1
|
Yang W, Wang Y, Han D, Tang W, Sun L. Recent advances in application of computer-aided drug design in anti-COVID-19 Virials Drug Discovery. Biomed Pharmacother 2024; 173:116423. [PMID: 38493593 DOI: 10.1016/j.biopha.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a global pandemic epidemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which poses a serious threat to human health worldwide and results in significant economic losses. With the continuous emergence of new virus strains, small molecule drugs remain the most effective treatment for COVID-19. The traditional drug development process usually requires several years; however, the development of computer-aided drug design (CADD) offers the opportunity to develop innovative drugs quickly and efficiently. The literature review describes the general process of CADD, the viral proteins that play essential roles in the life cycle of SARS-CoV-2 and can serve as therapeutic targets, and examples of drug screening of viral target proteins by applying CADD methods. Finally, the potential of CADD in COVID-19 therapy, the deficiency, and the possible future development direction are discussed.
Collapse
Affiliation(s)
- Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Ye Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dongfeng Han
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Papageorgiou L, Papakonstantinou E, Diakou I, Pierouli K, Dragoumani K, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Semantic and Population Analysis of the Genetic Targets Related to COVID-19 and Its Association with Genes and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:59-78. [PMID: 37525033 DOI: 10.1007/978-3-031-31978-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
SARS-CoV-2 is a coronavirus responsible for one of the most serious, modern worldwide pandemics, with lasting and multifaceted effects. By late 2021, SARS-CoV-2 has infected more than 180 million people and has killed more than 3 million. The virus gains entrance to human cells through binding to ACE2 via its surface spike protein and causes a complex disease of the respiratory system, termed COVID-19. Vaccination efforts are being made to hinder the viral spread, and therapeutics are currently under development. Toward this goal, scientific attention is shifting toward variants and SNPs that affect factors of the disease such as susceptibility and severity. This genomic grammar, tightly related to the dark part of our genome, can be explored through the use of modern methods such as natural language processing. We present a semantic analysis of SARS-CoV-2-related publications, which yielded a repertoire of SNPs, genes, and disease ontologies. Population data from the 1000 Genomes Project were subsequently integrated into the pipeline. Data mining approaches of this scale have the potential to elucidate the complex interaction between COVID-19 pathogenesis and host genetic variation; the resulting knowledge can facilitate the management of high-risk groups and aid the efforts toward precision medicine.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece.
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
3
|
Patil SM, Martiz RM, Ramu R, Shirahatti PS, Prakash A, Chandra S J, Ranganatha VL. In silico identification of novel benzophenone-coumarin derivatives as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors. J Biomol Struct Dyn 2022; 40:13032-13048. [PMID: 34632942 DOI: 10.1080/07391102.2021.1978322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we propose our novel benzophenone-coumarin derivatives (BCDs) as potent inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 virus, one of the key targets that are involved in the viral genome replication. We aim to evaluate the in silico antiviral potential of BCDs against this protein target, which involves molecular docking simulations, druglikeliness and pharmacokinetic evaluations, PASS analysis, molecular dynamics simulations, and computing binding free energy. Out of all the BCDs screened through these parameters, BCD-8 was found to be the most efficient and potent inhibitor of SARS-CoV-2 RdRp. During molecular docking simulation, BCD-8 showed an extensive molecular interaction in comparison with that of the standard control used, remdesivir. The druglikeliness and pharmacokinetic analyses also proved the efficiency of BCD-8 as an effective drug without adverse effects. Further, pharmacological potential analysis through PASS depicted the antiviral property of BCD-8. With these findings, we performed molecular dynamics simulations, where BCD-8 edged out remdesivir with its exemplary stable interaction with SARS-CoV-2 RdRp. Furthermore, binding free energy of both BCD-8 and remdesivir was calculated, where BCD-8 showed a lower binding energy and standard deviations in comparison with that of remdesivir. Moreover, being a non-nucleoside analogue, BCD-8 can be used effectively against SARS-CoV-2, whereas nucleoside analogues like remdesivir may become non-functional or less functional due to exonuclease activity of nsp14 of the virus. Therefore, we propose BCD-8 as a SARS-CoV-2 RdRp inhibitor, showing higher predicted efficiency than remdesivir in all the in silico experiments conducted.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shashank M Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma Mary Martiz
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Ashwini Prakash
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jagadeep Chandra S
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - V Lakshmi Ranganatha
- Department of Chemistry, The National Institute of Engineering, Mysuru, Karnataka, India
| |
Collapse
|
4
|
Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Novel computational pipelines in antiviral structure‑based drug design (Review). Biomed Rep 2022; 17:97. [PMID: 36382260 PMCID: PMC9634337 DOI: 10.3892/br.2022.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Viral infections constitute a fundamental and continuous challenge for the global scientific and medical community, as highlighted by the ongoing COVID-19 pandemic. In combination with prophylactic vaccines, the development of safe and effective antiviral drugs remains a pressing need for the effective management of rare and common pathogenic viruses. The design of potent antivirals can be informed by the study of the three-dimensional structure of viral protein targets. Structure-based design of antivirals in silico provides a solution to the arduous and costly process of conventional drug development pipelines. Furthermore, rapid advances in high-throughput computing, along with the growth of available biomolecular and biochemical data, enable the development of novel computational pipelines in the hunt of antivirals. The incorporation of modern methods, such as deep-learning and artificial intelligence, has the potential to revolutionize the structure-based design and repurposing of antiviral compounds, with minimal side effects and high efficacy. The present review aims to provide an outline of both traditional computational drug design and emerging, high-level computing strategies.
Collapse
Affiliation(s)
- Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of The Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Yucel K, Fuat Gurbuz A. Hypoxia-inducible factor-1α and ischemia-modified albumin levels in intensive care COVID-19 Patients. Horm Mol Biol Clin Investig 2022; 43:415-420. [PMID: 35851469 DOI: 10.1515/hmbci-2022-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In this study, it was aimed to evaluate the hypoxia-inducible factor-1α (HIF-1α) and ischemia-modified albumin (IMA) levels of patients diagnosed with COVID-19 in the intensive care unit (ICU) and healthy controls. To our knowledge, this is the first study investigate HIF-1α and IMA levels in COVID-19 patients in ICUs and comparing them with a healthy control group. For this reason, our study is original and will contribute to the literature. METHODS A total of 70 intensive care patients diagnosed with COVID-19, and 72 healthy controls were included in the study. RESULTS When we compared the patient and healthy control group; there were no statistically significant differences between the groups in terms of age and gender (p>0.05). No exitus was observed in the patient group. We found weak correlation between HIF-1α and IMA (r: 0.320). However, there were statistically significant differences in HIF-1α and IMA levels in the patient group. The receiver operating characteristic (ROC) curve demonstrated an area under curve (AUC) value of 0.651 for HIF-1α and 0.937 for IMA. CONCLUSIONS The HIF-1α and IMA levels were significantly higher among COVID-19 patients in ICU compared with healthy controls. HIF-1α and IMA levels can be used as reliable markers for the prognosis of COVID-19.
Collapse
Affiliation(s)
- Kamile Yucel
- Department of Medical Biochemistry, KTO Karatay University, Faculty of Medicine, Konya, Turkey
| | - Ali Fuat Gurbuz
- Department of Internal Medicine, Health Sciences University, Van Training and Research Hospital, Van, Turkey
| |
Collapse
|
6
|
SARS-CoV-2 main protease (3CL pro) interaction with acyclovir antiviral drug/methyl-β-cyclodextrin complex: Physiochemical characterization and molecular docking. J Mol Liq 2022; 366:120292. [PMID: 36101854 PMCID: PMC9458544 DOI: 10.1016/j.molliq.2022.120292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/31/2023]
Abstract
During the current outbreak of the novel coronavirus disease 2019 (COVID-19), researchers have examined several antiviral drugs with the potential to inhibit the proliferation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antiviral drug acyclovir (AVR), which is used to treat COVID-19, in complex with methyl-β-cyclodextrin (Mβ-CD) was examined in the solution and solid phases. UV-visible and fluorescence spectroscopic analyses confirmed that the guest (AVR) was included inside the host (Mβ-CD) cavity. A solid inclusion complex of AVR was prepared by co-precipitation, physical mixing, kneading, and bath sonication methods at a 1:1 ratio of Mβ-CD:AVR. The prepared Mβ-CD:AVR inclusion complex was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analysis. Phase solubility studies indicated the Mβ-CD:AVR inclusion complex exhibited a higher stability constant and linear enhancement in AVR solubility with increasing Mβ-CD concentrations. In silico analysis of the Mβ-CD/AVR inclusion complex confirmed that AVR drugs show potential as inhibitors of SARS-CoV-2 3C-like protease (3CLpro) receptors. Results obtained using the PatchDock and FireDock servers indicated that the most favorable docking ligand was Mβ-CD:AVR, which interacted with SARS-CoV-2 (3CLPro) protease inhibitors with high geometric shape complementarity scores (2522 and 5872) and atomic contact energy (-313.77 and -214.70 kcal mol-1). Our results suggest that the Mβ-CD/AVR inclusion complex inhibits the main protease of SARS-CoV-2, although further wet-lab experiments are needed to verify these findings.
Collapse
|
7
|
Tolbatov I, Storchi L, Marrone A. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Inorg Chem 2022; 61:15664-15677. [PMID: 36125417 PMCID: PMC9514052 DOI: 10.1021/acs.inorgchem.2c02685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/29/2022]
Abstract
The identification of novel therapeutics against the pandemic SARS-CoV-2 infection is an indispensable new address of current scientific research. In the search for anti-SARS-CoV-2 agents as alternatives to the vaccine or immune therapeutics whose efficacy naturally degrades with the occurrence of new variants, the salts of Bi3+ have been found to decrease the activity of the Zn2+-dependent non-structural protein 13 (nsp13) helicase, a key component of the SARS-CoV-2 molecular tool kit. Here, we present a multilevel computational investigation based on the articulation of DFT calculations, classical MD simulations, and MIF analyses, focused on the examination of the effects of Bi3+/Zn2+ exchange on the structure and molecular interaction features of the nsp13 protein. Our calculations confirmed that Bi3+ ions can replace Zn2+ in the zinc-finger metal centers and cause slight but appreciable structural modifications in the zinc-binding domain of nsp13. Nevertheless, by employing an in-house-developed ATOMIF tool, we evidenced that such a Bi3+/Zn2+ exchange may decrease the extension of a specific hydrophobic portion of nsp13, responsible for the interaction with the nsp12 protein. The present study provides for a detailed, atomistic insight into the potential anti-SARS-CoV-2 activity of Bi3+ and, more generally, evidences the hampering of the nsp13-nsp12 interaction as a plausible therapeutic strategy.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut
de Chimie Moleculaire de L’Université de Bourgogne (ICMUB),
Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, Dijon 21000, France
| | - Loriano Storchi
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| | - Alessandro Marrone
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| |
Collapse
|
8
|
Shah S, Chaple D, Arora S, Yende S, Mehta C, Nayak U. Prospecting for Cressa cretica to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2. J Biomol Struct Dyn 2022; 40:5643-5652. [PMID: 33446077 PMCID: PMC7814567 DOI: 10.1080/07391102.2021.1872419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
Abstract
The severe acute respiratory syndrome COVID-19 declared as a global pandemic by the World Health Organization has become the present wellbeing worry to the whole world. There is an emergent need to search for possible medications. Cressa cretica is reported to show antitubercular, antibacterial and expectorant property. In this research, we aim to prospect the COVID-19 main protease crystal structure (Mpro; PDB ID: 6LU7) and the active chemical constituents from Cressa cretica in order to understand the structural basis of their interactions. We examined the binding potential of active constituents of Cressa cretica plant to immensely conserved protein Mpro of SARS-CoV-2 followed by exploration of the vast conformational space of protein-ligand complexes by molecular dynamics (MD) simulations. The results suggest the effectiveness of 3,5-Dicaffeoylquinic acid and Quercetin against standard drug Remdesivir. The active chemical constituents exhibited good docking scores, and interacts with binding site residues of Mpro by forming hydrogen bond and hydrophobic interactions. 3,5-Dicaffeoylquinic acid showed the best affinity towards Mpro receptor which is one of the target enzymes required by SARS CoV-2 virus for replication suggesting it to be a novel research molecule. The potential of the active chemical constituents from Cressa cretica against the SARS-CoV-2 virus has best been highlighted through this study. Therefore, these chemical entities can be further scrutinized and provides direction for further consideration for in-vivo and in-vitro validations for the treatment of covid-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sapan Shah
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Nagpur, Maharashtra, India
| | - Dinesh Chaple
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Nagpur, Maharashtra, India
| | - Sumit Arora
- Pharmacognosy and Phytochemistry Division, Gurunanak College of Pharmacy, Nagpur, Maharashtra, India
| | - Subhash Yende
- Pharmacology Dvision, Gurunanak College of Pharmacy, Nagpur, Mahrashtra, India
| | - Chetan Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences (MCOPS), MAHE, Manipal, Karnataka, India
| | - Usha Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences (MCOPS), MAHE, Manipal, Karnataka, India
| |
Collapse
|
9
|
Verma N, Badhe Y, Gupta R, Maparu AK, Rai B. Peptide mediated colorimetric detection of SARS-CoV-2 using gold nanoparticles: a molecular dynamics simulation study. J Mol Model 2022; 28:202. [PMID: 35750893 PMCID: PMC9244531 DOI: 10.1007/s00894-022-05184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/07/2022] [Indexed: 10/28/2022]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated the development of a rapid, simple yet selective naked-eye detection methodology that does not require any advanced instrumental techniques. In this study, we report our computational findings on the detection of SARS-CoV-2 using peptide- functionalized gold nanoparticles (GNPs). The peptide has been screened from angiotensin-converting enzyme 2 (ACE2) receptor situated on the surface of the host cell membrane which interacts with the spike protein of SARS-CoV-2, resulting entry of the virus into the host cell. As a result, the peptide-functionalized GNPs possess excellent affinity towards the spikes of SARS-CoV-2 and readily get aggregated once exposed to SARS-CoV-2 antigen or virus. The stability of the peptides on the surface of GNPs and their interaction with the spike protein of the virus have been investigated using coarse-grained molecular dynamic simulations. The potential of mean force calculation of spike protein confirmed strong binding between peptide and receptor-binding domain (RBD) of spike protein. Our in silico results demonstrate the potential of the peptide-functionalized GNPs in the development of simple and rapid colorimetric biosensors for clinical diagnosis.
Collapse
Affiliation(s)
- Nitu Verma
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Yogesh Badhe
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Rakesh Gupta
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India.
| | - Auhin Kumar Maparu
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India.
| | - Beena Rai
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India
| |
Collapse
|
10
|
Adibzadeh S, Amiri S, Nia GE, Taleghani MR, Bijarpas ZK, Maserat N, Maali A, Azad M, Behzad-Behbahani A. Therapeutic approaches and vaccination in fighting COVID-19 infections: A review. GENE REPORTS 2022; 27:101619. [PMID: 35530725 PMCID: PMC9066810 DOI: 10.1016/j.genrep.2022.101619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/03/2022] [Accepted: 04/30/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a remarkably contagious and pathogenic viral infection arising from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China. For the time being, COVID-19 is not treated with a specific therapy. The Food and Drug Administration (FDA) has approved Remdesivir as the first drug to treat COVID-19. However, many other therapeutic approaches are being investigated as possible treatments for COVID-19. As part of this review, we discussed the development of various drugs, their mechanism of action, and how they might be applied to different cases of COVID-19 patients. Furthermore, this review highlights an update in the emergence of new prophylactic or therapeutic vaccines against COVID-19. In addition to FDA or The World Health Organization (WHO) approved vaccines, we intended to incorporate the latest published data from phase III trials about different COVID-19 vaccines and provide clinical data released on the networks or peer-review journals.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ARDS, Acute respiratory distress syndrome
- Antiviral agents
- Arb, Arbidol
- COVID-19
- COVID-19, Coronavirus disease 2019
- ER, Endoplasmic reticulum
- ERGIC, Endoplasmic reticulum Golgi intermediate compartment
- FDA, Food and Drug Administration
- HIV, Human immunodeficiency virus
- MERS-CoV, The Middle East respiratory syndrome 20 coronavirus
- ORFs, Open reading frames
- Pandemics
- Pneumonia
- RBD, Receptor binding domain
- RTC, Replicase transcriptase complex
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome of coronavirus 2
- VLPs, Virus-like particles
- Vaccines
- WHO, World Health Organization
- WMT, Washed microbiota transplantation
- gRNA, Genomic RNA
- mAbs, Monoclonal antibodies
- sgRNA, Subgenomic RNA
Collapse
Affiliation(s)
- Setare Adibzadeh
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Amiri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Maryam Rezakhani Taleghani
- Biotechnology Research Institute of Industry and Environment, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Neda Maserat
- Department of Biology, Sistan and Balouchestan University, Zahedan, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Al-Hakeim HK, Al-Jassas HK, Morris G, Maes M. Increased ACE2, sRAGE, and Immune Activation, but Lowered Calcium and Magnesium in COVID-19. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:32-43. [PMID: 35307003 DOI: 10.2174/2772270816666220318103929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The characterization of new biomarkers that could help externally validate the diagnosis of COVID-19 and optimize treatments is extremely important. Many studies have established changes in immune-inflammatory and antibody levels, but few studies measured the soluble receptor for the advanced glycation end product (sRAGE), angiotensin-converting enzyme 2 (ACE2), calcium, and magnesium in COVID-19. OBJECTIVE To evaluate serum advanced glycation end-product receptor (sRAGE) and angiotensin converting enzyme (ACE)2 and peripheral oxygen saturation (SpO2) and chest CT scan abnormalities (CCTA) in COVID-19. METHODS sRAGE, ACE2, interleukin (IL)-6, IL-10, C-reactive protein (CRP), calcium, magnesium, and albumin were measured in 60 COVID-19 patients and 30 healthy controls. RESULTS COVID-19 is characterized by significantly increased IL-6, CRP, IL-10, sRAGE, ACE2, and lowered SpO2, albumin, magnesium, and calcium. COVID-19 with CCTAs showed lower SpO2 and albumin. SpO2 was significantly inversely correlated with IL-6, IL-10, CRP, sRAGE, and ACE2, and positively with albumin, magnesium, and calcium. Neural networks showed that a combination of calcium, IL-6, CRP, and sRAGE yielded an accuracy of 100% in detecting COVID-19 patients, with calcium being the most important predictor followed by IL-6 and CRP. Patients with positive IgG results showed a significant elevation in the serum level of IL-6, sRAGE, and ACE2 compared to the negatively IgG patient subgroup. CONCLUSION The results show that immune-inflammatory and RAGE pathways biomarkers may be used as an external validating criterion for the diagnosis of COVID-19. Those pathways coupled with lowered SpO2, calcium, and magnesium are drug targets that may help reduce the consequences of COVID-19.
Collapse
Affiliation(s)
| | | | - Gerwyn Morris
- School of Medicine, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia
| | - Michael Maes
- School of Medicine, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
De Marco I. Production of carrier/antioxidant particles by Supercritical Assisted Atomization as an adjuvant treatment of the CoVID-19 pathology. J Supercrit Fluids 2022; 186:105604. [PMID: 35431435 PMCID: PMC8994258 DOI: 10.1016/j.supflu.2022.105604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
13
|
Al-Jassas HK, Al-Hakeim HK, Maes M. Intersections between pneumonia, lowered oxygen saturation percentage and immune activation mediate depression, anxiety, and chronic fatigue syndrome-like symptoms due to COVID-19: A nomothetic network approach. J Affect Disord 2022; 297:233-245. [PMID: 34699853 PMCID: PMC8541833 DOI: 10.1016/j.jad.2021.10.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND COVID-19 is associated with neuropsychiatric symptoms including increased depressive, anxiety and chronic fatigue-syndrome (CFS)-like and physiosomatic symptoms. AIMS To delineate the associations between affective and CFS-like symptoms in COVID-19 and chest computed tomography scan anomalies (CCTAs), oxygen saturation (SpO2), interleukin (IL)-6, IL-10, C-Reactive Protein (CRP), albumin, calcium, magnesium, soluble angiotensin converting enzyme (ACE2) and soluble advanced glycation products (sRAGEs). METHOD The above biomarkers were assessed in 60 COVID-19 patients and 30 healthy controls who had measurements of the Hamilton Depression (HDRS) and Anxiety (HAM-A) and the Fibromyalgia and Chronic Fatigue (FF) Rating Scales. RESULTS Partial Least Squares-SEM analysis showed that reliable latent vectors could be extracted from a) key depressive and anxiety and physiosomatic symptoms (the physio-affective or PA-core), b) IL-6, IL-10, CRP, albumin, calcium, and sRAGEs (the immune response core); and c) different CCTAs (including ground glass opacities, consolidation, and crazy paving) and lowered SpO2% (lung lesions). PLS showed that 70.0% of the variance in the PA-core was explained by the regression on the immune response and lung lesions latent vectors. One common "infection-immune-inflammatory (III) core" underpins pneumonia-associated CCTAs, lowered SpO2 and immune activation, and this III core explains 70% of the variance in the PA core, and a relevant part of the variance in melancholia, insomnia, and neurocognitive symptoms. DISCUSSION Acute SARS-CoV-2 infection is accompanied by lung lesions and lowered SpO2 which may cause activated immune-inflammatory pathways, which mediate the effects of the former on the PA-core and other neuropsychiatric symptoms due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Michael Maes
- School of Medicine, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Papakonstantinou E, Dragoumani K, Efthimiadou A, Palaiogeorgou AM, Pierouli K, Mitsis T, Chrousos GP, Bacopoulou F, Vlachakis D. Haematological malignancies implications during the times of the COVID-19 pandemic. Oncol Lett 2021; 22:856. [PMID: 34777590 PMCID: PMC8581473 DOI: 10.3892/ol.2021.13117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic has complicated current healthcare services for cancer patients. Patients with haematological malignancies specifically seem vulnerable to SARS-CoV-2 infection due to their immunosuppressed status. The COVID-19 pandemic influences every step of the assessment and treatment of a haematological malignancy. Clinicians must adhere to strict policies to not spread the virus to their patients while they must also adjust their workflow for maximum productivity. These difficulties accentuate the ever-present need to improve the healthcare services for cancer patients. This improvement is needed not only to combat the problems that arose from the COVID-19 pandemic but also to establish a framework for the management of patients with haematological malignancies in potential future pandemics.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Aspasia Efthimiadou
- Hellenic Agricultural Organization-Demeter, Institute of Soil and Water Resources, Department of Soil Science of Athens, 14123 Lycovrisi, Greece
| | - Anastasia Marina Palaiogeorgou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Wang Z, Zhang J, Zhan J, Gao H. Screening out anti-inflammatory or anti-viral targets in Xuanfei Baidu Tang through a new technique of reverse finding target. Bioorg Chem 2021; 116:105274. [PMID: 34455301 PMCID: PMC8373853 DOI: 10.1016/j.bioorg.2021.105274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/25/2023]
Abstract
Traditional Chinese herbal compound prescription in Xuanfei Baidu Tang (XBT) has obvious effects in the treatment of COVID-19. However, its effective compounds and targets for the treatment of COVID-19 remain unclear. Computer-Aided Drug Design is used to virtually screen out the anti-inflammatory or anti-viral compounds in XBT, and predict the potential targets by Discovery Studio 2020. Then, we searched for COVID-19 targets using Genecards databases and Protein Data Bank (PDB) databases and compared them to identify targets that were common to both. Finally, the target we screened out is: TP53 (Tumor Protein P53). This article also shows that XBT in the treatment of COVID-19 works in a multi-link and overall synergistic manner. Our results will help to design the new drugs for COVID-19.
Collapse
Affiliation(s)
- Zixuan Wang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Jumei Zhang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
16
|
Umar AK. Flavonoid compounds of buah merah ( Pandanus conoideus Lamk) as a potent SARS-CoV-2 main protease inhibitor: in silico approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:158. [PMID: 34395638 PMCID: PMC8353435 DOI: 10.1186/s43094-021-00309-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background COVID19 is a global pandemic that threatens all nations. As there is no effective antiviral drug for COVID19, we examined the potency of natural ingredients against the SARS-CoV-2 main protease (PDB ID 6YNQ). Buah merah is a typical fruit from Papua, Indonesia, which is known to contain high levels of carotenoids and flavonoids. The contents have been proven to be effective as antiparasitic and anti-HIV. An in silico approach to 16 metabolites of buah merah (Pandanus conoideus Lamk) was carried out using AutoDock Vina. Furthermore, the study of the dynamics of ligand–protein interactions was carried out using CABS Flex 2.0 server to determine the test ligand and receptor complexes' stability. ADMET prediction was also carried out to study the pharmacokinetic profile of potential antiviral candidates.
Result The docking results showed that 3 of the 16 buah merah metabolites were potent inhibitors against the SARS-CoV-2 main protease. The flavonoid compounds are quercetin 3′-glucoside, quercetin 3-O-glucose, and taxifolin 3-O-α-arabinopyranose with a binding affinity of − 9.7, − 9.3, and − 8.8, respectively, with stable ligand–protein complex. ADMET study shows that the three compounds are easily dissolved, easily absorbed orally and topically, have a high unbound fraction, low toxicity, and non-irritant. Conclusion We conclude that quercetin 3′-glucoside, quercetin 3-O-glucose, and taxifolin 3-O-α-arabinopyranose can be used and improved as potential anti-SARS-CoV-2 agents in further study.
Collapse
Affiliation(s)
- Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363 Indonesia
| |
Collapse
|
17
|
Yousefi Dehbidi M, Goodarzi N, Azhdari MH, Doroudian M. Mesenchymal stem cells and their derived exosomes to combat Covid-19. Rev Med Virol 2021; 32:e2281. [PMID: 34363275 PMCID: PMC8420536 DOI: 10.1002/rmv.2281] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is causing an ongoing pandemic of coronavirus disease 2019 (Covid‐19). Effective therapies are required for the treatment of patients with severe stages of the disease. Mesenchymal stem cells (MSCs) have been evaluated in numerous clinical trials, but present challenges, such as carcinogenic risk and special storage conditions, coupled with insufficient data about their mechanism of action. The majority of unique properties of MSCs are related to their paracrine activity and especially to their exosomes. The impact of MSCs‐derived exosomes (MSC‐Es) on complications of Covid‐19 has been investigated in several studies. MSC‐Es may improve some complications of Covid‐19 such as cytokine storm, acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Additionally, these exosomes can be evaluated as an applicable nano‐size carrier for antiviral therapeutic agents. Herein, we consider several potential applications of MSCs and their derived exosomes in the treatment of Covid‐19.
Collapse
Affiliation(s)
- Maryam Yousefi Dehbidi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad H Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
18
|
Peele KA, Kumar V, Parate S, Srirama K, Lee KW, Venkateswarulu TC. Insilico drug repurposing using FDA approved drugs against Membrane protein of SARS-CoV-2. J Pharm Sci 2021; 110:2346-2354. [PMID: 33684397 PMCID: PMC7934671 DOI: 10.1016/j.xphs.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus (SARS-CoV-2) outbreak has started taking away the millions of lives worldwide. Identification of known and approved drugs against novel coronavirus disease (COVID-19) seems to be an urgent need for the repurposing of the existing drugs. So, here we examined a safe strategy of using approved drugs of SuperDRUG2 database against modeled membrane protein (M-protein) of SARS-CoV-2 which is essential for virus assembly by using molecular docking-based virtual screening. A total of 3639 drugs from SuperDRUG2 database and additionally 14 potential drugs reported against COVID-19 proteins were selected. Molecular docking analyses revealed that nine drugs can bind the active site of M-protein with desirable molecular interactions. We therefore applied molecular dynamics simulations and binding free energy calculation using MM-PBSA to analyze the stability of the compounds. The complexes of M-protein with the selected drugs were simulated for 50 ns and ranked according to their binding free energies. The binding mode of the drugs with M-protein was analyzed and it was observed that Colchicine, Remdesivir, Bafilomycin A1 from COVID-19 suggested drugs and Temozolomide from SuperDRUG2 database displayed desirable molecular interactions and higher binding affinity towards M-protein. Interestingly, Colchicine was found as the top most binder among tested drugs against M-protein. We therefore additionally identified four Colchicine derivatives which can bind efficiently with M-protein and have better pharmacokinetic properties. We recommend that these drugs can be tested further through in vitro studies against SARS-CoV-2 M-protein.
Collapse
Affiliation(s)
- K Abraham Peele
- Department of Bio-Technology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, 522213, Andhra Pradesh, India
| | - Vikas Kumar
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Shraddha Parate
- Division of Applied Life Sciences, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Krupanidhi Srirama
- Department of Bio-Technology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, 522213, Andhra Pradesh, India
| | - Keun Woo Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - T C Venkateswarulu
- Department of Bio-Technology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, 522213, Andhra Pradesh, India.
| |
Collapse
|
19
|
Alfarouk KO, AlHoufie STS, Ahmed SBM, Shabana M, Ahmed A, Alqahtani SS, Alqahtani AS, Alqahtani AM, Ramadan AM, Ahmed ME, Ali HS, Bashir A, Devesa J, Cardone RA, Ibrahim ME, Schwartz L, Reshkin SJ. Pathogenesis and Management of COVID-19. J Xenobiot 2021; 11:77-93. [PMID: 34063739 PMCID: PMC8163157 DOI: 10.3390/jox11020006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19, occurring due to SARS-COV-2 infection, is the most recent pandemic disease that has led to three million deaths at the time of writing. A great deal of effort has been directed towards altering the virus trajectory and/or managing the interactions of the virus with its subsequent targets in the human body; these interactions can lead to a chain reaction-like state manifested by a cytokine storm and progress to multiple organ failure. During cytokine storms the ratio of pro-inflammatory to anti-inflammatory mediators is generally increased, which contributes to the instigation of hyper-inflammation and confers advantages to the virus. Because cytokine expression patterns fluctuate from one person to another and even within the same person from one time to another, we suggest a road map of COVID-19 management using an individual approach instead of focusing on the blockbuster process (one treatment for most people, if not all). Here, we highlight the biology of the virus, study the interaction between the virus and humans, and present potential pharmacological and non-pharmacological modulators that might contribute to the global war against SARS-COV-2. We suggest an algorithmic roadmap to manage COVID-19.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
| | - Sari T. S. AlHoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina 42353, Saudi Arabia;
| | - Samrein B. M. Ahmed
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mona Shabana
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Ahmed Ahmed
- Department of Oesphogastric and General Surgery, University Hospitals of Leicester, Leicester LE5 4PW, UK;
| | - Saad S. Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali S. Alqahtani
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Najran University, Najran 66446, Saudi Arabia;
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - AbdelRahman M. Ramadan
- Department of Preventive Dental Sciences, Ibn Sina National College, Jeddah 22421, Saudi Arabia;
| | - Mohamed E. Ahmed
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Department of Surgery, Faculty of Medicine Al-Neelain University, Khartoum 11111, Sudan
| | - Heyam S. Ali
- Faculty of Pharmacy, University of Khartoum, P. O. Box 321, Khartoum 11111, Sudan;
| | - Adil Bashir
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Jesus Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| | - Muntaser E. Ibrahim
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | | | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| |
Collapse
|
20
|
Mohebbi A, Askari FS, Sammak AS, Ebrahimi M, Najafimemar Z. Druggability of cavity pockets within SARS-CoV-2 spike glycoprotein and pharmacophore-based drug discovery. Future Virol 2021; 16:10.2217/fvl-2020-0394. [PMID: 34099962 PMCID: PMC8176656 DOI: 10.2217/fvl-2020-0394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Aim: Virus spike glycoprotein of SARS-CoV-2 is a good target for drug discovery. Objective: To examine the potential for druggability of spike protein for pharmacophore-based drug discovery and to investigate the binding affinity of natural products with SARS-CoV-2 spike protein. Methods: Druggable cavities were searched though CavityPlus. A pharmacophore was built and used for hit identification. Autodock Vina was used to evaluate the hits' affinities. 10 chemical derivatives were also made from the chemical backbone to optimize the lead compound. Results: 10 druggable cavities were found within the glycoprotein spike. Only one cavity with the highest score at the binding site was selected for pharmacophore extraction. Hit identification resulted in the identification of 410 hits. Discussion: This study provides a druggable region within viral glycoprotein and a candidate compound to block viral entry.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| | - Fatemeh Sana Askari
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| | - Ali Salehnia Sammak
- Department of Microbiology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Gilan 4147654919, Iran
| | - Mohsen Ebrahimi
- Children's Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Najafimemar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| |
Collapse
|
21
|
Baig MH, Sharma T, Ahmad I, Abohashrh M, Alam MM, Dong JJ. Is PF-00835231 a Pan-SARS-CoV-2 Mpro Inhibitor? A Comparative Study. Molecules 2021; 26:1678. [PMID: 33802860 PMCID: PMC8002701 DOI: 10.3390/molecules26061678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the absence of any effective antiviral treatment is the major concern for the global population. The reports of the occurrence of various point mutations within the important therapeutic target protein of SARS-CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but demonstrates a high affinity against the studied mutants as well.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Tanuj Sharma
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.A.); (M.M.A.)
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.A.); (M.M.A.)
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| |
Collapse
|
22
|
Shah S, Chaple D, Arora S, Yende S, Moharir K, Lohiya G. Exploring the active constituents of Oroxylum indicum in intervention of novel coronavirus (COVID-19) based on molecular docking method. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 10:8. [PMID: 33585155 PMCID: PMC7865104 DOI: 10.1007/s13721-020-00279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
The severe acute respiratory syndrome COVID-19 declared a global pandemic by WHO has become the present wellbeing worry to the whole world. There is an emergent need to search for possible medications. We report in this study a molecular docking study of eighteen Oroxylum indicum molecules with the main protease (Mpro) responsible for the replication of SARS-CoV-2 virus. The outcome of their molecular simulation and ADMET properties reveal four potential inhibitors of the enzyme (Baicalein-7-O-diglucoside, Chrysin-7-O-glucuronide, Oroxindin and Scutellarein) with preference of ligand Chrysin-7-O-glucuronide that has the second highest binding energy (- 8.6 kcal/mol) and fully obeys the Lipinski's rule of five. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13721-020-00279-y.
Collapse
Affiliation(s)
- Sapan Shah
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, Maharashtra 440016 India
| | - Dinesh Chaple
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, Maharashtra 440016 India
| | - Sumit Arora
- Pharmacognosy and Phytochemistry Division, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| | - Subhash Yende
- Pharmacology Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| | - Keshav Moharir
- Pharmaceutics Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| | - Govind Lohiya
- Pharmaceutics Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| |
Collapse
|
23
|
Arora S, Lohiya G, Moharir K, Shah S, Yende S. Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ: A Molecular Docking Study. DIGITAL CHINESE MEDICINE 2020. [PMCID: PMC7834211 DOI: 10.1016/j.dcmed.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), is responsible for the recent global pandemic. As there are no effective drugs or vaccines available for SARS-CoV-2, we investigated the potential of flavonoids against SARS-CoV-2 main protease 6YNQ. Methods In silico molecular simulation study against SARS-CoV-2 main protease 6YNQ. Results Among the 21 selected flavonoids, rutin demonstrated the highest binding energy (− 8.7 kcal/mol) and displayed perfect binding with the catalytic sites. Conclusions Our study demonstrates the inhibitory potential of flavonoids against SARS-CoV-2 main protease 6YNQ. These computational simulation studies support the hypothesis that flavonoids might be helpful for the treatment of COVID-19.
Collapse
|