1
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2025; 480:759-784. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
2
|
Famurewa AC, Prabhune NM, Prabhu S. Natural product mitigation of ferroptosis in platinum-based chemotherapy toxicity: targeting the underpinning oxidative signaling pathways. J Pharm Pharmacol 2025; 77:1-17. [PMID: 39485898 DOI: 10.1093/jpp/rgae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVES Platinum-based anticancer chemotherapy (PAC) represents a cornerstone in cancer treatment, retaining its status as the gold standard therapy. However, PAC's efficacy is countered by significant toxicities, such as nephrotoxicity, ototoxicity, and neurotoxicity. Recent studies have linked these toxicities to ferroptosis, characterized by iron accumulation, reactive oxygen species generation, and lipid peroxidation. This review explores the mechanisms underlying PAC-induced toxicities, focusing on the involvement of ferroptosis with three major PAC drugs-cisplatin, carboplatin, and oxaliplatin. Further, we provide a comprehensive analysis of the natural product mitigation of PAC-induced ferroptotic toxicity. KEY FINDINGS The mechanistic role of ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, while studies on carboplatin-induced ferroptotic toxicities are lacking. Natural compounds targeting molecular pathways of ferroptosis have been explored to mitigate PAC-induced ferroptotic toxicity. CONCLUSION While ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, there remains a notable dearth of studies examining its involvement in carboplatin-induced toxicities. Hence, further exploration is warranted to define the role of ferroptosis in carboplatin-induced toxicities, and its further mitigation. Moreover, in-depth mechanistic evaluation is necessary to establish natural products evaluated against PAC-induced ferroptosis, as PAC adjuvants.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ikwo 482103, Ebonyi State, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Nupura Manish Prabhune
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sudharshan Prabhu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
3
|
Yu Q, Xiao Y, Guan M, Zhou G, Zhang X, Yu J, Han M, Yang W, Wang Y, Li Z. Regulation of ferroptosis in osteoarthritis and osteoarthritic chondrocytes by typical MicroRNAs in chondrocytes. Front Med (Lausanne) 2024; 11:1478153. [PMID: 39564502 PMCID: PMC11573538 DOI: 10.3389/fmed.2024.1478153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disorder impacting bones and joints, worsened by chronic inflammation, immune dysregulation, mechanical stress, metabolic disturbances, and various other contributing factors. The complex interplay of cartilage damage, loss, and impaired repair mechanisms remains a critical and formidable aspect of OA pathogenesis. At the genetic level, multiple genes have been implicated in the modulation of chondrocyte metabolism, displaying both promotive and inhibitory roles. Recent research has increasingly focused on the influence of non-coding RNAs in the regulation of distinct cell types within bone tissue in OA. In particular, an expanding body of evidence highlights the regulatory roles of microRNAs in OA chondrocytes. This review aims to consolidate the most relevant microRNAs associated with OA chondrocytes, as identified in recent studies, and to elucidate their involvement in chondrocyte metabolic processes and ferroptosis. Furthermore, this study explores the complex regulatory interactions between long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in OA, with an emphasis on microRNA-mediated mechanisms. Finally, critical gaps in the current research are identified, offering strategic insights to advance the understanding of OA pathophysiology and guide therapeutic developments in this field.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Guohui Zhou
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Yang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yan Wang
- Scientific Research Center, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Liang NN, Guo YY, Zhang XY, Ren YH, He YZ, Liu ZB, Xu DX, Xu S. Mitochondrial Dysfunction-Evoked DHODH Acetylation is Involved in Renal Cell Ferroptosis during Cisplatin-Induced Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404753. [PMID: 39303219 DOI: 10.1002/advs.202404753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Several studies have observed renal cell ferroptosis during cisplatin-induced acute kidney injury (AKI). However, the mechanism is not completely clear. In this study, oxidized arachidonic acid (AA) metabolites are increased in cisplatin-treated HK-2 cells. Targeted metabolomics showed that the end product of pyrimidine biosynthesis is decreased and the initiating substrate of pyrimidine biosynthesis is increased in cisplatin-treated mouse kidneys. Mitochondrial DHODH, a key enzyme for pyrimidine synthesis, and its downstream product CoQH2, are downregulated. DHODH overexpression attenuated but DHODH silence exacerbated cisplatin-induced CoQH2 depletion and lipid peroxidation. Mechanistically, renal DHODH acetylation is elevated in cisplatin-exposed mice. Mitochondrial SIRT3 is reduced in cisplatin-treated mouse kidneys and HK-2 cells. Both in vitro SIRT3 overexpression and in vivo NMN supplementation attenuated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis. By contrast, Sirt3 knockout aggravated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis, which can not be attenuated by NMN. Additional experiments showed that cisplatin caused mitochondrial dysfunction and SIRT3 SUMOylation. Pretreatment with mitochondria-target antioxidant MitoQ alleviated cisplatin-caused mitochondrial dysfunction, SIRT3 SUMOylation, and DHODH acetylation. MitoQ pretreatment protected against cisplatin-caused AKI and renal cell ferroptosis. Taken together, these results suggest that mitochondrial dysfunction-evoked DHODH acetylation partially contributes to renal cell ferroptosis during cisplatin-induced AKI.
Collapse
Affiliation(s)
- Nan-Nan Liang
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Yue-Yue Guo
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Ya-Hui Ren
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| | - Yi-Zhang He
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zhi-Bing Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Shen Xu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| |
Collapse
|
5
|
Tang Z, Zhu Y. Cordycepin ameliorates kidney injury by inhibiting gasdermin D-mediated pyroptosis of renal macrophages through nuclear factor kappa-B. J Biochem Mol Toxicol 2024; 38:e23824. [PMID: 39206630 DOI: 10.1002/jbt.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
To explain the effect and mechanism of cordycepin (COR) in resisting acute kidney injury (AKI). Network pharmacology was employed to analyze the correlations between COR, AKI, and pyroptosis, as well as the action target of COR. A mouse model of AKI was established by ischemia reperfusion injury (IRI), and after treatment with COR, the renal function, tissue inflammatory cytokine levels, and pyroptosis-related signals were detected in mice. In in-vitro experiments, damage of renal macrophages was caused by the oxygen-glucose deprivation model, and pyroptosis indicators and inflammatory cytokine levels were assayed after COR treatment. Network pharmacological analysis revealed that nuclear factor kappa-B (NF-κB) was the primary action target of COR and that COR could inhibit kidney injury and tissue inflammation during IRI by inhibiting NF-κB-mediated gasdermin D cleavage. When NF-κB was inhibited, the effect of COR was weakened. COR in renal macrophages could inhibit pyroptosis and lower the levels of inflammatory cytokines, whose effect was associated with NF-κB. Our study finds that COR can play an anti-inflammatory role and inhibit the progression of AKI through the NF-κB-mediated pyroptosis, which represents its nephroprotective mechanism.
Collapse
Affiliation(s)
- Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Zhu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Zhao Q, Yu H, Shi M, Wang X, Fan Z, Wang Z. Tumor microenvironment characteristics of lipid metabolism reprogramming related to ferroptosis and EndMT influencing prognosis in gastric cancer. Int Immunopharmacol 2024; 137:112433. [PMID: 38870879 DOI: 10.1016/j.intimp.2024.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a refractory malignant tumor with high tumor heterogeneity, a low rate of early diagnosis, and poor patient prognosis. Lipid metabolism reprogramming plays a critical role in tumorigenesis and progression, but its prognostic role and regulatory mechanism in GC are rarely studied. Thus, the identification of signatures related to lipid metabolism is necessary and may present a new avenue for improving the overall prognosis of GC. METHODS Lipid metabolism-associated genes (LMAGs) with differential expression in tumor and tumor-adjacent tissue were acquired to identify lipid metabolism-associated subtypes. The differentially expressed genes (DEGs) between the two clusters were then utilized for prognostic analysis and signature construction. Additionally, pathway enrichment analysis and immune cell infiltration analysis were employed to identify the characteristics of the prognostic model. Further analyses were conducted at the single-cell level to better understand the model's prognostic mechanism. Finally, the prediction of immunotherapy response was used to suggest potential treatments. RESULTS Two lipid metabolism-associated subtypes were identified and 9 prognosis-related genes from the DEGs between the two clusters were collected for the construction of the prognostic model named lipid metabolism-associated signature (LMAS). Then we found the low LMAS patients with favorable prognoses were more sensitive to ferroptosis in the Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD). Meanwhile, the tumor cells exhibiting high levels of lipid peroxidation and accumulation of reactive oxygen species (ROS) in single-cell levels were primarily enriched in the low LMAS group, which was more likely to induce ferroptosis. In addition, endothelial cells and cancer-associated fibroblasts (CAFs) facilitated tumor angiogenesis, proliferation, invasion, and metastasis through endothelial-mesenchymal transition (EndMT), affecting the prognosis of the patients with high LMAS scores. Moreover, CD1C- CD141- dendritic cells (DCs) also secreted pro-tumorigenic cytokines to regulate the function of endothelial cells and CAFs. Finally, the patients with low LMAS scores might have better efficacy in immunotherapy. CONCLUSIONS A LMAS was constructed to guide GC prognosis and therapy. Meanwhile, a novel anti-tumor effect was found in lipid metabolism reprogramming of GC which improved patients' prognosis by regulating the sensitivity of tumor cells to ferroptosis. Moreover, EndMT may have a negative impact on GC prognosis.
Collapse
Affiliation(s)
- Qian Zhao
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China; School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Hui Yu
- Translational Medicine Center, Baotou Medical College, Baotou 014040, China
| | - Mengqi Shi
- School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Xujie Wang
- School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Zixu Fan
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China.
| |
Collapse
|
7
|
Abd El-Aal SA, El-Sayyad SM, El-Gazar AA, Salaheldin Abdelhamid Ibrahim S, Essa MA, Abostate HM, Ragab GM. Boswellic acid and apigenin alleviate methotrexate-provoked renal and hippocampal alterations in rats: Targeting autophagy, NOD-2/NF-κB/NLRP3, and connexin-43. Int Immunopharmacol 2024; 134:112147. [PMID: 38718656 DOI: 10.1016/j.intimp.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1β cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Shorouk M El-Sayyad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | | - Marwa A Essa
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Heba M Abostate
- Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
8
|
Zhao ST, Qiu ZC, Zeng RY, Zou HX, Qiu RB, Peng HZ, Zhou LF, Xu ZQ, Lai SQ, Wan L. Exploring the molecular biology of ischemic cardiomyopathy based on ferroptosis‑related genes. Exp Ther Med 2024; 27:221. [PMID: 38590563 PMCID: PMC11000445 DOI: 10.3892/etm.2024.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
Ischemic cardiomyopathy (ICM) is a serious cardiac disease with a very high mortality rate worldwide, which causes myocardial ischemia and hypoxia as the main damage. Further understanding of the underlying pathological processes of cardiomyocyte injury is key to the development of cardioprotective strategies. Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of lipid hydroperoxides to lethal levels, resulting in oxidative damage to the cell membrane. The current understanding of the role and regulation of ferroptosis in ICM is still limited, especially in the absence of evidence from large-scale transcriptomic data. Through comprehensive bioinformatics analysis of human ICM transcriptome data obtained from the Gene Expression Omnibus database, the present study identified differentially expressed ferroptosis-related genes (DEFRGs) in ICM. Subsequently, their potential biological mechanisms and cross-talk were analyzed, and hub genes were identified by constructing protein-protein interaction networks. Ferroptosis features such as reactive oxygen species generation, changes in ferroptosis marker proteins, iron ion aggregation and lipid oxidation, were identified in the H9c2 anoxic reoxygenation injury model. Finally, the diagnostic ability of Gap junction alpha-1 (GJA1), Solute carrier family 40 member 1 (SLC40A1), Alpha-synuclein (SNCA) were identified through receiver operating characteristic curves and the expression of DEFRGs was verified in an in vitro model. Furthermore, potential drugs (retinoic acid) that could regulate ICM ferroptosis were predicted based on key DEFRGs. The present article presents new insights into the role of ferroptosis in ICM, investigating the regulatory role of ferroptosis in the pathological process of ICM and advocating for ferroptosis as a potential novel therapeutic target for ICM based on evidence from the ICM transcriptome.
Collapse
Affiliation(s)
- Shi-Tao Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Cong Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rui-Yuan Zeng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua-Xi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospita, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330200, P.R. China
| | - Rong-Bin Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Han-Zhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lian-Fen Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Qiang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Tang Z, Chen K, Sun C, Ying X, Li M. Cordycepin inhibits kidney injury by regulating GSK-3β-mediated Nrf2 activation. J Biochem Mol Toxicol 2024; 38:e23600. [PMID: 38014886 DOI: 10.1002/jbt.23600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
We explored the role and mechanism of cordycepin (COR) in inhibiting kidney injury. A mouse model of kidney injury was established using cisplatin (CDDP), and the kidney function, histopathology, and ferroptosis indices in mice were detected after intervening with COR. The targets of COR-ferroptosis-kidney injury were analyzed by network pharmacology, based on which the association between glycogen synthase kinase-3 beta (GSK-3β) and COR was determined. HK-2 cells were cultured in vitro and treated separately with ferroptosis inducers erastin and CDDP. After the COR intervention, the level of ferroptosis was monitored. In vitro experiments found that COR could inhibit ferroptosis and CDDP-induced kidney injury. Network pharmacological analysis revealed that GSK-3β was the target of COR. After inhibiting GSK-3β expression, COR could not further inhibit the occurrence of ferroptosis. In vitro results also indicated that COR could inhibit ferroptosis in HK-2 cells. According to our findings, COR can ameliorate CDDP-induced kidney injury through GSK-3β-mediated ferroptosis signaling. We identify new pharmacological effect and target for COR, the major component of Cordyceps sinensis.
Collapse
Affiliation(s)
- Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Kean Chen
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Chun Sun
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Xiangjun Ying
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Ming Li
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
10
|
Li J, Zheng S, Fan Y, Tan K. Emerging significance and therapeutic targets of ferroptosis: a potential avenue for human kidney diseases. Cell Death Dis 2023; 14:628. [PMID: 37739961 PMCID: PMC10516929 DOI: 10.1038/s41419-023-06144-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Kidney diseases remain one of the leading causes of human death and have placed a heavy burden on the medical system. Regulated cell death contributes to the pathology of a plethora of renal diseases. Recently, with in-depth studies into kidney diseases and cell death, a new iron-dependent cell death modality, known as ferroptosis, has been identified and has attracted considerable attention among researchers in the pathogenesis of kidney diseases and therapeutics to treat them. The majority of studies suggest that ferroptosis plays an important role in the pathologies of multiple kidney diseases, such as acute kidney injury (AKI), chronic kidney disease, and renal cell carcinoma. In this review, we summarize recently identified regulatory molecular mechanisms of ferroptosis, discuss ferroptosis pathways and mechanisms of action in various kidney diseases, and describe the protective effect of ferroptosis inhibitors against kidney diseases, especially AKI. By summarizing the prominent roles of ferroptosis in different kidney diseases and the progress made in studying ferroptosis, we provide new directions and strategies for future research on kidney diseases. In summary, ferroptotic factors are potential targets for therapeutic intervention to alleviate different kidney diseases, and targeting them may lead to new treatments for patients with kidney diseases.
Collapse
Affiliation(s)
- Jinghan Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sujuan Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
11
|
Yu M, Li H, Wang B, Wu Z, Wu S, Jiang G, Wang H, Huang Y. Baicalein ameliorates polymyxin B-induced acute renal injury by inhibiting ferroptosis via regulation of SIRT1/p53 acetylation. Chem Biol Interact 2023; 382:110607. [PMID: 37354967 DOI: 10.1016/j.cbi.2023.110607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/04/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
The polypeptide antibiotic Polymyxin B (PMB) can cause acute kidney injury (AKI), we found that ferroptosis is one of the main mechanisms of renal injury caused by PMB. It was reported that baicalein can inhibit ferroptosis. Therefore, in this study we examined whether baicalein could attenuate PMB-induced renal injury by inhibiting ferroptosis. We confirmed that baicalein could reduce PMB-induced renal injury in vivo and in vitro studies. In the in vitro study, baicalein significantly increased the survival rate of human HK2 tubular epithelial cells. The results of HE staining and electron microscopy in mice also showed that baicalein reduced PMB-induced renal injury, and significantly decreased the levels of BUN and Scr. By detecting ferroptosis-related indicators, we found that pre-incubation of baicalein in HK2 cells down-regulated Fe2+ level, lipid peroxidation, MDA and HO-1 which had been increased by PMB. Furthermore, baicalein up-regulated the levels of SCL7A11, GPX4 and GSH that were decreased by PMB. Moreover, intraperitoneal injection of baicalein in the animal model down-regulated kidney iron level, PTGS2 and 4HNE, and increased the GSH level, which suggested that baicalein could inhibit PMB-induced ferroptosis. Finally, by detecting changes in levels of p53 and p53 K382 acetylation, baicalein was observed to decrease elevated p53 K382 acetylation after PMB treatment, further confirming that baicalein inhibits ferroptosis by reducing p53 K382 acetylation via upregulation of SIRT1 expression. In conclusion, these results suggest that baicalein decreases p53 acetylation level by elevating SIRT1, which can then inhibit PMB-induced ferroptosis and ultimately attenuates AKI.
Collapse
Affiliation(s)
- Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, PR China; Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233003, PR China; Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, PR China
| | - Hongyu Li
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, PR China; Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233003, PR China
| | - Boying Wang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, PR China; Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233003, PR China
| | - Zhenxiang Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Sheng Wu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, PR China; Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233003, PR China
| | - Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233003, PR China
| | - Huaxue Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China.
| | - Yingying Huang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, PR China; Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233003, PR China.
| |
Collapse
|
12
|
Huang Q, Sha W, Gu Q, Wang J, Zhu Y, Xu T, Xu Z, Yan F, Lin X, Tian S. Inhibition of Connexin43 Improves the Recovery of Spinal Cord Injury Against Ferroptosis via the SLC7A11/GPX4 Pathway. Neuroscience 2023; 526:121-134. [PMID: 37391124 DOI: 10.1016/j.neuroscience.2023.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Ferroptosis plays a key role in the process of spinal cord injury (SCI). As a signal amplifier, connexin 43 (CX43) participates in cell death signal transduction and aggravates the propagation of injury. However, it remains unclear whether CX43 plays a regulatory role in ferroptosis after SCI. The SCI rat model was established by an Infinite Vertical Impactor to investigate the role of CX43 in SCI-induced ferroptosis. Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, and a CX43-specific inhibitor (Gap27) were administered by intraperitoneal injection. Behavioral analysis was assessed according to the Basso-Beattie-Bresnahan (BBB) Motor Rating Scale and the inclined plate test. The levels of ferroptosis-related proteins were estimated by qRT-PCR and western blotting, while the histopathology of neuronal injury induced by SCI was evaluated by immunofluorescence, Nissl, FJB and Perl's Blue staining. Meanwhile, transmission electron microscopy was used to observe the ultrastructural changes characteristic of ferroptosis. Gap27 strongly inhibited ferroptosis and therefore improved the functional recovery of SCI, which was similar to the treatment of Fer-1. Notably, the inhibition of CX43 decreased P-mTOR/mTOR expression and reversed the decrease in SLC7A11 induced by SCI. As a result, the levels of GPX4 and glutathione (GSH) increased, while the levels of the lipid peroxidation products 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) decreased. Together, inhibition of CX43 could alleviate ferroptosis after SCI. These findings reveal a potential mechanism of the neuroprotective role of CX43 after SCI and provide a new theoretical basis for clinical transformation and application.
Collapse
Affiliation(s)
- Qun Huang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Weiping Sha
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qi Gu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Jin Wang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Tianli Xu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Zhenhua Xu
- Department of Anesthesiology, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China
| | - Fei Yan
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China
| | - Xiaolong Lin
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| | - Shoujin Tian
- Department of Orthopaedic Surgery, Zhangjiagang Hospital affiliated to Soochow University, Suzhou 215600, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| |
Collapse
|
13
|
Zhou M, Zhai C, Shen K, Liu G, Liu L, He J, Chen J, Xu Y. miR-1 Inhibits the Ferroptosis of Chondrocyte by Targeting CX43 and Alleviates Osteoarthritis Progression. J Immunol Res 2023; 2023:2061071. [PMID: 37425490 PMCID: PMC10328732 DOI: 10.1155/2023/2061071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Dysregulation of miRNAs in chondrocytes has been confirmed to participate in osteoarthritis (OA) progression. Previous study has screen out several key miRNAs may play crucial role in OA based on bioinformatic analysis. Herein, we identified the downregulation of miR-1 in OA samples and inflamed chondrocytes. The further experiments revealed that miR-1 played an essential role in maintaining chondrocytes proliferation, migration, antiapoptosis, and anabolism. Connexin 43 (CX43) was further predicted and confirmed to be the target of miR-1, and mediated the promotion effects of miR-1 in regulating chondrocyte functions. Mechanistically, miR-1 maintained the expression of GPX4 and SLC7A11 by targeting CX43, attenuated the accumulation of intracellular ROS, lipid ROS, MDA, and Fe2+ in chondrocytes, thereby inhibiting the ferroptosis of chondrocytes. Finally, experimental OA model was constructed by anterior cruciate ligament transection surgery, and Agomir-1 was injected into the joint cavity of mice to assess the protective effect of miR-1 in OA progression. Histological staining, immunofluorescence staining and Osteoarthritis Research Society International score revealed that miR-1 could alleviate the OA progression. Therefore, our study elucidated the mechanism of miR-1 in OA in detail and provided a new insight for the treatment of OA.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Gang Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Liu
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Jian He
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Jun Chen
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
14
|
Li H, Wang B, Wu S, Dong S, Jiang G, Huang Y, Tong X, Yu M. Ferroptosis is involved in polymyxin B-induced acute kidney injury via activation of p53. Chem Biol Interact 2023; 378:110479. [PMID: 37088170 DOI: 10.1016/j.cbi.2023.110479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Polymyxin B (PMB) is one of the most effective drugs for the treatment of multi-resistant and pan-resistant gram-negative infections. However, it can induce acute kidney injury (AKI), the mechanism of which has not yet been fully elucidated. In this study, RNA sequencing and in vitro and in vivo experiments demonstrated that PMB induced AKI by promoting ferroptosis. Moreover, the metallothionein-1 (MT-1) level was significantly increased in the AKI group and clinical cases revealed that iron and MT-1 levels in urine were significantly higher in patients with AKI than in those without AKI. To explore the mechanism of PMB induced ferroptosis, we silenced p53 in human kidney-2 (HK2) cells according to RNA sequencing, which showed that p53 was obviously enhanced in the PMB treated group. While PMB significantly enhanced Fe2+, lipid peroxidation, malondialdehyde (MDA), transferrin receptor protein 1 (TFR1), and arachidonate 12-lpoxygenase (ALOX12), decreased the survival rate, solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and glutathione (GSH), downregulation of p53 reversed these effects, suggesting PMB induced ferroptosis by activating p53. Studies have shown p53 can promote ferroptosis by regulating the downstream factors SLC7A11 or TFR1. Further, we verified that silencing TFR1 expression as well as overexpression of SLC7A11 inhibited ferroptosis and significantly increased the survival rate of HK2 cells. Overall, PMB induces ferroptosis in renal tubular cells by activating p53 to reduce SLC7A11 expression and elevate TFR1, leading to AKI; MT-1 and iron levels in urine were significantly increased when PMB induced ferroptosis.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, People's Republic of China; Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China; Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, People's Republic of China
| | - Boying Wang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, People's Republic of China; Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China
| | - Sheng Wu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, People's Republic of China; Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China
| | - Shuying Dong
- Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China
| | - Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China
| | - Yingying Huang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, People's Republic of China; Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China
| | - Xuhui Tong
- Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China.
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, People's Republic of China; Faculty of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, People's Republic of China; Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, People's Republic of China.
| |
Collapse
|
15
|
Zhang D, Wu C, Ba D, Wang N, Wang Y, Li X, Li Q, Zhao G. Ferroptosis contribute to neonicotinoid imidacloprid-evoked pyroptosis by activating the HMGB1-RAGE/TLR4-NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114655. [PMID: 36812867 DOI: 10.1016/j.ecoenv.2023.114655] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Imidacloprid (IMI) is among the common neonicotinoid insecticides used in agriculture worldwide, posing a potential toxic threat to non-target animals and humans. Numerous studies have shown that ferroptosis is involved in the pathophysiological progression of renal diseases. However, it remains unclear whether ferroptosis is involved in IMI-induced nephrotoxicity. In the present study, we investigated the potential pathogenic role of ferroptosis in IMI-induced kidney damage in vivo. Transmission electron microscopy (TEM) showed that the mitochondrial crest of kidney cells significantly decreased following IMI exposure. Moreover, IMI exposure triggered ferroptosis and lipid peroxidation in the kidney. We confirmed that nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant capability was negatively correlated with the ferroptosis induced by IMI exposure. Importantly, we verified that NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-driven inflammation occurred in the kidneys following IMI exposure, but pretreatment with the ferroptosis inhibitor ferrostatin (Fer-1) blocked this phenomenon. Additionally, IMI exposure induced F4/80+ macrophages to accumulated in the proximal tubules of the kidneys, and also increased the protein expression of high-mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE), receptor for advanced glycation end products (TLR4), and nuclear factor kappa-B (NF-κB). In contrast, inhibition of ferroptosis by Fer-1 blocked IMI-induced NLRP3 inflammasome activation, F4/80 positive macrophages, and the HMGB1-RAGE/TLR4 signaling pathway. To the best of our knowledge, this is the first study to reveal that IMI stress can induce Nrf2 inactivation, thereby triggering ferroptosis, causing an initial wave of death, and activating HMGB1-RAGE/TLR4 signaling, which promotes pyroptosis that perpetuates kidney dysfunction.
Collapse
Affiliation(s)
- Dongfang Zhang
- Department of Pathology, Jilin Medical University, Jilin 130013, Jilin Province, PR China
| | - Chunling Wu
- Department of Pathphysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Deyan Ba
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong Province, PR China
| | - Nan Wang
- Department of Pathology, Jilin Medical University, Jilin 130013, Jilin Province, PR China
| | - Yanling Wang
- Department of Pathphysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xinlian Li
- Department of Pathphysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Qiuyue Li
- Department of Pathphysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Guifang Zhao
- Department of Pathology, Jilin Medical University, Jilin 130013, Jilin Province, PR China.
| |
Collapse
|
16
|
Zhang F, Yan Y, Cai Y, Liang Q, Liu Y, Peng B, Xu Z, Liu W. Current insights into the functional roles of ferroptosis in musculoskeletal diseases and therapeutic implications. Front Cell Dev Biol 2023; 11:1112751. [PMID: 36819098 PMCID: PMC9936329 DOI: 10.3389/fcell.2023.1112751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is a novel type of cell death associated with iron accumulation and excessive lipid peroxidation. Elucidating the underlying molecular mechanisms of ferroptosis is intensively related to the development and treatment of multiple diseases, including musculoskeletal disorders. Moreover, in vitro and in vivo studies have shown the importance of oxidative stress in musculoskeletal conditions such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma. Ferroptosis-derived clinical management of musculoskeletal diseases offers tremendous and attractive opportunities. Notably, ferroptosis agonists have been proven to enhance the sensitivity of osteosarcoma cells to conventional therapeutic strategies. In this review, we have mainly focused on the implications of ferroptosis regulation in the pathophysiology and therapeutic response of musculoskeletal disorders. Understanding roles of ferroptosis for controlling musculoskeletal diseases might provide directions for ferroptosis-driven therapies, which could be promising for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China
| |
Collapse
|
17
|
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. Int J Mol Sci 2022; 23:ijms232415936. [PMID: 36555574 PMCID: PMC9785367 DOI: 10.3390/ijms232415936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.
Collapse
|
18
|
Li S, Wang R, Wang Y, Liu Y, Qiao Y, Li P, Chen J, Pan S, Feng Q, Liu Z, Liu D. Ferroptosis: A new insight for treatment of acute kidney injury. Front Pharmacol 2022; 13:1065867. [PMID: 36467031 PMCID: PMC9714487 DOI: 10.3389/fphar.2022.1065867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 09/16/2023] Open
Abstract
Acute kidney injury (AKI), one of the most prevalent clinical diseases with a high incidence rate worldwide, is characterized by a rapid deterioration of renal function and further triggers the accumulation of metabolic waste and toxins, leading to complications and dysfunction of other organs. Multiple pathogenic factors, such as rhabdomyolysis, infection, nephrotoxic medications, and ischemia-reperfusion injury, contribute to the onset and progression of AKI. However, the detailed mechanism remains unclear. Ferroptosis, a recently identified mechanism of nonapoptotic cell death, is iron-dependent and caused by lipid peroxide accumulation in cells. A variety of studies have demonstrated that ferroptosis plays a significant role in AKI development, in contrast to other forms of cell death, such as apoptosis, necroptosis, and pyroptosis. In this review, we systemically summarized the definition, primary biochemical mechanisms, key regulators and associated pharmacological research progress of ferroptosis in AKI. We further discussed its therapeutic potential for the prevention of AKI, in the hope of providing a useful reference for further basic and clinical studies.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Rui Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yong Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jingfang Chen
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
19
|
Guo J, Wang R, Min F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells. J Leukoc Biol 2022; 112:1065-1077. [PMID: 35774015 DOI: 10.1002/jlb.1a0422-211r] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) represents a prevailing complication of sepsis, and its onset involves ferroptosis. Ginsenoside Rg1 exerts a positive effect on kidney diseases. This study explored the action of ginsenoside Rg1 in sepsis-induced AKI (SI-AKI) by regulating ferroptosis in renal tubular epithelial cells (TECs). Sepsis rat models were established using cecal ligation and puncture (CLP) and cell models were established by treating human renal TECs (HK-2) with LPS to induce ferroptosis. Serum creatinine (SCr) and blood urea nitrogen (BUN) and urine KIM1 contents in rats were determined by ELISA kits. Kidney tissues were subjected to immunohistochemical and H&E stainings. Iron concentration, malondialdehyde (MDA), glutathione (GSH), and ferroptosis-related protein (ferritin light chain [FTL], ferritin heavy chain [FTH], GSH peroxidase 4 [GPX4], and Ferroptosis suppressor protein 1 [FSP1]) levels in kidney tissues and HK-2 cells were measured using ELISA kits and Western blotting. HK-2 cell viability was detected by cell counting kit-8, and cell death was observed via propidium iodide staining. Reactive oxygen species accumulation in cells was detected using C11 BODIPY 581/591 as a molecular probe. In CLP rats, ginsenoside Rg1 reduced SCr, BUN, KIM1, and NGAL levels, thus palliating SI-AKI. Additionally, ginsenoside Rg1 decreased iron content, FTL, FTH, and MDA levels, and elevated GPX4, FSP1, and GSH levels, thereby inhibiting lipid peroxidation and ferroptosis. Moreover, FSP1 knockdown annulled the inhibition of ginsenoside Rg1 on ferroptosis. In vitro experiments, ginsenoside Rg1 raised HK-2 cell viability and lowered iron accumulation and lipid peroxidation during ferroptosis, and its antiferroptosis activity was dependent on FSP1. Ginsenoside Rg1 alleviates SI-AKI, possibly resulting from inhibition of ferroptosis in renal TECs through FSP1.
Collapse
Affiliation(s)
- Jun Guo
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong Wang
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fei Min
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Wang GG, Wang Y, Wang SL, Zhu LC. Down-regulation of CX43 expression by miR-1 inhibits the proliferation and invasion of glioma cells. Transl Cancer Res 2022; 11:4126-4136. [PMID: 36523292 PMCID: PMC9745374 DOI: 10.21037/tcr-22-2318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2025]
Abstract
BACKGROUND Connexin (CX) 43 makes glioblastoma resistant to temozolomide, the first-line chemotherapy drug. However, targeting CX43 is very difficult because the mechanisms underlying CX43-mediated resistance remain unclear. CX43 is highly expressed in glioblastoma, which is closely associated with poor prognosis and chemotherapy resistance. The present study was to analyze the mechanism of microRNA (miR)-1 in regulating the proliferation and invasion of glioma cells. METHODS The effects of knockdown of miR-1 on the growth of glioma cell lines were observed by establishing blank, miR-1 inhibitor, and miR-1 mimic groups. Cell proliferation was detected using a Cell Counting Kit-8 (CCK-8) assay, cell apoptosis was detected by flow cytometry, and protein expression was detected by western blot. We used the Student's t-test to assess continuous data between the two groups and the Kruskal-Wallis test was adopted for multiple group comparisons. RESULTS Compared with the mimics normal control (NC) group, the apoptosis rate of the miR-1-3p mimics group was decreased, while that of the miR-1-3p inhibitor group was increased compared to the inhibitor NC group. In addition, the miR-1-3p mimics model of U251 cells exerted an inhibitory effect on the invasion ability of cells, whereas the miR-1-3p inhibitor model of U251 cells showed an invasion-promoting effect. The dual-luciferase assay showed that miR-1-3p had a targeted relationship with the CX43 gene. CONCLUSIONS Down-regulation of CX43 expression by miR-1 inhibited the infiltration and growth of glioma cells and further promoted the apoptosis of glioma cells by regulating CX43 expression.
Collapse
Affiliation(s)
- Gang-Gang Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Shi-Long Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li-Cang Zhu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
21
|
Roger E, Boutin L, Chadjichristos CE. The Role of Connexin 43 in Renal Disease: Insights from In Vivo Models of Experimental Nephropathy. Int J Mol Sci 2022; 23:ijms232113090. [PMID: 36361888 PMCID: PMC9656944 DOI: 10.3390/ijms232113090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Renal disease is a major public health challenge since its prevalence has continuously increased over the last decades. At the end stage, extrarenal replacement therapy and transplantation remain the only treatments currently available. To understand how the disease progresses, further knowledge of its pathophysiology is needed. For this purpose, experimental models, using mainly rodents, have been developed to unravel the mechanisms involved in the initiation and progression of renal disease, as well as to identify potential targets for therapy. The gap junction protein connexin 43 has recently been identified as a novel player in the development of kidney disease. Its expression has been found to be altered in many types of human renal pathologies, as well as in different animal models, contributing to the activation of inflammatory and fibrotic processes that lead to renal damage. Furthermore, Cx43 genetic, pharmacogenetic, or pharmacological inhibition preserved renal function and structure. This review summarizes the existing advances on the role of this protein in renal diseases, based mainly on different in vivo animal models of acute and chronic renal diseases.
Collapse
Affiliation(s)
- Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
| | - Louis Boutin
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, Université de Paris, 75010 Paris, France
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France
| | - Christos E. Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
- Correspondence:
| |
Collapse
|
22
|
Zhou Y, Zhang J, Guan Q, Tao X, Wang J, Li W. The role of ferroptosis in the development of acute and chronic kidney diseases. J Cell Physiol 2022; 237:4412-4427. [PMID: 36260516 DOI: 10.1002/jcp.30901] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Ferroptosis, a novel form of regulated cell death, is characterized by imbalance of intracellular iron and redox systems, resulting from overgeneration of toxic lipid peroxidation products. In recent years, the verified crucial role of ferroptosis has been widely concerned in rudimentary pathogenesis and development of various acute and chronic kidney disease (CKD), comprehending the potential patterns of cell death can afford more reliable bases and principles for treatment and prevention of renal disease. In this review, the regulatory mechanisms of ferroptosis were introduced and the important roles of ferroptosis in diverse renal diseases such as acute kidney injury, CKD, and renal fibrosis were outlined to illuminate the potential of restraining ferroptosis in treatment and prevention of kidney disease.
Collapse
Affiliation(s)
- Yijun Zhou
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Junlan Zhang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Qingyan Guan
- School of Nursing, Weifang Medical University, Weifang, Shandong Province, China
| | - Xun Tao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinling Wang
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
23
|
Expression Profile of mRNAs and miRNAs Related to the Oxidative-Stress Phenomenon in the Ishikawa Cell Line Treated Either Cisplatin or Salinomycin. Biomedicines 2022; 10:biomedicines10051190. [PMID: 35625926 PMCID: PMC9138494 DOI: 10.3390/biomedicines10051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The oxidative stress phenomenon is a result of anticancer therapy. The aim of this study was the assessment of gene expression profile changes, and to determine the miRNAs regulating genes’ transcriptional activity in an Ishikawa endometrial cancer culture exposed to cisplatin or salinomycin, compared to a control culture. The molecular analysis comprised the microarray technique (mRNAs and micro RNA (miRNA), the real-time quantitative reverse transcription reaction (RTqPCR), enzyme-linked immunosorbent assay (ELISA) reactions, and Western blot. NR4A2, MAP3K8, ICAM1, IL21, CXCL8, CCL7, and SLC7A11 were statistically significantly differentiated depending not only on time, but also on the drug used in the experiment. The conducted assessment indicated that the strongest links were between NR4A2 and hsa-miR-30a-5p and has-miR-302e, MAP3K8 and hsa-miR-144-3p, CXCL8 and hsa-miR-140-3p, and SLC7A11 and hsa-miR-144-3p. The obtained results suggest that four mRNAs—NR4A2, MAP3K8, CXCL8 and SLC7A11—and four miRNAs—hsa-miR-30a-5p, hsa-miR-302e, hsa-miR-144-3p and hsa-miR-140-3—changed their expressions regardless of the chemotherapeutic agent used, which suggests the possibility of their use in monitoring the severity of oxidative stress in endometrial cancer. However, considering the results at both the mRNA and the protein level, it is most likely that the expressions of NR4A2, MAP3K8, CXCL8 and SLC7A11 are regulated by miRNA molecules as well as other epigenetic mechanisms.
Collapse
|