1
|
Zhao W, Pang S, Zhang J, Yao Z, Song Y, Sun Y. AFB1 exposure promotes SIV replication and lung damage via RIG-I- and p38-mediated RETREG1/FAM134B-dependent endoplasmic reticulum autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117970. [PMID: 40009944 DOI: 10.1016/j.ecoenv.2025.117970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Aflatoxin B1 (AFB1) contamination is common worldwide and highly harmful to humans and animals. Our previous studies suggested that AFB1 exposure promotes the replication of H1N1 swine influenza virus (SIV). However, its mechanism is not clear. Here, TCID50, qRT-PCR, and WB assays were used to detect SIV replication, after which proteomic detection was used to screen key proteins and pathways. Thirty piglets were subsequently randomly divided into 6 groups. The low-pathogenicity SIV was inoculated to establish a piglet model of SIV infection. Different doses of AFB1 were administered daily to SIV-infected piglets for 14 d. The in vitro results revealed that 0.02-0.04 μg/mL AFB1 markedly promoted SIV replication. Proteomic analysis revealed that reticulophagy regulator 1 (RETREG1/FAM134B) and p38 signaling were markedly upregulated, whereas RIG-I signaling was significantly downregulated. The above results were confirmed by qRT-PCR and WB assays. Transmission electron microscopy was used to further prove that AFB1 promoted endoplasmic reticulum autophagy (ER-phagy) in SIV-infected PAMs. RIG-I activator and p38 inhibitor reversed the upregulation of RETREG1 and AFB1-promoted SIV replication, and RETREG1 inhibitor reversed the AFB1-promoted SIV replication. In vivo experiments confirmed that AFB1 upregulated RETREG1 and p38, downregulated RIG-I, and promoted SIV replication and lung damage. Taken together, our results reveal that AFB1 promotes SIV replication and lung damage via RIG-I- and p38-mediated RETREG1/FAM134B-dependent ER-phagy and suggest the therapeutic potential of RETREG1-, RIG-I-, and p38-related drugs for influenza. Our findings also provide insights into why the occurrence of other infectious diseases is increasing.
Collapse
Affiliation(s)
- Wenshuo Zhao
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Siyao Pang
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Jinlong Zhang
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Zhaoran Yao
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yuqi Song
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yuhang Sun
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
2
|
Ding J, Cheng X, Zeng C, Zhao Q, Xing C, Zhang C, Cao H, Guo X, Hu G, Zhuang Y. Aflatoxin B1 Promotes Pyroptosis in IPEC-J2 Cells by Disrupting Mitochondrial Dynamics through the AMPK/NLRP3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28093-28108. [PMID: 39630575 DOI: 10.1021/acs.jafc.4c05876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins in food and feed, seriously jeopardizing the intestinal health, while the effects of AFB1 on intestinal damage remain to be well understood. This study aims to evaluate the effect of AFB1 on intestinal injury by regulating AMP-activated protein kinase (AMPK)-mediated pyroptosis in vitro. The present study showed that AFB1 led to the formation of large number of bubble-like protrusions on the cell membrane, releasing lactate dehydrogenase (LDH) and interleukin-1β (IL-1β). Stimulation with AFB1 resulted in the activation of the NOD-like receptor protein 3 (NLRP3) pathway, as indicated by the increased expression of pyroptosis-associated factor mRNAs and proteins, which ultimately led to a significant upregulation of the pyroptosis rate. Meanwhile, AFB1 caused dysfunction of mitochondrial dynamics by activating the AMPK signaling pathway as mainly evidenced by upregulating dynamin-1-like protein 1 (Drp1) mRNA and protein expression. Moreover, inhibition of NLRP3 and AMPK pathways by MCC950 and compound C, respectively, significantly alleviated AFB1-induced damage in IPEC-J2 cells, evidenced by suppressed NLRP3-mediated pyroptosis, and ameliorated AMPK-mediated mitochondrial dynamics imbalance. In conclusion, these results demonstrated that AFB1 promoted pyroptosis of IPEC-J2 cells by interfering with mitochondrial dynamics by activating the AMPK/NRLP3 pathway.
Collapse
Affiliation(s)
- Jiayi Ding
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Chun Zeng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Qintao Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| |
Collapse
|
3
|
Mann P, Liu J, Yu LE, Wolfenden R, Li Y. Utilizing the apical-out enteroids in vitro model to investigate intestinal glucose transport, barrier function, oxidative stress, and inflammatory responses in broiler chickens. Front Physiol 2024; 15:1470009. [PMID: 39568543 PMCID: PMC11576162 DOI: 10.3389/fphys.2024.1470009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Conventional 2D intestinal epithelial cell lines have been widely used in investigating intestinal functions, yet with limitations in recapitulating the in vivo gut physiology of chickens. A recently established chicken enteroid model with apical-out nature and the presence of leukocyte components represents intestinal mucosal functions. The objectives of this study were to 1) evaluate basic gut nutrient transport and barrier functions in this model and 2) identify the model's effectiveness in studying inflammation and oxidative stress responses. Methods Enteroids were generated from individual villus units isolated from the small intestine of Cobb500 broiler embryos. Enteroid viability, morphology, and epithelial cell markers were monitored; barrier function was evaluated based on the permeability to fluorescein isothiocyanate-dextran (FD4) with or without EDTA and lipopolysaccharide (LPS) challenges; nutrient transport was evaluated by fluorescence-labeled glucose (2NBD-G) with or without transporter blockade; the oxidative status was indicated by reactive oxygen species (ROS). Inflammatory and oxidative challenges were induced by LPS and menadione treatment, respectively. Selected marker gene expressions, including tight junction proteins (CLDN-1, CLDN-2, ZO-1, and OCCL), epithelial cell markers (Lgr-5, LYZ, and MUC-2), cytokines (IL-1β, IL-6, IL-8, IL-10, TNF-α, and INF-γ), and antioxidant enzymes (Nrf-2, catalase, and SOD), were determined by using RT-qPCR. Data were analyzed by one-way ANOVA among treatment groups. Results Enteroid cell activity was stable from day (d) 2 to d 6 and declined at d 7. Epithelial cell marker and cytokine expressions were stable from d 4 to d 6. FD4 permeability was increased after the EDTA treatment (P ≤ 0.05). Transporter-mediated 2NBD-G absorption was observed, which was reduced with glucose transporter blockade (P ≤ 0.05). Enteroids showed classic responses to LPS challenges, including upregulated gene expressions of IL-1β and IL-6, downregulated gene expressions of ZO-1 and OCCL, and increased FD4 permeability (P ≤ 0.05). Enteroids showed increased ROS generation (P ≤ 0.05) in response to oxidative stress. Discussion In conclusion, this apical-out enteroid model is a stable alternative in vitro model that exhibits intestinal barrier, nutrient transport, oxidation, and inflammation functions. With this enteroid model, we developed two challenge protocols for evaluating intestinal functions under oxidative stress and inflammation conditions.
Collapse
Affiliation(s)
- Peter Mann
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Jundi Liu
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, United States
| | - Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Ross Wolfenden
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, United States
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
4
|
Liu Z, Wang H, Han H, Li N, Zheng Z, Liang S, Zhong R, Chen L, Yan J, Mu S. The protective effect of dulcitol on lipopolysaccharide-induced intestinal injury in piglets: mechanistic insights. J Nutr Biochem 2024; 133:109719. [PMID: 39103108 DOI: 10.1016/j.jnutbio.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
This study investigated the protective effect of dulcitol on LPS-induced intestinal injury in piglets and explored the underlying molecular mechanisms. A total of 108 piglets were divided into three groups: CON, LPS, and DUL. The CON and LPS groups were fed a basal diet, the DUL group was fed a diet supplementation with 500 mg/kg dulcitol. On day 29, 6 piglets in the LPS and DUL groups were injected with 100 μg/kg BW of LPS. At 4 h postchallenge, all pigs were slaughtered, and colonic samples were collected. Results showed that dulcitol supplementation boosted intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, and increasing the gene expression of zonula occludens-1, claudin-1, and occludin in the colonic mucosa (P <0.05). Metabolomics showed DUL supplementation mainly increased (P <0.05) the metabolites related to steroid and vitamin metabolism (Cholesterol and Vitamin C). Proteomics showed that dulcitol supplementation altered the protein expression involved in maintaining barrier integrity (FN1, CADM1, and PARD3), inhibiting inflammatory response (SLP1, SFN, and IRF3), and apoptosis (including FAS, ING1, BTK, MTHFR, NOX, and P53BP2) in LPS-challenged piglets (P <0.05). Additionally, dulcitol addition also suppressed the TLR4/NF-κB signaling pathway and apoptosis in mRNA and protein levels. Dulcitol increased the abundance of short-chain fatty acid-producing bacteria (Lactobacillus, Blautia, and Faecalibacterium) at the genus level, but decreased the relative abundance of Proteobacteria at the phylum level and Pseudomonas and Delftia at the genus level in piglets (P<.05). In conclusion, these results suggested that the addition of dulcitol alleviated LPS-induced intestinal barrier injury in piglets, probably by maintaining its integrity, inhibiting the TLR4/NF-κB signaling pathways and apoptosis, and modulating the gut microbiota. Therefore, dulcitol can be considered a potential dietary additive for improving intestinal health in pig models.
Collapse
Affiliation(s)
- Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan, China
| | - Han Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Shuqin Mu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| |
Collapse
|
5
|
Yang YJ, Kim MJ, Lee HJ, Lee WY, Yang JH, Kim HH, Shim MS, Heo JW, Son JD, Kim WH, Kim GS, Lee HJ, Kim YW, Kim KY, Park KI. Ziziphus jujuba Miller Ethanol Extract Restores Disrupted Intestinal Barrier Function via Tight Junction Recovery and Reduces Inflammation. Antioxidants (Basel) 2024; 13:575. [PMID: 38790680 PMCID: PMC11118233 DOI: 10.3390/antiox13050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller (Z. jujuba) is a natural substance that has been used in traditional medicine as a therapy for a variety of diseases. However, in IBD, the efficacy of Z. jujuba is unknown. Therefore, we evaluated ZJB in Caco2 cells and a dextran sodium sulfate (DSS)-induced mouse model to demonstrate its efficacy in IBD. Z. jujuba extracts were prepared using 70% ethanol and were named ZJB. ZJB was found to be non-cytotoxic and to have excellent antioxidant effects. We confirmed its anti-inflammatory properties via the down-regulation of inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). To evaluate the effects of ZJB on intestinal barrier function and TJ improvement, the trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran 4 kDa (FITC-Dextran 4) permeability were assessed. The TEER value increased by 61.389% and permeability decreased by 27.348% in the 200 μg/mL ZJB group compared with the 50 ng/mL IL-6 group after 24 h. Additionally, ZJB alleviated body weight loss, reduced the disease activity index (DAI) score, and induced colon shortening in 5% DSS-induced mice; inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were down-regulated in the serum. TJ proteins, such as Zonula occludens (ZO)-1 and occludin, were up-regulated by ZJB in an impaired Caco2 mouse model. Additionally, according to the liquid chromatography results, in tandem with mass spectrometry (LC-MS/MS) analysis, seven active ingredients were detected in ZJB. In conclusion, ZJB down-regulated inflammatory factors, protected intestinal barrier function, and increased TJ proteins. It is thus a safe, natural substance with the potential to be used as a therapeutic agent in IBD treatment.
Collapse
Affiliation(s)
- Ye Jin Yang
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Jung Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Ho Jeong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea;
| | - Won-Yung Lee
- School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Ju-Hye Yang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea;
| | - Hun Hwan Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Sup Shim
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
| | - Ji Woong Heo
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Jae Dong Son
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Woo H. Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Gon Sup Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hu-Jang Lee
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Young-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kwang Youn Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea;
| | - Kwang Il Park
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| |
Collapse
|
6
|
García-Niño WR, Correa F, Zúñiga-Muñoz AM, José-Rodríguez A, Castañeda-Gómez P, Mejía-Díaz E. L-theanine abates oxidative stress and mitochondrial dysfunction in myocardial ischemia-reperfusion injury by positively regulating the antioxidant response. Toxicol Appl Pharmacol 2024; 486:116940. [PMID: 38677602 DOI: 10.1016/j.taap.2024.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
L-theanine (L-THE), a non-protein amino acid isolated from Camelia sinensis, has antioxidant properties that could prevent oxidative damage and mitochondrial dysfunction generated by myocardial ischemia and reperfusion (I/R) injury. The present study aimed to identify the effects of pretreatment with L-THE in rat hearts undergoing I/R. Wistar rats received vehicle or 250 mg/Kg L-THE intragastrically for 10 days. On day 11, hearts were removed under anesthesia and exposed to I/R injury in the Langendorff system. Measurement of left ventricular developed pressure and heart rate ex vivo demonstrates that L-THE prevents I/R-induced loss of cardiac function. Consequently, the infarct size of hearts subjected to I/R was significantly decreased when L-THE was administered. L-THE also mitigated I/R-induced oxidative injury in cardiac tissue by decreasing reactive oxygen species and malondialdehyde levels, while increasing the activity of antioxidant enzymes, SOD and CAT. Additionally, L-THE prevents oxidative phosphorylation breakdown and loss of inner mitochondrial membrane potential caused by I/R, restoring oxygen consumption levels, increasing respiratory control and phosphorylation efficiency, as well as buffering calcium overload. Finally, L-THE modifies the expression of genes involved in the antioxidant response through the overexpression of SOD1, SOD2 and CAT; as well as the transcriptional factors PPARα and Nrf2 in hearts undergoing I/R. In conclusion, L-THE confers cardioprotection against I/R injury by preventing oxidative stress, protecting mitochondrial function, and promoting overexpression of antioxidant genes. More studies are needed to place L-THE at the forefront of cardiovascular research and recommend its therapeutic use.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Francisco Correa
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alejandra María Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Aldo José-Rodríguez
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Patricio Castañeda-Gómez
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Edson Mejía-Díaz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
7
|
Zhao Y, Li B, Liu J, Chen L, Teng H. Galangin Prevents Against Ethanol-Induced Intestinal Barrier Dysfunction and NLRP3 Inflammasome Activation via NF-κB/MAPK Signaling Pathways in Mice and Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602402 DOI: 10.1021/acs.jafc.4c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The potential of natural phytochemicals in addressing ethanol-related public safety concerns has been garnering attention. Galangin, a potent flavonoid renowned for its antioxidative and anti-inflammatory characteristics, is derived from the galanga plant, and propolis is derived from bees. Here, we documented the effects of galangin on ethanol-stimulated intestinal tight junction damage and investigated its potential protective mechanism in both in vivo and in vitro models, which has not been extensively investigated. Our results revealed that galangin efficaciously mitigated ethanol-induced intestine injury and dysfunction of the intestinal barrier. Concurrently, galangin significantly counteracted the ethanol-induced upregulation of NLRP3 inflammasome-associated proteins and activated the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathways in both the mouse colon and Caco-2 cells. Interestingly, similar to galangin, inhibitors of MAPKs and the NF-κB p65 reduced ethanol-induced NLRP3 inflammasome activation and intestinal tight junction damage. To sum up, our results showed that galangin blocks the ethanol-induced perturbation of the intestinal barrier and activation of the NLRP3 inflammasome via the NF-κB/MAPK signaling pathways.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524000, People's Republic of China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, Guangdong 524000, People's Republic of China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong 524000, People's Republic of China
| | - Bin Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524000, People's Republic of China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, Guangdong 524000, People's Republic of China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong 524000, People's Republic of China
| | - Jiang Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524000, People's Republic of China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, Guangdong 524000, People's Republic of China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong 524000, People's Republic of China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524000, People's Republic of China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, Guangdong 524000, People's Republic of China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong 524000, People's Republic of China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524000, People's Republic of China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, Guangdong 524000, People's Republic of China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, Guangdong 524000, People's Republic of China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong 524000, People's Republic of China
| |
Collapse
|
8
|
Li Z, Huang Z, Jia G, Zhao H, Liu G, Chen X. L-theanine attenuates H 2O 2-induced inflammation and apoptosis in IPEC-J2 cells via inhibiting p38 MAPK signaling pathway. Food Chem Toxicol 2024; 186:114561. [PMID: 38438008 DOI: 10.1016/j.fct.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
This study investigated the protective effects of L-theanine on hydrogen peroxide (H2O2)-induced intestinal barrier dysfunction in IPEC-J2 cells. Results showed that L-theanine reduced H2O2-induced IPEC-J2 cells inflammation and apoptosis, and decreased protein phosphorylation levels of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa-B (NF-κB). The p38 MAPK inhibitor (SB203580) decreased oxidative stress, the protein expression of phosphorylation of p38 MAPK and NF-κB, the H2O2-induced increase in mRNA expression of pro-apoptotic and pro-inflammatory related genes expression and secretion, and tight junction protein related genes expression, which was similar to the effect of L-theanine. In conclusion, L-theanine inhibited H2O2-induced oxidative damage and inflammatory reaction, eliminated apoptosis, and protected intestinal epithelial barrier damage by inhibiting the activation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhongqing Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|