1
|
Qiu M, Hao Z, Liu Y, Liu Y, Chang M, Lin X, Liu X, Dong N, Sun W, Teng X. ROS acted as an initial role in selenium nanoparticles alleviating insecticide chlorpyrifos-induced oxidative stress, pyroptosis, and intestinal barrier dysfunction in porcine intestinal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106418. [PMID: 40350231 DOI: 10.1016/j.pestbp.2025.106418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/03/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Chlorpyrifos (CPF), a toxic organophosphorus insecticide, is widely used in agriculture to protect crops (eg., maize) from pests. The use of CPF in crops can result in accumulation in crop seeds, such as corn seeds, which is a primary feed ingredient in pigs. Pigs in China, which is an important source of animal-derived protein in the Chinese diet, account for over 50 % of the raised pig population in the whole world. Therefore, CPF may pose a potential risk to the health of non-target organisms (pigs and humans) through the food chain. However, whether CPF can damage porcine intestine remains unknown. Selenium (Se), an essential trace element, was reported to have antioxidant and anti-toxic effects. Tight junction (TJ) is an important mechanism of intestinal injury and pyroptosis is a new hotspot in the field of toxicology. Hence, we wanted to investigate whether CPF can damage pig intestine and whether selenium nanoparticles (SeNPs) supplement can alleviate CPF-induced pig intestine damage, and to study corresponding mechanism from the three aspects of OS, pytoptosis, and TJ. We established a model of SeNPs alleviating damage caused by CPF in intestinal porcine enterocytes (IPEC-J2 cells), and found that SeNPs alleviated CPF-induced oxidative stress (OS), pyroptosis, and intestinal barrier dysfunction in IPEC-J2 cells. Interestingly, OS, pyroptosis, and intestinal barrier dysfunction had serial relations, and ROS/Nrf2/Caspase-1/Occludin and ROS/Nrf2/Caspase-1/ZO-1 pathways played a role. Notably, ROS and Caspase-1 played an initial and important role, respectively. Our study added new information on pesticides-caused damage to non-target organisms, and provided new idea, insight, and targets to mitigatie pesticides-induced toxic effect on non-target organisms.
Collapse
Affiliation(s)
- Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Minghang Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Wei Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Soliman MM, Nashed MS, Hassanen EI, Issa MY, Prince AM, Hussien AM, Tohamy AF. Ameliorative effects of date palm kernel extract against fenpropathrin induced male reproductive toxicity. Biol Res 2025; 58:27. [PMID: 40329351 PMCID: PMC12057013 DOI: 10.1186/s40659-025-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND The purpose of this work was to examine the fundamental mechanisms of reproductive toxicity in rat models following exposure to Fenpropathrin (FNP). Furthermore, our study explores the novel impacts of Date palm kernel extract (DPK) on these detrimental outcomes. METHODS Thirty male Wistar rats were used in the investigation. They were split into six groups: one group received corn oil as a control; two groups received DPK at 200 mg/kg and 400 mg/kg; a group received FNP at 4.7 mg/kg; and two combination groups received DPK and FNP at 200 mg/kg and 400 mg/kg, respectively for 60 days. RESULTS FNP caused oxidative stress, reduced sperm count, and impaired motility. FNP decreased the expression of the StAR gene and reduced serum testosterone levels. We assessed the histological alterations. In a dose-dependent way, the concurrent administration of DPK extract successfully decreased all the toxicological parameters. CONCLUSIONS When taken orally, DPK extract may protect against FNP-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Cheng Z, Cheng K, Tang Y, Duan X, Fu Y, Duan H, Ye Y. α-Amanitin aggravates hepatic injury by activating oxidative stress and mitophagy via peroxiredoxin 6 inhibition. Immunol Res 2025; 73:64. [PMID: 40108092 DOI: 10.1007/s12026-025-09619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Mushroom poisoning is mainly caused by α-amanitin (α-AMA), and there is currently no effective drug to treat α-AMA poisoning. Therefore, it is particularly important to find early diagnostic markers for α-AMA injury. Hepatic injury models induced by α-AMA were established both in hepatic cells and mice. The cell viability of human normal hepatic cells after α-AMA treatment was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Liver function parameters was assessed by the Enzyme-Linked Immunosorbent Assay (ELISA). Furthermore, oxidative stress was detected by 2',7'-Dichlorofluorescin Diacetate (DCFH-DA) and Dihydroethidium (DHE) staining. Autophagy- and apoptosis-related proteins were assessed by Western blot and immunofluorescence staining. We applied Hematoxylin and Eosin (H&E), Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Oil Red O (ORO) staining to observe the degree of cell damage and hepatocyte apoptosis. In addition, mitochondrial membrane potential was also determined by JC-1 immunofluorescence staining and flow cytometry. The results showed that α-AMA decreased cell viability in a dose-dependent manner. In addition, the levels of alanine aminotransferase (ALT), aspartate transaminase (AST) and mitochondrial reactive oxygen species (mtROS) were observed to increase in the α-AMA-treated groups, whereas antioxidants superoxide dismutase (SOD) levels were reduced. Moreover, α-AMA promoted hepatocyte mitophagy and apoptosis, which were alleviated by PRDX6 overexpression. Finally, PRDX6 and Parkin were found to accumulate in mitochondria and α-AMA activated mitophagy by silencing PRDX6. Collectively, our results demonstrated that α-AMA activates oxidative stress and mitophagy by inhibiting the expression of PRDX6, leading to hepatic injury. These findings from both in vitro and in vivo models provide insights into the toxicological mechanisms of α-AMA, underscoring the potential of PRDX6 as a therapeutic target for treating α-AMA-induced hepatotoxicity. HIGHLIGHTS: α-AMA leads to ROS accumulation and activates oxidative stress. α-AMA promotes hepatocyte mitophagy and apoptosis. PRDX6 alleviates α-AMA-induced hepatic injury. PRDX6 mediates mitophagy through Parkin.
Collapse
Affiliation(s)
- Zhongfeng Cheng
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Yunnan, 650021, China
| | - Kerun Cheng
- West China Clinical Medicine, Sichuan University, Sichuan, 610044, China
| | - Yan Tang
- Department of Emergency Medicine, People's Hospital of Chuxiong Yi Autonomous Prefecture, Yunnan, 675000, China
| | - Xueqiong Duan
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Yunnan, 650021, China
| | - Yangshan Fu
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Yunnan, 650021, China
| | - Hongdan Duan
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Yunnan, 650021, China
| | - Yong Ye
- Department of Emergency, The First Affiliated Hospital of Yunnan University of Chinese Medicine, No. 120, Guanghua Road, Wuhua District, Kunming City, 650021, Yunnan Province, China.
| |
Collapse
|
4
|
Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Metwally MMM, Helmi N, Alnajeebi AM, Alotaibi BS, Albaqami A, Mawkili W, Samak MA, Eissa SA. Exploring the CD3/CD56/TNF-α/Caspase3 pathway in pyrethroid-induced immune dysregulation: curcumin-loaded chitosan nanoparticle intervention. Front Pharmacol 2025; 16:1505432. [PMID: 39981186 PMCID: PMC11840570 DOI: 10.3389/fphar.2025.1505432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Conflict reports exist on the impact of pyrethroid insecticides on immune function and the probable underlying mechanisms. Methods This study evaluated the effect of an extensively used pyrethroid insecticide, fenpropathrin (FTN) (15 mg/kg b.wt), on the innate and humoral immune components, blood cells, splenic oxidative status, and mRNA expression of CD3, CD20, CD56, CD8, CD4, IL-6, TNF-α, and Caspase3 in a 60-day trial in rats. Besides, the possible defensive effect of curcumin-loaded chitosan nanoparticle (CML-CNP) (50 mg/kg b.wt) was evaluated. Results FTN exposure resulted in hypochromic normocytic anemia, thrombocytosis, leukocytosis, and lymphopenia. Besides, a significant reduction in IgG, not IgM, but increased C3 serum levels was evident in the FTN-exposed rats. Moreover, their splenic tissues displayed a substantial increase in the ROS, MDA, IL-6, and IL-1β content, altered splenic histology, and reduced GPX, GSH, and GSH/GSSG. Furthermore, a substantial upregulation of mRNA expression of splenic CD20, CD56, CD8, CD4, CD3, IL-6, and TNF-α, but downregulation of CD8 was detected in FTN-exposed rats. FTN exposure significantly upregulated splenic Caspase-3 and increased its immunohistochemical expression, along with elevated TNF-α immunoexpression. However, the alterations in immune function, splenic antioxidant status, blood cell populations, and immune-related gene expression were notably restored in the FTN + CML-CNP-treated group. Conclusion The findings of this study highlighted the immunosuppressive effects of FTN and suggested the involvement of many CD cell markers as a potential underlying mechanism. Additionally, the results demonstrated the effectiveness of CML-CNP in mitigating pollutant-induced immune disorders.
Collapse
Affiliation(s)
- Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Afnan M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mai A. Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Samar A. Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, Egypt
| |
Collapse
|
5
|
Hassanen EI, Hassan NH, Mehanna S, Hussien AM, Ibrahim MA, Mohammed FF, Farroh KY. Oral supplementation of curcumin-encapsulated chitosan nanoconjugates as an innovative strategy for mitigating nickel-mediated hepatorenal toxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03799-4. [PMID: 39836252 DOI: 10.1007/s00210-025-03799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs. After 30 days, blood and tissue (liver and kidneys) were collected to measure hepatorenal biomarkers, oxidant/antioxidant balance, inflammatory gene expression, liver and kidney histopathology, and immunohistochemistry. Results revealed disruption of hepatorenal functions, oxidative stress, and inflammatory markers at biochemical and molecular levels associated with severe hepatorenal histopathological alterations and abnormal immunohistochemical tissue expression for caspase-3 and cyclooxygenase-2. On the contrary, the treatment of Ni-intoxicated rats with CS/CU NCs markedly mitigated the adverse effect of Ni on hepatorenal tissue via regulation of oxidative stress, inflammatory, and apoptotic markers. The present study provides a novel nanoformulation for curcumin using CS NPs encapsulation that selectively targets the injured cells and improves the beneficial effect of CU via enhancing the antioxidant activity and regulating both inflammatory and apoptotic markers.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sally Mehanna
- Department of Biotechnology, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Cairo, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Department of Pathology, College of Veterinary Medicine, King Faisal University, 31982, Hofuf, Al Ahsa, Saudi Arabia
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza, Egypt
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
6
|
Bian X, Yu X, Lu S, Jia L, Li P, Yin J, Tan S. Chitosan-based nanoarchitectures for siRNA delivery in cancer therapy: A review of pre-clinical and clinical importance. Int J Biol Macromol 2025; 284:137708. [PMID: 39571854 DOI: 10.1016/j.ijbiomac.2024.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The gene therapy has been developed into a new cancer treatment option. Now that we know which molecular components contribute to carcinogenesis, we may use gene therapy to target particular signalling pathways in cancer treatment. Problems with gene therapy include genetic tool degradation in blood, off-targeting features, and inadequate tumor site accumulation; new delivery mechanisms are needed to address these issues. A polysaccharide made from chitin, chitosan has found extensive use in the creation of nanoparticles. The delivery of genes in the treatment of illnesses, particularly cancer, has made use of nanostructures modified with chitosan. Topics covered in this review center on cancer treatment using chitosan-based polymers for siRNA delivery. This study aims to assess the potential of chitosan nanoparticles for the simultaneous administration of siRNA and anti-cancer medications. In cancer treatment, these nanoparticles can transport phytochemicals or chemotherapeutics together with siRNA. In addition, chitosan nanoparticles loaded with siRNA can inhibit the growth and spread of human malignancies by delivering siRNA that targets particular genes. Chitosan nanoparticles loaded with siRNA can heighten the responsiveness of cancer cells. Future therapeutic applications of chitosan nanoparticles may open the path for cancer treatment, thanks to their biocompatibility and biosafety.
Collapse
Affiliation(s)
- Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Alhegaili AS, Bafail DA, Bawahab AA, Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Khalifa NE, Elhamouly M, Dahran N, El Shetry ES. The interplay of oxidative stress, apoptotic signaling, and impaired mitochondrial function in the pyrethroid-induced cardiac injury: Alleviative role of curcumin-loaded chitosan nanoparticle. Food Chem Toxicol 2024; 194:115095. [PMID: 39515510 DOI: 10.1016/j.fct.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the consequence of exposure to a pyrethroid insecticide, fenpropathrin (FPN), on the heart and the probable underlying mechanisms in rats. Moreover, the probable protective effect of curcumin-loaded chitosan nanoparticles (CMN-CNP) was evaluated. Forty male Sprague Dawley rats were distributed into four groups orally given corn oil, CMN-CNP (50 mg/kg b.wt), FPN (15 mg/kg b.wt), or CMN-CNP + FPN for 60 days. The results revealed that FPN exposure increased serum cardiac damage indicators. In addition, a substantial increase in the reactive oxygen species and malondialdehyde content but reduced enzymatic and non-enzymatic antioxidants and altered architecture was recorded in the cardiac tissue of FPN-exposed rats. Additionally, a significant down-regulation of expression of the mitochondrial complexes I-V, mitochondrial dynamics, and antioxidants-related genes but up-regulation of apoptosis-related genes was detected in the FPN-exposed group. Immunofluorescence analyses revealed higher amounts of the harmful protein 4-hydroxynonenal in the heart tissue of FPN-exposed rats. Nevertheless, the earlier disturbances were significantly rescued in the FPN + CMN-CNP treated group. Conclusively, our findings reported the cardiotoxic activity of FPN and the involvement of several mitochondrial imbalances as a probable underlying mechanism. Also, the study findings proved the efficacy of CMN-CNP in combating FPN cardiotoxic effects.
Collapse
Affiliation(s)
- Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman S El Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Soliman MM, Tohamy AF, Prince AM, Hussien AM, Nashed MS. The mechanistic pathway induced by fenpropathrin toxicity: Oxidative stress, signaling pathway, and mitochondrial damage. J Biochem Mol Toxicol 2024; 38:e70020. [PMID: 39415699 DOI: 10.1002/jbt.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Fenpropathrin (FNP) is a kind of insecticide and acaricide known as pyrethroid. It is very effective, has a wide range of activities, and works quickly. Internationally, it is commonly considered the most powerful pyrethroid insecticide. Nevertheless, an increasing amount of data indicates a substantial link between Fenpropathrin and adverse effects on nontarget species, including liver toxicity, kidney toxicity, nerve damage, and reproductive toxicity. Oxidative stress plays a vital role in the toxicity of fenpropathrin, in addition to its mechanical mechanism. This study offers a thorough examination of the harmful effects of Fenpropathrin on oxidative and mitochondrial processes, as well as the signaling pathways involved in these effects. The significant impact of oxidative stress emphasizes the toxicity of Fenpropathrin.
Collapse
Affiliation(s)
- Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Albaqami A, Alosaimi ME, Jafri I, Mohamed AAR, Abd El-Hakim YM, Khamis T, Elazab ST, Noreldin AE, Elhamouly M, El-Far AH, Eskandrani AA, Alotaibi BS, M Abdelnour H, Saleh AA. Pulmonary damage induction upon Acrylic amide exposure via activating miRNA-223-3p and miRNA-325-3p inflammasome/pyroptosis and fibrosis signaling pathway: New mechanistic approaches of A green-synthesized extract. Toxicology 2024; 506:153869. [PMID: 38909937 DOI: 10.1016/j.tox.2024.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Exposure to acrylic amide (AD) has garnered worldwide attention due to its potential adverse health effects, prompting calls from the World Health Organization for intensified research into associated risks. Despite this, the relationship between oral acrylic amide (acrylamide) (AD) exposure and pulmonary dysfunction remains poorly understood. Our study aimed to investigate the correlation between internal oral exposure to AD and the decline in lung function, while exploring potential mediating factors such as tissue inflammation, oxidative stress, pyroptosis, and apoptosis. Additionally, we aimed to evaluate the potential protective effect of zinc oxide nanoparticles green-synthesized moringa extract (ZNO-MONPs) (10 mg/kg b.wt) against ACR toxicity and conducted comprehensive miRNA expression profiling to uncover novel targets and mechanisms of AD toxicity (miRNA 223-3 P and miRNA 325-3 P). Furthermore, we employed computational techniques to predict the interactions between acrylic amide and/or MO-extract components and tissue proteins. Using a rat model, we exposed animals to oral acrylamide (20 mg/kg b.wt for 2 months). Our findings revealed that AD significantly downregulated the expression of miRNA 223-3 P and miRNA 325-3 P, targeting NLRP-3 & GSDMD, respectively, indicating the induction of pyroptosis in pulmonary tissue via an inflammasome activating pathway. Moreover, AD exposure resulted in lipid peroxidative damage and reduced levels of GPX, CAT, GSH, and GSSG. Notably, AD exposure upregulated apoptotic, pyroptotic, and inflammatory genes, accompanied by histopathological damage in lung tissue. Immunohistochemical and immunofluorescence techniques detected elevated levels of indicative harmful proteins including vimentin and 4HNE. Conversely, concurrent administration of ZNO-MONPs with AD significantly elevated the expression of miRNA 223-3 P and miRNA 325-3 P, protecting against oxidative stress, apoptosis, pyroptosis, inflammation, and fibrosis in rat lungs. In conclusion, our study highlights the efficacy of ZNO-MONPs NPs in protecting pulmonary tissue against the detrimental impacts of foodborne toxin AD.
Collapse
Affiliation(s)
- Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Yasmina M Abd El-Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ali H El-Far
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Medina 30002, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanim M Abdelnour
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Egypt
| | - Ayman A Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Alotaibi BS, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Noreldin AE, Elhamouly M, Khamis T, El-Far AH, Alosaimi ME, Dahran N, Alqahtani LS, Nicotra M, El-Gamal M, Di Cerbo A. Exploring the link between pyrethroids exposure and dopaminergic degeneration through morphometric, immunofluorescence, and in-silico approaches: the therapeutic role of chitosan-encapsulated curcumin nanoparticles. Front Pharmacol 2024; 15:1388784. [PMID: 38751787 PMCID: PMC11094265 DOI: 10.3389/fphar.2024.1388784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: The synthetic pyrethroid derivative fenpropathrin (FNE), a commonly used insecticide, has been associated with various toxic effects in mammals, particularly neurotoxicity. The study addressed the hallmarks of the pathophysiology of Parkinson's disease upon oral exposure to fenpropathrin (FNE), mainly the alteration of dopaminergic markers, oxidative stress, and molecular docking in rat models. In addition, the protective effect of curcumin-encapsulated chitosan nanoparticles (CRM-Chs-NPs) was also assessed. Methods: In a 60-day trial, 40 male Sprague Dawley rats were divided into 4 groups: Control, CRM-Chs-NPs (curcumin-encapsulated chitosan nanoparticles), FNE (15 mg/kg bw), and FNE + CRM-Chs-NPs. Results: FNE exposure induced reactive oxygen species generation, ATP production disruption, activation of inflammatory and apoptotic pathways, mitochondrial function and dynamics impairment, neurotransmitter level perturbation, and mitophagy promotion in rat brains. Molecular docking analysis revealed that FNE interacts with key binding sites of dopamine synthesis and transport proteins. On the other hand, CRM-Chs-NPs mitigated FNE's toxic effects by enhancing mitochondrial dynamics, antioxidant activity, and ATP production and promoting anti-inflammatory and antiapoptotic responses. Conclusion: In summary, FNE appears to induce dopaminergic degeneration through various mechanisms, and CRM-Chs-NPs emerged as a potential therapeutic intervention for protecting the nervous tissue microenvironment.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Moustafa Elhamouly
- Cytology and Histology Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mario Nicotra
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Mohamed El-Gamal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
11
|
Abd-Elhakim YM, Mohamed AAR, Noreldin AE, Khamis T, Eskandrani AA, Shamlan G, Alansari WS, Alotaibi BS, Alosaimi ME, Hakami MA, Abuzahrah SS. Fenpropathrin provoked kidney damage via controlling the NLRP3/Caspase-1/GSDMD-mediated pyroptosis: The palliative role of curcumin-loaded chitosan nanoparticles. Toxicol Appl Pharmacol 2024; 484:116869. [PMID: 38382713 DOI: 10.1016/j.taap.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1β (IL-1β), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1β, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 11451, Riyadh 11362, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 34, 21959, Saudi Arabia
| |
Collapse
|
12
|
Sun J, Zhang K, Yin Y, Qi Y, Li S, Sun H, Luo M, Sun Y, Yu Z, Yang J, Wu J, Chen L, Xu W, Dong L. Arecoline-Induced Hepatotoxicity in Rats: Screening of Abnormal Metabolic Markers and Potential Mechanisms. TOXICS 2023; 11:984. [PMID: 38133385 PMCID: PMC10748282 DOI: 10.3390/toxics11120984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Arecoline is a pyridine alkaloid derived from areca nut in the Arecaceae family. It has extensive medicinal activity, such as analgesic, anti-inflammatory, and anti-allergic. However, the toxicity of Arecoline limits its application. Most current studies on its toxicity mainly focus on immunotoxicity, carcinogenesis, and cancer promotion. However, there are few systematic studies on its hepatotoxicity and mechanisms. Therefore, this research explored the mechanism of hepatotoxicity induced by Arecoline in rats and analyzed endogenous metabolite changes in rat plasma by combining network toxicology with metabolomics. The differential metabolites after Arecoline exposure, such as D-Lysine, N4-Acetylaminobutanal, and L-Arginine, were obtained by metabolomics study, and these differential metabolites were involved in the regulation of lipid metabolism, amino acid metabolism, and vitamin metabolism. Based on the strategy of network toxicology, Arecoline can affect the HIF-1 signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, and other concerning pathways by regulating critical targets, such as ALB, CASP3, EGFR, and MMP9. Integration of metabolomics and network toxicology results were further analyzed, and it was concluded that Arecoline may induce hepatotoxicity by mediating oxidative stress, inflammatory response, energy and lipid metabolism, and cell apoptosis.
Collapse
Affiliation(s)
- Jing Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Kai Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Yihui Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Yunpeng Qi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Siyuan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Haonan Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Min Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Yixuan Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Zhiying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Jie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Jingjing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Lijuan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| |
Collapse
|