1
|
Lei T, Yang Y, Yang WX. Luteinizing Hormone Regulates Testosterone Production, Leydig Cell Proliferation, Differentiation, and Circadian Rhythm During Spermatogenesis. Int J Mol Sci 2025; 26:3548. [PMID: 40332028 PMCID: PMC12027374 DOI: 10.3390/ijms26083548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Male reproductive health, particularly the regulation of spermatogenesis, is controlled by a complex combination of factors, including luteinizing hormone (LH) and its effects on Leydig cells (LCs). LH stimulates testosterone synthesis in LCs, which is critical for maintaining spermatogenesis and male fertility. This review examines the pathways through which LH regulates testosterone production, LC proliferation, differentiation, and circadian rhythm in human and non-human species. In particular, the signaling pathways of luteinizing hormone involved in testosterone production are discussed. Additionally, we explore LH's role in sperm maturation and quality, emphasizing its clinical implications in treating hypogonadotropic hypogonadism and diagnosing gonadal dysfunctions such as androgen insensitivity syndrome and precocious puberty. Furthermore, the potential of LH in assisted reproductive technologies for improving sperm quality is discussed. By highlighting key molecular mechanisms, this work provides insights into the therapeutic potential of LH in addressing male infertility and conditions of LC dysfunction.
Collapse
Affiliation(s)
| | | | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (T.L.); (Y.Y.)
| |
Collapse
|
2
|
He J, Zhang H, Quan H, Wang Q, Wen C, Wang Y, Zhu Y, Ge RS, Li X. Bisphenol B restrains rat leydig cell function via H3K27me3/H3K9me3 histone modifications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117847. [PMID: 39919587 DOI: 10.1016/j.ecoenv.2025.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
As an alternative compound of bisphenol A (BPA), bisphenol B (BPB) was widely used in plastic materials. The potential actions of BPB on the function of Leydig cells through the regulation of H3K27me3 and H3K9me3 remains unclear. Our goal was to assess how BPB influences Leydig cell function via histone modifications mediated by H3K27me3 and H3K9me3. Male 56-day-old Sprague-Dawley rats were given with 0, 50, 100, and 200 mg/kg/day of BPB by the oral administration for 14 days to study the impact of BPB on the function of Leydig cells in rats. The findings indicated that BPB significantly reduced the serum testosterone levels at the dose of 100 mg/kg and 200 mg/kg and follicle-stimulating hormone levels at the doses of 50, 100, and 200 mg/kg, while increasing estradiol levels at the dose of 200 mg/kg. BPB did not alter the numbers of CYP11A1+ Leydig cells and SOX9+ Sertoli cells, but it downregulated the expression of key genes in testosterone synthesis pathway (Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, Hsd11b1, Hsd17b3, and Insl3) and their corresponding protein levels. Notably, BPB significantly boosted the expressions of histone methylation markers like EEF1A1, SUZ12, EED, EZH2, H3K27me3, and H3K9me3 in vivo. H3K27me3 and H3K9me3 levels were enhanced at the proximal promoters of Lhcgr, Cyp11a1, and Star through ChIP and PCR analyses. Furthermore, adult Leydig cells were extracted and cultured with BPB (0, 10, 50, 100, and 200 μM) alone or in combination with H3K27me3 antagonist GSK-J4. The results demonstrated that BPB significantly decreased testosterone output, which was counteracted by GSK-J4 to reverse BPB-mediated testosterone suppression. Additionally, BPB significantly elevated the levels of EEF1A1, EEF1A2, EED, H3K27me3, and H3K9me3 in vitro. BPB could potentially hinder the growth and function of Leydig cells by modulating H3K27me3 and H3K9me3. The findings of the study indicate the involvement of histone methylation (H3K27me3) in BPB-induced steroidogenic dysfunction, emphasizing the correlation between histone modifications and male reproductive toxicity.
Collapse
Affiliation(s)
- Jiayi He
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Huiqian Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Hehua Quan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Qingyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China.
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
3
|
Qiao ZZ, Zang MX, Zhang Y, Wang P, Li XY, Song X, Zhang CJ, Klinger FG, Ge W, Shen W, Cheng SF. LH promotes the proliferation of porcine primordial germ cell-like cells (pPGCLCs) by regulating the ceRNA network related to the TGF-β signaling pathway. Int J Biol Macromol 2024; 280:135984. [PMID: 39326611 DOI: 10.1016/j.ijbiomac.2024.135984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Primordial germ cells (PGCs), as the precursors of gametes found in early embryos, provide a new direction for solving the problem of reproductive disorders. In vitro, conversion of adult stem cells (ASCs) into primordial germ cell-like cells (PGCLCs) is feasible. The means of increasing PGCLCs number in vitro has been a focus of recent stem cell research. In this study, we found that luteinizing hormone (LH) could promote porcine PGCLCs (pPGCLCs) proliferation. To investigate the proliferation regulatory network, whole transcriptome sequencing technology was employed. Results showed that the TGF-β signaling pathway played a key role. In addition, we found that TGFβR1 and SMAD4, TGF-β signaling pathway-related genes, were significantly upregulated after LH treatment. Subsequently, we predicted their target microRNAs (miRNAs) and long non-coding RNAs (lncRNAs): ssc-miR-128, ssc-miR-146b, ssc-miR-361-3p, MSTRG.11473, MSTRG.11475, MSTRG.11553, and MSTRG.11554, and constructed the competitive endogenous RNAs (ceRNA) network. Finally, to further verify the ceRNA network, the miRNA-inhibitors were transfected into cells. RT-qPCR results indicated a significant increase in the expression of MSTRG.11473, MSTRG.11475, MSTRG.11553, MSTRG.11554, TGFβR1, and SMAD4 compared to the negative control (NC) group. In conclusion, these results highlight that LH could regulate the pPGCLCs proliferation by modulating the expression of TGF-β signaling pathway-related ncRNAs.
Collapse
Affiliation(s)
- Zhan-Zhong Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Xin Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ya Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Jinxiang County Agriculture and Rural Bureau, Jining 272200, China
| | - Chun-Jie Zhang
- Wudi Animal Husbandry and Veterinary Service Management Center of Binzhou City, Binzhou 256600, China
| | | | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Yue H, Yang X, Wu X, Tian Y, Xu P, Sang N. Identification of risk for ovarian disease enhanced by BPB or BPAF exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120980. [PMID: 36587784 DOI: 10.1016/j.envpol.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The ban on bisphenol A (BPA) has led to a rapid increase in the use of BPA analogs, and they are increasingly being detected in the natural environment and biological organisms. Studies have pointed out that BPA analogs can lead to adverse health outcomes. However, their interference with ovarian tissue has not been fully elucidated. In this study, seven- to eight-week-old CD-1 mice were exposed to corn oil containing 300 μg/kg/day bisphenol B (BPB) or bisphenol AF (BPAF) through oral gavage, and ovarian tissues were collected at 14 and 28 days of exposure. Ovarian toxicity was evaluated by the ovarian index, ovarian area, and follicle number. mRNA-seq was used to identify differentially expressed genes (DEGs) and infer the association of DEGs with ovarian diseases. BPB or BPAF exposure induced morphological changes in ovarian tissue in CD-1 mice. In addition, Gene Ontology (GO) analysis revealed disturbances in biological processes (BP) associated with steroid biosynthetic process (GO:0006694) and cellular calcium ion homeostasis (GO:0006874). Subsequently, regulatory networks of BPA analogs (BPB or BPAF)-DEGs-ovarian diseases were constructed. Importantly, the expression levels of DEGs and transcription factors (TFs) associated with ovarian disease were altered. BPB or BPAF exposure causes damage to ovarian morphology through the synergistic effects of multiple biological processes and may be associated with altered mRNA expression profiles as a risk factor for ovarian diseases.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
5
|
Li X, Meng F, Ye L, Qiao X, Li J, Tian L, Su M, Lin L, Ge RS, Wang Y. Tetramethyl bisphenol A stimulates proliferation but inhibits fetal Leydig cell function in male rats by targeting estrogen receptor α after in utero exposure. ENVIRONMENTAL TOXICOLOGY 2022; 37:2743-2755. [PMID: 36214340 DOI: 10.1002/tox.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Tetramethyl bisphenol A (TMBPA) is a widely used flame retardant. TMBPA has been a toxic to Leydig cells in puberty, but it remains unclear whether TMBPA has a similar inhibitor effect on fetal Leydig cells (FLCs). This study reported morphological and functional alterations of FLCs in the testes of male offspring at birth after in utero exposure to TMBPA. Pregnant Sprague Dawley rats were dosed via continuous gavage of TMBPA (0, 10, 50, and 200 mg/kg/day) from gestational day 14 to 21. TMBPA markedly raised serum total testosterone level, testicular volume, and FLC number of male offspring at 200 mg/kg dose. The up-regulation of Insl3, Star, and Cyp11a1 mRNAs was observed after 200 mg/kg TMBPA exposure. After normalization to the number of FLCs, TMBPA significantly reduced Lhcgr and Hsd3b1 expressions at 10 mg/kg, and Cyp17a1 at 200 mg/kg paralleling with their protein levels. TMBPA compromised the expression of Esr1, while increased the expression of Cdk2 and Cdk4 as well as their protein levels. TMBPA particularly increased the phosphorylation of AKT1 and AKT2 at 200 mg/kg. In conclusion, the present study suggests that TMBPA may promote FLC proliferation via ESR1-CDK2/4-AKT pathway, while inhibits the function of FLCs by reducing steroidogenic enzyme activity.
Collapse
Affiliation(s)
- Xueyun Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyan Meng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Ye
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyi Qiao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Su
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liben Lin
- Department of pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| |
Collapse
|
6
|
Li H, Li J, Shi L, Zhu Y, Tian F, Shi M, Li Q, Ge RS. Bisphenol F blocks Leydig cell maturation and steroidogenesis in pubertal male rats through suppressing androgen receptor signaling and activating G-protein coupled estrogen receptor 1 (GPER1) signaling. Food Chem Toxicol 2022; 167:113268. [PMID: 35803362 DOI: 10.1016/j.fct.2022.113268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
Bisphenol F (BPF) is a new analog of bisphenol A (BPA). BPA has deleterious effects on the male reproductive system, but the effect of BPF has not been studied in detail. In this study we focus on the effect of BPF on Leydig cell maturation. Male Sprague-Dawley rats were gavaged with 0, 1, 10, or 100 mg/kg BPF from postnatal days 35-56. BPF significantly reduced serum testosterone levels and sperm count in cauda epididymis at dose ≥1 mg/kg. It significantly down-regulated the expression of steroidogenic enzymes, while increasing FSHR and SOX9 levels at 10 and 100 mg/kg. Further studies showed that BPF reduced NR3C4 expression in Leydig and Sertoli cells without affecting its levels in peritubular myoid cells. BPF markedly increased GPER1 in Leydig cells at 100 mg/kg, and it significantly reduced SIRT1 and PGC1α levels in the testes at 100 mg/kg. BPF significantly inhibited testosterone production by immature Leydig cells at 50 μM after 24 h of treatment, which was completely reversed by NR3C4 agonist 7α-methyl-19-nortestosterone and partially reversed by GPER1 antagonist G15 not by ESR1 antagonist ICI 182,780. In conclusion, BPF negatively affects Leydig cell maturation in pubertal male rats through NR3C4 antagonism and GPER1 agonism.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lei Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Fuhong Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Mengna Shi
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiyao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
7
|
Meng F, Li X, Li J, Zhu Y, Su M, Zhang B, Wang Y, Ge RS. Fluornen-9-bisphenol increases Leydig cell proliferation but inhibits maturation in pubertal male rats via interacting with androgen receptor as an antagonist and estrogen receptor α as an agonist. Chem Biol Interact 2022; 363:110024. [DOI: 10.1016/j.cbi.2022.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
|
8
|
Knowledge Gap in Understanding the Steroidogenic Acute Regulatory Protein Regulation in Steroidogenesis Following Exposure to Bisphenol A and Its Analogues. Biomedicines 2022; 10:biomedicines10061281. [PMID: 35740303 PMCID: PMC9219931 DOI: 10.3390/biomedicines10061281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
The use of bisphenols has become extremely common in our daily lives. Due to the extensive toxic effects of Bisphenol A (BPA), the industry has replaced this endocrine-disrupting chemical (EDC) with its analogues, which have been proven to decrease testosterone levels via several mechanisms, including targeting the steroidogenic acute regulatory (StAR) protein. However, when exposed to BPA and its analogues, the specific mechanism that emerges to target StAR protein regulations remains uncertain. Hence, this review discusses the effects of BPA and its analogues in StAR protein regulation by targeting cAMP-PKA, PLC-PKC, EGFR-MAPK/ERK and Ca2+-Nur77. BPA and its analogues mainly lead to decreased LH in blood and increased ERK expression and Ca2+ influx, with no relationship with the StAR protein regulation in testicular steroidogenesis. Furthermore, the involvement of the cAMP-PKA, PLC-PKC, and Nur77 molecules in StAR regulation in Leydig cells exposed to BPA and its analogues remains questionable. In conclusion, although BPA and its analogues have been found to disrupt the StAR protein, the evidence in connecting the signaling pathways with the StAR regulations in testicular steroidogenesis is still lacking, and more research is needed to draw a solid conclusion.
Collapse
|
9
|
Zhu Q, Zhu S, Li Q, Wang Y, Zheng D, Chen C, Ruan N, Chen H, Yan H, Lin H, Ge RS. Methyl tert-butyl ether inhibits pubertal development of Leydig cells in male rats by inducing mitophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113282. [PMID: 35131586 DOI: 10.1016/j.ecoenv.2022.113282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Methyl tert-butyl ether (MTBE) is a widely used gasoline additive. It is considered an endocrine-disrupting chemical. Whether MTBE affects the development of Leydig cells in late puberty of males and its underlying mechanism remains unclear. Twenty-four male Sprague-Dawley rats (35 days old) were randomly allocated into four groups and were orally given MTBE (0, 300, 600, and 1200 mg/kg/day) from postnatal day (PND) 35-56. MTBE markedly reduced serum testosterone levels at 300 mg/kg and higher doses without altering the serum levels of luteinizing hormone and follicle-stimulating hormone. It mainly inhibited cell proliferation, induced mitochondrial autophagy and apoptosis, and indirectly stimulated Sertoli cells to secrete anti-Müllerian hormones, thereby significantly reducing the number of Leydig cells at 1200 mg/kg. MTBE also markedly down-regulated the expression of mature Leydig cell biomarker Cyp11a1 and Hsd3b1 and their proteins, while up-regulating the expression of immature Leydig cell biomarker Akr1c14 and its protein at 600 mg/kg and higher. MTBE significantly down-regulated the expression of cell cycle gene Ccnd1, antioxidant gene Gpx1, and anti-apoptotic gene Bcl2, while increasing pro-apoptotic gene Bax level at 1200 mg/kg. In vitro study further confirmed that MTBE can inhibit testosterone synthesis by inducing reactive oxygen species (ROS) generation, mitophagy, and apoptosis at 200 and 300 mM. In conclusion, exposure to MTBE compromises the development of Leydig cells in late puberty in male rats.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shanshan Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Scientific Research, School of Optometry and Ophthalmology and The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qiyao Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yun Wang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325027, China
| | - Dongxu Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chunjiang Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Naqi Ruan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haiqiong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haoni Yan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Han Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
10
|
Wang Q, Zhang Y, Feng Q, Hu G, Gao Z, Meng Q, Zhu X. Occurrence, distribution, and risk assessment of bisphenol analogues in Luoma Lake and its inflow rivers in Jiangsu Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1430-1445. [PMID: 34351581 DOI: 10.1007/s11356-021-15711-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol analogs (BPs) are widely used in industrial and commercial products and have been detected in surface water, sediment, sewage, and sludge. The presence of BPs in the natural environment poses threats to the aquatic ecosystem and human health. The concentration, distribution, seasonal variation, and risk assessment of BPA and BPA structural analogs including BPB, BPF, BPS, BPZ, BPAF, and BPAP in surface water and sediment during dry season and flood season in Luoma Lake and its inflow rivers in Jiangsu Province, China, were investigated in this study. The detection frequency of BPA and BPF was 100%. Although the use of BPA is restricted, BPA is still the dominant BPs in surface water and sediment. The concentration of BPs in surface water during flood season was higher than that in dry season. The concentrations of BPs in Fangting River, Zhongyun River, and Bulao River were higher than those in Luoma Lake. The average concentrations of BPs in surface water were in the order of BPA > BPF> BPS> BPB > BPZ > BPAF> BPAP. Compared with other studies, the concentration of BPs in Luoma Lake was moderate. There is no significant spatial distribution and difference in seasonal variation of BPs concentration in sediment (p > 0.05). Compared with other studies, the contamination of BPs in sediment of Luoma Lake was relatively low. Risk quotient (RQ) was used to evaluate the ecological risk of BPs in water environment, and the 17β estradiol equivalent (EEQ) method was used to estimate the estrogenic activity of BPs. The risk assessment showed no high ecological risk (RQ < 1.0) and estrogenic risk (EEQ < 1.0 ng/L) in dry season and flood season. The estimated RQ and EEQt indicated that the ecological and human health impacts were negligible in the short term.
Collapse
Affiliation(s)
- Qiuxu Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Guanjiu Hu
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Zhanqi Gao
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Qingjun Meng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|