1
|
Liu D, Mao Y, Tang Z, Liu D, Cao X. Exploring the protective mechanism of Lentinus edodes mycelium polysaccharide against AGEs-induced HUVECs damage: Insights from whole transcriptome sequencing and cell biology techniques. Int J Biol Macromol 2025:145214. [PMID: 40513741 DOI: 10.1016/j.ijbiomac.2025.145214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/29/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in laboratory could effectively inhibit the generation of advanced glycosylation end products (AGEs), but the inhibitory mechanism of LMP on AGEs-induced human umbilical vein endothelial cells (HUVECs) damage is still unclear. Whole transcriptome sequencing technology combined with cell-level verification were used to reveal the inhibition mechanism of LMP on AGEs-induced HUVECs damage in the research. Whole transcriptome sequencing data demonstrated the differential expressions of multiple lncRNAs, CircRNAs, miRNAs, and mRNAs among different groups. The results obtained from cell level qPCR verification were in agreement with those derived from sequencing, the ceRNA network was constructed, the inhibitory mechanism of LMP was found to be related to the ZNF609/MSTRG.335979-miR-483-3p-RAPGEF1 regulatory axis and its downstream p38 MAPK-related cellular inflammation and apoptosis pathways. In this study, the LMP inhibition on AGEs-treated HUVECs was obtained for the first time through whole transcriptome sequence. The research provides a novel perspective for investigating the mechanism of AGEs-induced diabetes angiopathy (DA), and also provides an experimental basis for the development and utilization of Lentinus edodes resources.
Collapse
Affiliation(s)
- Dan Liu
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China; College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yitong Mao
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Zhipeng Tang
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Dawo Liu
- Department of Obstetrics & Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, China.
| | - Xiangyu Cao
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
2
|
Hoser J, Weglinska G, Samsel A, Maliszewska-Olejniczak K, Bednarczyk P, Zajac M. Modulation of the Respiratory Epithelium Physiology by Flavonoids-Insights from 16HBEσcell Model. Int J Mol Sci 2024; 25:11999. [PMID: 39596066 PMCID: PMC11594214 DOI: 10.3390/ijms252211999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Extensive evidence indicates that the compromise of airway epithelial barrier function is closely linked to the development of various diseases, posing a significant concern for global mortality and morbidity. Flavonoids, natural bioactive compounds, renowned for their antioxidant and anti-inflammatory properties, have been used for centuries to prevent and treat numerous ailments. Lately, a growing body of evidence suggests that flavonoids can enhance the integrity of the airway epithelial barrier. The objective of this study was to investigate the impact of selected flavonoids representing different subclasses, such as kaempferol (flavonol), luteolin (flavone), and naringenin (flavanone), on transepithelial electrical resistance (TEER), ionic currents, cells migration, and proliferation of a human bronchial epithelial cell line (16HBE14σ). To investigate the effect of selected flavonoids, MTT assay, trypan blue staining, and wound healing were assessed. Additionally, transepithelial resistance and Ussing chamber measurements were applied to investigate the impact of the flavonoids on the electrical properties of the epithelial barrier. This study showed that kaempferol, luteolin, and naringenin at micromolar concentrations were not cytotoxic to 16HBE14σ cells. Indeed, in MTT tests, a statistically significant change in cell metabolic activity for luteolin and naringenin was observed. However, our experiments showed that naringenin did not affect the proliferation of 16HBE14σ cells, while the effect of kaempferol and luteolin was inhibitory. Moreover, transepithelial electrical resistance measurements have shown that all of the flavonoids used in this study improved the epithelial integrity with the slightest effect of kaempferol and the significant impact of naringenin and luteolin. Finally, our observations suggest that luteolin increases the Cl- transport through cystic fibrosis transmembrane conductance regulator (CFTR) channel. Our findings reveal that flavonoids representing different subclasses exert distinct effects in the employed cellular model despite their similar chemical structures. In summary, our study sheds new light on the diverse effects of selected flavonoids on airway epithelial barrier function, underscoring the importance of further exploration into their potential therapeutic applications in respiratory health.
Collapse
Affiliation(s)
| | | | | | | | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (J.H.); (G.W.); (A.S.); (K.M.-O.); (M.Z.)
| | | |
Collapse
|
3
|
Zhou SY, Du JM, Li WJ, Liu QY, Zhang QY, Su GH, Li Y. The roles and regulatory mechanisms of cigarette smoke constituents in vascular remodeling. Int Immunopharmacol 2024; 140:112784. [PMID: 39083928 DOI: 10.1016/j.intimp.2024.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qi-Yun Liu
- Department of Cardiology, Shandong Second Medical University, Weifang, China
| | - Qun-Ye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Liu D, Mei X, Mao Y, Li Y, Wang L, Cao X. Lentinus edodes mycelium polysaccharide inhibits AGEs-induced HUVECs pyroptosis by regulating LncRNA MALAT1/miR-199b/mTOR axis and NLRP3/Caspase-1/GSDMD pathway. Int J Biol Macromol 2024; 267:131387. [PMID: 38582470 DOI: 10.1016/j.ijbiomac.2024.131387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet β cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.
Collapse
Affiliation(s)
- Dan Liu
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xueying Mei
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yitong Mao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yanjun Li
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Le Wang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
5
|
Mei S, Chen X. Combination of HPLC–orbitrap‐MS/MS and network pharmacology to identify the anti‐inflammatory phytochemicals in the coffee leaf extracts. FOOD FRONTIERS 2023; 4:1395-1412. [DOI: 10.1002/fft2.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractIn this study, we investigated the phytochemical compositions and the associated anti‐inflammatory activity of coffee leaf fractions prepared by sequential solvent extraction using high‐performance liquid chromatography–orbitrap‐tandem mass spectrometry (HPLC–orbitrap‐MS/MS) combined with network pharmacology. The results showed that the ethyl acetate fraction (EAC‐L) had the highest nitric oxide (NO), ABTS, and DPPH free radical scavenging abilities due to the higher concentrations of mangiferin, rutin, 3,5‐dicaffeoylquinic acid (3,5‐diCQA), and 4,5‐diCQA. The extraction solvents had the greatest impact on the anti‐inflammatory activity of coffee leaf fractions, whereas the processing method had the most significant effect on the antioxidant activity of these fractions. Untargeted metabolomics analysis using HPLC–orbitrap‐MS/MS indicated that palmitic acid, 3,4‐dihydroxybenzaldehyde, and caffeic acid may be involved in the anti‐inflammatory activity of EAC‐L fraction obtained from fresh coffee leaves. On the other hand, processed coffee leaf fraction exhibited anti‐inflammatory activity that was attributed to the presence of 9S,13R‐12‐oxophytodienoic acid, pinocembrin, and quercetin, which have high degree values associated with the inflammation network. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment of network pharmacology analysis showed that these 35 differential compounds in the coffee leaf fractions affect cell transcription, apoptosis, phosphorylation, NO synthesis, phosphatidylinositide 3‐kinases‐protein kinase B (PI3K‐Akt) signaling pathway, focal adhesion, hypoxia‐inducible factor‐1, hepatitis, cancer, and so on. This result indicated that coffee leaf extract may also function as an inhibitor for inflammation‐related cancers. The findings of our research are valuable in guiding the extraction of anti‐inflammatory components from coffee leaves.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu P. R. China
| | - Xiumin Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu P. R. China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu P. R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang P. R. China
| |
Collapse
|
6
|
Liu J, Lu Y, Si B, Tong A, Lu Y, Lv L. Synergistic Inhibitory Effect of Multiple Polyphenols from Spice on Acrolein during High-Temperature Processing. Foods 2023; 12:2326. [PMID: 37372537 DOI: 10.3390/foods12122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acrolein (ACR) is a toxic unsaturated aldehyde that is produced during food thermal processing. Here, we investigated the synergistic effect of polyphenols in binary, ternary, and quaternary combinations on ACR by the Chou-Talalay method, and then explored the synergistic effect of cardamonin (CAR), alpinetin (ALP), and pinocembrin (PIN) in fixed proportion from Alpinia katsumadai Hayata (AKH) combined with curcumin (CUR) in the model, and roasted pork using LC-MS/MS. Our results showed that their synergistic effect depended on the intensification of their individual trapping ACR activities, which resulted in the formation of more ACR adducts. In addition, by adding 1% AKH (as the carrier of CAR, ALP, and PIN) and 0.01% CUR (vs. 6% AKH single) as spices, more than 71.5% (vs. 54.0%) of ACR was eliminated in roast pork. Our results suggested that selective complex polyphenols can synergistically remove the toxic ACR that is produced in food processing.
Collapse
Affiliation(s)
- Juan Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Bo Si
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, 889 Fazhan Road, Suqian 223800, China
| | - Anqi Tong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Yang Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| |
Collapse
|
7
|
Liu D, Chen J, Xie Y, Mei X, Xu C, Liu J, Cao X. Investigating the molecular mechanisms of glyoxal-induced cytotoxicity in human embryonic kidney cells: Insights from network toxicology and cell biology experiments. ENVIRONMENTAL TOXICOLOGY 2022; 37:2269-2280. [PMID: 35621379 DOI: 10.1002/tox.23593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Glyoxal, a reactive carbonyl species, can be generated both endogenously (glucose metabolism) and exogenously (cigarette smoke and food system). Increasing evidence demonstrates that glyoxal exacerbates the development and progression of diabetic nephropathy, but the underlying mechanisms of glyoxal toxicity to human embryonic kidney (HEK293) cells remain unclear. In this work, the molecular mechanisms of glyoxal-induced cytotoxicity in HEK293 cells were explored with network toxicology and cell biology experiments. Network toxicology results showed that oxidative stress and advanced glycation end products (AGEs)/RAGE signaling pathways played a crucial role in glyoxal toxicity. Next, further validation was performed at the cellular level. Glyoxal activated the AGEs-RAGE signaling pathway, caused the increase of cellular ROS, and activated the p38MAPK and JNK signaling pathways, causing cellular oxidative stress. Furthermore, glyoxal caused the activation of the NF-κB signaling pathway and increased the expression of TGF-β1, indicating that glyoxal caused cellular inflammation. Moreover, glyoxal caused cellular DNA damage accompanied by the activation of DNA damage response pathways. Finally, the mitochondrial apoptosis pathway was activated. The results that obtained in cell biology were consistent with network toxicology, which corroborated each other and together indicated that glyoxal induced HEK293 cells damage via the process of oxidative stress, the AGEs-RAGE pathway, and their associated signaling pathways. This study provides the experimental basis for the cytotoxicity of glyoxal on HEK293 cells.
Collapse
Affiliation(s)
- Dan Liu
- School of life Science, Liaoning University, Shenyang, China
| | - Junliang Chen
- School of life Science, Liaoning University, Shenyang, China
| | - Yanzhen Xie
- School of life Science, Liaoning University, Shenyang, China
| | - Xueying Mei
- School of life Science, Liaoning University, Shenyang, China
| | - Chengbin Xu
- School of Environment Science, Liaoning University, Shenyang, China
| | - Jianli Liu
- School of life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- School of life Science, Liaoning University, Shenyang, China
| |
Collapse
|
8
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|