1
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2024:10.1007/s12011-024-04450-8. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Guo P, Li Q, Wang S, Jiang X, Yang Q, Yu W, Al-Mutairi KA, Tang Z, Han Q, Liao J. Hesperidin alleviates terbuthylazine-induced ferroptosis via maintenance of mitochondria-associated endoplasmic reticulum membrane integrity in chicken hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109989. [PMID: 39089429 DOI: 10.1016/j.cbpc.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.
Collapse
Affiliation(s)
- Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Xinyue Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | | | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
3
|
Huang B, Nie G, Dai X, Cui T, Pu W, Zhang C. Environmentally relevant levels of Cd and Mo coexposure induces ferroptosis and excess ferritinophagy through AMPK/mTOR axis in duck myocardium. ENVIRONMENTAL TOXICOLOGY 2024; 39:4196-4206. [PMID: 38717027 DOI: 10.1002/tox.24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 07/14/2024]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) are multiorgan toxic, but the detrimental impacts of Cd and/or Mo on poultry have not been fully clarified. Thence, a 16-week sub-chronic toxic experiment was executed with ducks to assess the toxicity of Cd and/or Mo. Our data substantiated that Cd and Mo coexposure evidently reduced GSH-Px, GSH, T-SOD, and CAT activities and elevated H2O2 and MDA concentrations in myocardium. What is more, the study suggested that Cd and Mo united exposure synergistically elevated Fe2+ content in myocardium and activated AMPK/mTOR axis, then induced ferroptosis by obviously upregulating ACSL4, PTGS2, and TFRC expression levels and downregulating SLC7A11, GPX4, FPN1, FTL1, and FTH1 expression levels. Additionally, Cd and Mo coexposure further caused excessive ferritinophagy by observably increasing autophagosomes, the colocalization of endogenous FTH1 and LC3, ATG5, ATG7, LC3II/LC3I, NCOA4, and FTH1 expression levels. In brief, this study for the first time substantiated that Cd and Mo united exposure synergistically induced ferroptosis and excess ferritinophagy by AMPK/mTOR axis, finally augmenting myocardium injure in ducks, which will offer an additional view on united toxicity between two heavy metals on poultry.
Collapse
Affiliation(s)
- Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Ministry of Public Education, Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Zhu R, Liu L, Mao T, Wang X, Li Y, Li T, Lv S, Zeng S, Fu N, Li N, Wang Y, Sun M, Zhang J. Mfn2 regulates mitochondria and mitochondria-associated endoplasmic reticulum membrane function in neurodegeneration induced by repeated sevoflurane exposure. Exp Neurol 2024; 377:114807. [PMID: 38704082 DOI: 10.1016/j.expneurol.2024.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.
Collapse
Affiliation(s)
- Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Lu Liu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China 450001
| | - Tian Mao
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; School of Clinical Medicine, Henan University, Kaifeng, Henan, PR China, 475004
| | - Xiaoling Wang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China 450001
| | - Yubao Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China, 453003
| | - Ting Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003; Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China, 453003
| | - Shuang Lv
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, PR China 450003.
| |
Collapse
|
5
|
Ding Y, Liu N, Zhang D, Guo L, Shang Q, Liu Y, Ren G, Ma X. Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases. Front Pharmacol 2024; 15:1398381. [PMID: 38694924 PMCID: PMC11061472 DOI: 10.3389/fphar.2024.1398381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide. In 2022, the CVDs contributed to 19.8 million deaths globally, accounting for one-third of all global deaths. With an aging population and changing lifestyles, CVDs pose a major threat to human health. Mitochondria-associated endoplasmic reticulum membranes (MAMs) are communication platforms between cellular organelles and regulate cellular physiological functions, including apoptosis, autophagy, and programmed necrosis. Further research has shown that MAMs play a critical role in the pathogenesis of CVDs, including myocardial ischemia and reperfusion injury, heart failure, pulmonary hypertension, and coronary atherosclerosis. This suggests that MAMs could be an important therapeutic target for managing CVDs. The goal of this study is to summarize the protein complex of MAMs, discuss its role in the pathological mechanisms of CVDs in terms of its functions such as Ca2+ transport, apoptotic signaling, and lipid metabolism, and suggest the possibility of MAMs as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yanqiu Ding
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijun Guo
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Shang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yicheng Liu
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaocan Ren
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Lu B, Chen X, Ma Y, Gui M, Yao L, Li J, Wang M, Zhou X, Fu D. So close, yet so far away: the relationship between MAM and cardiac disease. Front Cardiovasc Med 2024; 11:1353533. [PMID: 38374992 PMCID: PMC10875081 DOI: 10.3389/fcvm.2024.1353533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria-associated membrane (MAM) serve as crucial contact sites between mitochondria and the endoplasmic reticulum (ER). Recent research has highlighted the significance of MAM, which serve as a platform for various protein molecules, in processes such as calcium signaling, ATP production, mitochondrial structure and function, and autophagy. Cardiac diseases caused by any reason can lead to changes in myocardial structure and function, significantly impacting human health. Notably, MAM exhibits various regulatory effects to maintain cellular balance in several cardiac diseases conditions, such as obesity, diabetes mellitus, and cardiotoxicity. MAM proteins independently or interact with their counterparts, forming essential tethers between the ER and mitochondria in cardiomyocytes. This review provides an overview of key MAM regulators, detailing their structure and functions. Additionally, it explores the connection between MAM and various cardiac injuries, suggesting that precise genetic, pharmacological, and physical regulation of MAM may be a promising strategy for preventing and treating heart failure.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulong Ma
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu H, Dai X, Xu S, Guo H, Zhu J, Wang S, Wu Y, Zhang C. Co-exposure to molybdenum and cadmium evokes necroptosis and decreases apoptosis in duck myocardium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166074. [PMID: 37544436 DOI: 10.1016/j.scitotenv.2023.166074] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Superfluous molybdenum (Mo) and cadmium (Cd) in the environment are detrimental to organisms through their accumulation. The NF-κB/TNF-α axis plays a vital part in regulating necroptosis and apoptosis. However, the impacts of Mo and/or Cd on myocardium injury in ducks and the function of NF-κB/TNF-α axis are not clear in the process. In this research, ducks exposed to different dosages of Mo and/or Cd were applied as the study object. The findings substantiated that the accumulation of Mo and/or Cd caused elements imbalance and necroptosis in myocardial tissue. As p-NF-κB/TNF-α expression up-regulated, RIPK1/RIPK3/p-MLKL expression significantly increased in all treatment groups, while the expression of c-caspase-8/3 markedly decreased. Moreover, apoptosis rate obviously decreased in Cd treated groups and clearly elevated in Mo group. Mitochondria-mediated apoptosis was activated by excessive Mo and inhibited by Mo + Cd, but Cd exposure alone had little effect on it. Collectively, our research confirmed that Mo and/or Cd evoked necroptosis via NF-κB/TNF-α axis, and decreased death receptor-mediated apoptosis in duck myocardium, the impacts of Mo and/or Cd on mitochondrial-mediated apoptosis were different. These results are significant for studying toxicology of Mo and/or Cd and preserving the ecosystem.
Collapse
Affiliation(s)
- Hang Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shiwen Xu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sunan Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yuning Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|