed that the main glycosidic linkage types of PNP were →5)-α-L-Araf-(1→, →3)-β-D-Galp-(1→, β-D-Xylp-(→1, →3,4)-β-D-Rhap-(1→, →4)-β-D-GalpA-(1→. In the range of 25-1200 μg/mL, PNP had no cytotoxicity to RAW264.7 cells. PNP could protect RAW264.7 cell from oxidative damage by reducing the production of ROS and MDA and the secretion of LDH, enhancing the activity of SOD, CAT, and GSH-Px, and increasing the content of GSH. Anti-inflammatory activity experiments showed that PNP inhibited the expression of NO, TNF-α, INF-γ, IL-1β, and IL-6. PNP could inhibit the activation of MAPK/NF-κB cell pathways. PNP could be used as a potential natural antioxidant and anti-inflammatory substance in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan, 523808, China
| | - Yongzhen Zhai
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xiao Gong
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
37
|
A Novel Selenium Polysaccharide Alleviates the Manganese (Mn)-Induced Toxicity in Hep G2 Cells and Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23084097. [PMID: 35456914 PMCID: PMC9029073 DOI: 10.3390/ijms23084097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is now known to have a variety of toxicities, particularly when exposed to it in the workplace. However, there are still ineffective methods for reducing Mn's hazardous effects. In this study, a new selenium polysaccharide (Se-PCS) was developed from the shell of Camellia oleifera to reduce Mn toxicity in vitro and in vivo. The results revealed that Se-PCS may boost cell survival in Hep G2 cells exposed to Mn and activate antioxidant enzyme activity, lowering ROS and cell apoptosis. Furthermore, after being treated with Se-PCS, Caenorhabditis elegans survived longer under Mn stress. daf-16, a tolerant critical gene, was turned on. Moreover, the antioxidant system was enhanced as the increase in strong antioxidant enzyme activity and high expression of the sod-3, ctl-2, and gst-1 genes. A variety of mutations were also used to confirm that Se-PCS downregulated the insulin signaling pathway. These findings showed that Se-PCS protected Hep G2 cells and C. elegans via the insulin/IGF-1 signaling pathway and that it could be developed into a promising medication to treat Mn toxicity.
Collapse
|
38
|
Li Z, Xiao W, Xie J, Chen Y, Yu Q, Zhang W, Shen M. Isolation, Characterization and Antioxidant Activity of Yam Polysaccharides. Foods 2022; 11:foods11060800. [PMID: 35327223 PMCID: PMC8954450 DOI: 10.3390/foods11060800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to characterize the structure of Chinese yam (Dioscoreae Rhizoma) polysaccharide (CYP) and to investigate its protective effect against H2O2-induced oxidative damage in IEC-6 cells. The chemical composition and structural characteristics of the samples were analyzed by chemical and instrumental methods, including high-performance gel permeation chromatography, high-performance anion-exchange chromatography (HPAEC), Fourier transformed infrared (FT-IR), ultraviolet (UV), and scanning electron microscopy (SEM). Antioxidant activity was evaluated by establishing a cellular model of oxidative damage. The molecular weight of CYP was 20.89 kDa. Analysis of the monosaccharide composition revealed that CYP was primarily comprised of galactose (Gal), glucose (Glu), and galacturonic acid (GalA), and the ratio between them was 28.57:11.28:37.59. Pretreatment with CYP was able to improve cell viability, superoxide dismutase (SOD) activity, and reduce intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content after H2O2 injury. CYP also attenuated oxidative damage in cells through the mitogen-activated protein kinase (MAPK) signaling pathway. This study showed that CYP was an acidic heteropolysaccharide with a good protective effect against oxidative damage, and it thus has good prospects in food and biopharmaceutical industries.
Collapse
|
39
|
Xie L, Huang Z, Meng H, Shi X, Xie J. Immunomodulation effect of polysaccharides from liquid fermentation of Monascus purpureus 40269 via membrane TLR-4 to activate the MAPK and NF-κB signaling pathways. Int J Biol Macromol 2022; 201:480-491. [DOI: 10.1016/j.ijbiomac.2022.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
|
40
|
Xie L, Huang Z, Meng H, Fan Z, Shi X, Xie J. Role of genistein on the yield, structure and immunomodulatory activity of Monascus exopolysaccharides. Food Funct 2022; 13:1393-1407. [PMID: 35045151 DOI: 10.1039/d1fo03621a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Manipulating the structures, physicochemical properties, and monosaccharide compositions of exopolysaccharides (EPS) isolated from microorganisms has been reported to enhance their biological activities. Hence, the aim of this work was to examine the effects of genistein addition during fermentation on the amount, physicochemical properties, and immunomodulatory activity of EPS secreted by M. purpureus. Results showed that genistein addition significantly increased M. purpureus biomass and EPS yield to 2.42 g L-1 and 6.08 g L-1, respectively, and affected the physicochemical properties and structures of EPS. Furthermore, EPS produced by genistein-treated M. purpureus (G-EMP) improved the immunomodulatory activity of RAW264.7 macrophages by increasing the secretion of nitric oxide and cytokines. Moreover, phospho-Jun N-terminal kinase (p-JNK), phospho-extracellular regulated protein kinase (p-ERK), phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) phospho-p65 (p65) proteins were remarkably upregulated by G-EMP stimulation, blocking Toll-like receptor 4 (TLR4) that dramatically reduced the pinocytic and phagocytic capacities. Overall, these findings provide potential rationales for the application of genistein in improving the EPS yield of M. purpureus.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China. .,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China. .,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hui Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China. .,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China. .,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China. .,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
41
|
Xie L, Huang Z, Qin L, Yu Q, Chen Y, Zhu H, Xie J. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. Int J Biol Macromol 2022; 204:103-115. [PMID: 35144010 DOI: 10.1016/j.ijbiomac.2022.01.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
The Cyclocarya paliurus polysaccharide (CP) was chemically modified to produce sulfated derivatives (S-CP) and carboxymethylated derivatives (CM-CP). Subsequently, the antioxidant activity, cytoprotective effect and antitumor activity of these derivatives were investigated to establish the relationship between their structure and functional activity. The results found that chemical modifications resulted in remarkable variations in the chemical compositions and apparent structures of CP. S-CP with the highest amount of glucose had the strongest antioxidant capacity to scavenge DPPH• and HO•, but CM-CP was lower than CP in terms of HO• scavenging. More importantly, S-CP and CM-CP more effectively protected RAW264.7 from H2O2-induced damage compared to CP by reducing the secretion of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), enhancing phagocytosis and superoxide dismutase (SOD) levels, and suppressing abnormal apoptosis. Further experiments showed that the anti-apoptotic effect of S-CP and CM-CP was in intimate association with down-regulation of Caspase-9/3 activities and alleviation of cell cycle arrest in the S phase. In addition, S-CP and CM-CP decreased the cell viability of tumor cells. These findings suggest that the type of functional group plays important roles in the biological function of the derivatives and provide a theoretical basis for the development of novel natural anti-oxidants or low-toxicity anti-tumor drugs.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Haibing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
42
|
Li X, Zhou P, Luo Z, Feng R, Wang L. Hohenbuehelia serotina polysaccharides self-assembled nanoparticles for delivery of quercetin and their anti-proliferative activities during gastrointestinal digestion in vitro. Int J Biol Macromol 2022; 203:244-255. [PMID: 35093441 DOI: 10.1016/j.ijbiomac.2022.01.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
In this study, the self-assembled nanoparticles based on Hohenbuehelia serotina polysaccharides (QC-HSP NPs) were fabricated to encapsulate quercetin for improving its bioavailability. The structural characteristics, physicochemical properties as well as the cytotoxicity activities of QC-HSP NPs during gastrointestinal digestion in vitro were respectively investigated. The results showed that QC-HSP NPs possessed the spherical and smooth surface morphology, with the average particle size of 360 nm and zeta potential of -38.8 mV. Moreover, QC-HSP NPs had excellent physiochemical stabilities, and presented sustained-release characteristics during gastrointestinal digestion in vitro. Compared with undigested ones, QC-HSP NPs after gastrointestinal digestion exhibited the more significant anti-proliferative activity on HeLa cells through accumulation of intracellular ROS, arrest of cell cycle at G2/M phase by regulation of cyclin B1, CDK1, p53 and p21 and induction of apoptosis by ER apoptosis pathway. This study provides a new strategy for designing quercetin-loaded nanoparticles based on natural polysaccharides to improve the bioavailability of quercetin.
Collapse
Affiliation(s)
- Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Skate Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Peng Zhou
- Skate Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhen Luo
- Skate Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ru Feng
- Skate Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lu Wang
- Skate Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
43
|
Purification, characterization and antioxidant activity of selenium-containing polysaccharides from pennycress (Thlaspi arvense L.). Carbohydr Res 2022; 512:108498. [DOI: 10.1016/j.carres.2021.108498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
|
44
|
Ahmad MM. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
45
|
Li F, Lei H, Xu H. Influences of subcritical water extraction on the characterization and biological properties of polysaccharides from
Morchella sextelata. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Feng Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Hongjie Lei
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Huaide Xu
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
46
|
Zhou S, Huang G. Preparation, structure and activity of polysaccharide phosphate esters. Biomed Pharmacother 2021; 144:112332. [PMID: 34673422 DOI: 10.1016/j.biopha.2021.112332] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022] Open
Abstract
Polysaccharides have anti-virus, anti-cancer, anti-oxidation, immune regulation, hypoglycemia and other biological activities. Because of their safety, fewer side effects and other advantages, polysaccharides are considered as ideal raw materials in food and drugs. The biological activity of polysaccharides can be improved by structural modification (such as sulfation, carboxymethylation, phosphorylation, etc.), and even new biological activity can be generated. In this review, the recent advances in the phosphorylation of polysaccharides were reviewed from the perspectives of modification methods, structures, biological activities and structure-activity relationships.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
47
|
Xia S, Zhai Y, Wang X, Fan Q, Dong X, Chen M, Han T. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int J Biol Macromol 2021; 184:946-954. [PMID: 34182000 DOI: 10.1016/j.ijbiomac.2021.06.149] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Polysaccharides are macromolecules obtained from a wide range of sources and are known to have diverse biological activities. The biological activities of polysaccharides depend on their structure and physicochemical properties, including water solubility, monosaccharide composition, degree of branching, molecular structure, and molecular weight. Phosphorylation is a commonly used chemical modification method that improves the physicochemical properties of native polysaccharides, thus enhancing their biological activity, or even imparting novel biological activity. Therefore, phosphorylated polysaccharides have attracted increasing attention owing to their antioxidant, antitumor, antiviral, immunomodulatory, and hepatoprotective effects. In this review, we have discussed recent advances in the phosphorylation of polysaccharides, and the methods used for phosphorylation, structural characterization, and determination of biological activities, to provide a theoretical basis for the use of polysaccharides. The structure-activity relationship of phosphorylated polysaccharides and their use in the food and pharmaceutical industries needs to be further studied.
Collapse
Affiliation(s)
- Shunli Xia
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Yongcong Zhai
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xue Wang
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Qirui Fan
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xiaoyi Dong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Mei Chen
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Tao Han
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China; Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
48
|
Characterization of soy protein isolate/Flammulina velutipes polysaccharide hydrogel and its immunostimulatory effects on RAW264.7 cells. Food Chem Toxicol 2021; 151:112126. [PMID: 33722601 DOI: 10.1016/j.fct.2021.112126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022]
Abstract
Soy protein isolate (SPI) is a nutritional commercial product, while the poor solubility and gelling restricts its applications for functional foods. To surmount the challenge presented by this poor solubility, the gelling polysaccharide shows potential in ameliorating SPI. In this study, SPI/Flammulina velutipes polysaccharide (FVP) hydrogels were prepared under four mixing ratios (32:1, 20:1,15:1 and 10:1, w/w) at both pH6.5 and pH3.5, respectively. The stability of hydrogels and its immunostimulatory impact on RAW264.7 cells were assessed. Initial results revealed that water holding capacity increased when increasing the mixing ratios, likely to be the results of enhanced electrostatic interaction between SPI and FVP. The addition of FVP contributed to the improved swelling ratio and lowered the degradation ratio. Such structure feature was shown to be favorable for hydrogels to culture cells. More importantly, SPI/FVP hydrogels demonstrated no cytotoxic effect on cell metabolic activity. The culture of SPI/FVP hydrogels enhanced the immunostimulatory capacity in RAW264.7 cells by increasing phagocytosis and inducing the production of pro-inflammatory cytokines. The performances of the hydrogels made at pH3.5 were superior to those prepared at pH6.5. Our results suggested SPI/FVP hydrogels may provide application potential for the development of functional foods.
Collapse
|
49
|
Niu LL, Wu YR, Liu HP, Wang Q, Li MY, Jia Q. Optimization of extraction process, characterization and antioxidant activities of polysaccharide from Leucopaxillus giganteus. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00865-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Wang H, Tang C, Gao Z, Huang Y, Zhang B, Wei J, Zhao L, Tong X. Potential Role of Natural Plant Medicine Cyclocarya paliurus in the Treatment of Type 2 Diabetes Mellitus. J Diabetes Res 2021; 2021:1655336. [PMID: 34988228 PMCID: PMC8723876 DOI: 10.1155/2021/1655336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease that has become increasingly prevalent worldwide. It poses a serious threat to human health and places a considerable burden on global social medical work. To meet the increasing demand for T2DM treatment, research on hypoglycemic drugs is rapidly developing. Cyclocarya paliurus (Batal.) Iljinskaja is a medicinal plant that grows in China. The leaves of C. paliurus contain polysaccharides, triterpenoids, and other chemical components, which have numerous health benefits. Therefore, the use of this plant has attracted extensive attention in the medical community. Over the past few decades, contemporary pharmacological studies on C. paliurus extracts have revealed that it has abundant biological activities. Multiple in vitro and in vivo experiments have shown that C. paliurus extracts are safe and can play a therapeutic role in T2DM through anti-inflammatory and antioxidation activities, and intestinal flora regulation. Its efficacy is closely related to many factors, such as extraction, separation, purification, and modification. Based on summarizing the existing extraction methods, this article further reviews the potential mechanism of C. paliurus extracts in T2DM treatment, and we aimed to provide a reference for future research on natural plant medicine for the prevention and treatment of T2DM and its related complications.
Collapse
Affiliation(s)
- Han Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, China
| | - Zezheng Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Yishan Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Boxun Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Jiahua Wei
- Changchun University of Chinese Medicine, China
| | - Linhua Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|