1
|
Iranzadeh A, Alisoltani A, Kiran AM, Breiman RF, Chaguza C, Peno C, Cornick JE, Everett DB, Mulder N. Comparative pangenomics of Streptococcus pneumoniae from Malawi: uncovering genetic variability and pathogenicity. Microb Genom 2025; 11. [PMID: 40232949 DOI: 10.1099/mgen.0.001370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Streptococcus pneumoniae is a significant cause of bacterial infections, including pneumonia, meningitis and septicemia, primarily affecting children, the elderly and immunocompromised individuals. This study aimed to elucidate the serotype and lineage distribution and molecular mechanisms underlying pneumococcal invasiveness through a comprehensive pangenomic analysis of 1416 isolates from Malawi. Our analysis comprised 810 isolates from asymptomatic carriers and 606 isolates from patients with bacteraemia or meningitis. We identified 58 serotypes, with serotypes 1, 5 and 12F exhibiting significantly higher prevalence among patients. These serotypes likely exhibit reduced nasopharyngeal colonization and demonstrate rapid dissemination to sterile sites. Notably, these serotypes form a distinct lineage with distinct genomic characteristics, including the absence of V-type ATP synthase. The pangenome analysis revealed two highly conserved surface protein complexes, F-type ATP synthase and SecA1-SecY, which deserve further investigation as potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anmol M Kiran
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre, Malawi
- Centre for Inflammation Research, Queens Research Institute, University of Edinburgh, Edinburgh, UK
| | - Robert F Breiman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Chikondi Peno
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre, Malawi
- Centre for Inflammation Research, Queens Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jennifer E Cornick
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre, Malawi
| | - Dean B Everett
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
- Infection Research Unit, Khalifa University, Abu Dhabi, UAE
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| |
Collapse
|
2
|
Chang L, Cui H, Li F, Job Zhang YHP, Zhang L. ATP regeneration by ATPases for in vitro biotransformation. Biotechnol Adv 2024; 73:108377. [PMID: 38763231 DOI: 10.1016/j.biotechadv.2024.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Adenosine triphosphate (ATP) regeneration is a significant step in both living cells and in vitro biotransformation (ivBT). Rotary motor ATP synthases (ATPases), which regenerate ATP in living cells, have been widely assembled in biomimetic structures for in vitro ATP synthesis. In this review, we present a comprehensive overview of ATPases, including the working principle, orientation and distribution density properties of ATPases, as well as the assembly strategies and applications of ATPase-based ATP regeneration modules. The original sources of ATPases for in vitro ATP regeneration include chromatophores, chloroplasts, mitochondria, and inverted Escherichia coli (E. coli) vesicles, which are readily accessible but unstable. Although significant advances have been made in the assembly methods for ATPase-artificial membranes in recent decades, it remains challenging to replicate the high density and orientation of ATPases observed in vivo using in vitro assembly methods. The use of bioproton pumps or chemicals for constructing proton motive forces (PMF) enables the versatility and potential of ATPase-based ATP regeneration modules. Additionally, overall robustness can be achieved via membrane component selection, such as polymers offering great mechanical stability, or by constructing a solid supporting matrix through layer-by-layer assembly techniques. Finally, the prospects of ATPase-based ATP regeneration modules can be expected with the technological development of ATPases and artificial membranes.
Collapse
Affiliation(s)
- Lijing Chang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Fei Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
Jiang J, Tang Y, Cao Z, Zhou C, Yu Z. Effects of hypo-osmotic stress on osmoregulation, antioxidant response, and energy metabolism in sea cucumber Holothuria moebii under desalination environment. ENVIRONMENTAL RESEARCH 2024; 252:118800. [PMID: 38555088 DOI: 10.1016/j.envres.2024.118800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
With global climate changing, hypo-salinity events are increasing in frequency and duration because of continuous rainfall and freshwater inflow, which causes reduced cytosolic osmolarity and cellular stress responses in aquatic animals. Sea cucumbers are considered stenohaline because they lack osmoregulatory organs and are vulnerable to salinity fluctuations. In this study, we performed multiple biochemical assays, de novo transcriptomics, and widely targeted metabolomics to comprehensively explore the osmoregulatory mechanisms and physiological responses of sea cucumber Holothuria moebii to hypo-osmotic stress, which is a representative specie that is frequently exposed to hypo-saline intertidal zones. Our results found that H. moebii contracted their ambulacral feet and oral tentacles, and the coelomic fluid ion concentrations were reduced to be consistent with the environment. The microvilli of intestines and respiratory trees underwent degeneration, and the cytoplasm exhibited swelling and vacuolation. Moreover, the Na+, K+, and Cl- concentrations and Na+/K+-ATPase activity were significantly reduced under hypo-osmotic stress. The decrease in protein kinase A activity and increase in 5'-AMP level indicated a significant inhibition of the cAMP signaling pathway to regulate ion concentrations. And small intracellular organic molecules (amino acids, nucleotides and their derivatives) also play crucial roles in osmoregulation through oxidative deamination of glutamate, nucleotide catabolism, and nucleic acid synthesis. Moreover, lysosomes and peroxisomes removed oxidative damage, whereas antioxidant metabolites, such as N-acetyl amino acids and glutathione, were increased to resist oxidative stress. With prolonged hypo-osmotic stress, glycerophospholipid metabolism was enhanced to maintain membrane stability. Furthermore, acyl-CoA-binding protein activity was significantly inhibited, and only a small amount of acylcarnitine was significantly accumulated, which indicated a disruption in energy metabolism. PPAR signaling pathway and choline content were up-regulated to promote fatty acid metabolism under hypo-osmotic stress. Overall, our results provide new insights into the osmoregulatory mechanisms and physiological responses of sea cucumbers to hypo-osmotic stress.
Collapse
Affiliation(s)
- Junyang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanna Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zonghe Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Mahendrarajah TA, Moody ERR, Schrempf D, Szánthó LL, Dombrowski N, Davín AA, Pisani D, Donoghue PCJ, Szöllősi GJ, Williams TA, Spang A. ATP synthase evolution on a cross-braced dated tree of life. Nat Commun 2023; 14:7456. [PMID: 37978174 PMCID: PMC10656485 DOI: 10.1038/s41467-023-42924-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.
Collapse
Affiliation(s)
- Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Dominik Schrempf
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
| | - Lénárd L Szánthó
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Karolina ut 29, H-1113, Budapest, Hungary
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Adrián A Davín
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Gergely J Szöllősi
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Yang Y, Hao Z, An N, Han Y, Miao W, Storey KB, Lefai E, Liu X, Wang J, Liu S, Xie M, Chang H. Integrated transcriptomics and metabolomics reveal protective effects on heart of hibernating Daurian ground squirrels. J Cell Physiol 2023; 238:2724-2748. [PMID: 37733616 DOI: 10.1002/jcp.31123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Hibernating mammals are natural models of resistance to ischemia, hypoxia-reperfusion injury, and hypothermia. Daurian ground squirrels (spermophilus dauricus) can adapt to endure multiple torpor-arousal cycles without sustaining cardiac damage. However, the molecular regulatory mechanisms that underlie this adaptive response are not yet fully understood. This study investigates morphological, functional, genetic, and metabolic changes that occur in the heart of ground squirrels in three groups: summer active (SA), late torpor (LT), and interbout arousal (IBA). Morphological and functional changes in the heart were measured using hematoxylin-eosin (HE) staining, Masson staining, echocardiography, and enzyme-linked immunosorbent assay (ELISA). Results showed significant changes in cardiac function in the LT group as compared with SA or IBA groups, but no irreversible damage occurred. To understand the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses were conducted to assess differential changes in gene expression and metabolite levels in the three groups of ground squirrels, with a focus on GO and KEGG pathway analysis. Transcriptomic analysis showed that differentially expressed genes were involved in the remodeling of cytoskeletal proteins, reduction in protein synthesis, and downregulation of the ubiquitin-proteasome pathway during hibernation (including LT and IBA groups), as compared with the SA group. Metabolomic analysis revealed increased free amino acids, activation of the glutathione antioxidant system, altered cardiac fatty acid metabolic preferences, and enhanced pentose phosphate pathway activity during hibernation as compared with the SA group. Combining the transcriptomic and metabolomic data, active mitochondrial oxidative phosphorylation and creatine-phosphocreatine energy shuttle systems were observed, as well as inhibition of ferroptosis signaling pathways during hibernation as compared with the SA group. In conclusion, these results provide new insights into cardio-protection in hibernators from the perspective of gene and metabolite changes and deepen our understanding of adaptive cardio-protection mechanisms in mammalian hibernators.
Collapse
Affiliation(s)
- Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ziwei Hao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Weilan Miao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Junshu Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuo Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
6
|
Yao X, Duan Y, Deng Z, Zhao W, Wei J, Li X, An S. ATP Synthase Subunit α from Helicoverpa armigera Acts as a Receptor of Bacillus thuringiensis Cry1Ac and Synergizes Cry1Ac Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37036055 DOI: 10.1021/acs.jafc.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) toxins has led to an urgent need to explore the insecticidal mechanisms of Bt. Previous studies indicated that Helicoverpa armigera ATP synthase subunit α (HaATPs-α) is involved in Cry1Ac resistance. In this study, a real-time quantitative polymerase chain reaction (RT-PCR) confirmed that HaATPs-α expression was significantly reduced in the Cry1Ac-resistant strain (BtR). Cry1Ac feeding induced the downregulated expression of HaATPs-α in the susceptible strain, but not in the BtR strain. Furthermore, the interaction between HaATPs-α and Cry1Ac was verified by ligand blotting and homologous competition experiments. The in vitro gain and loss of function analyses showed HaATPs-α involved in Cry1Ac toxicity by expressing endogenous HaATPs-α and HaATPs-α double-stranded RNAs in Sf9 and midgut cells, respectively. Importantly, purified HaATPs-α synergized Cry1Ac toxicity to H. armigera larvae. These findings provide the first evidence that HaATPs-α is a potential receptor of Cry1Ac, it shows downregulated participation in Cry1Ac resistance, and it exhibits higher enhancement of Cry1Ac toxicity to H. armigera larvae.
Collapse
Affiliation(s)
- Xue Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunpeng Duan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyuan Deng
- College of Life Science, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
7
|
Arif MAR, Tripodi P, Waheed MQ, Afzal I, Pistrick S, Schütze G, Börner A. Genetic Analyses of Seed Longevity in Capsicum annuum L. in Cold Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1321. [PMID: 36987009 PMCID: PMC10057624 DOI: 10.3390/plants12061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seed longevity is the most important trait in the genebank management system. No seed can remain infinitely viable. There are 1241 accessions of Capsicum annuum L. available at the German Federal ex situ genebank at IPK Gatersleben. C. annuum (Capsicum) is the most economically important species of the genus Capsicum. So far, there is no report that has addressed the genetic basis of seed longevity in Capsicum. Here, we convened a total of 1152 Capsicum accessions that were deposited in Gatersleben over forty years (from 1976 to 2017) and assessed their longevity by analyzing the standard germination percentage after 5-40 years of storage at -15/-18 °C. These data were used to determine the genetic causes of seed longevity, along with 23,462 single nucleotide polymorphism (SNP) markers covering all of the 12 Capsicum chromosomes. Using the association-mapping approach, we identified a total of 224 marker trait associations (MTAs) (34, 25, 31, 35, 39, 7, 21 and 32 MTAs after 5-, 10-, 15-, 20-, 25-, 30-, 35- and 40-year storage intervals) on all the Capsicum chromosomes. Several candidate genes were identified using the blast analysis of SNPs, and these candidate genes are discussed.
Collapse
Affiliation(s)
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | | | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sibylle Pistrick
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Gudrun Schütze
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| |
Collapse
|
8
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
9
|
Jiang YT, Zheng JX, Li RH, Wang YC, Shi J, Ferjani A, Lin WH. Tonoplast proton pumps regulate nuclear spacing of female gametophytes via mediating polar auxin transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1006735. [PMID: 36176689 PMCID: PMC9513470 DOI: 10.3389/fpls.2022.1006735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The vacuole is an important organelle with multiple functions in plants, and the tonoplast that wraps the vacuole also plays essential roles in intracellular trafficking and ion homeostasis. Previous studies found that tonoplast proton pumps regulate embryo development and morphogenesis through their effects on vacuole biogenesis and distribution, as well as polar auxin transport and concomitant auxin gradient. However, the precise roles of the tonoplast proton pumps in gametophyte development remain unclear. Here we demonstrated that the lack of two types of tonoplast proton pumps or the absence of V-ATPase alone leads to abnormal development and nuclear localization of female gametophyte (FG), and slowed endosperm nuclei division after fertilization of the central cell. We further revealed that V-ATPase regulates auxin levels in ovules through coordinating the content and localization of PIN-FORMED 1 (PIN1) protein, hence influencing nuclear spacing between centra cell and egg cell, and subsequent endosperm development. Collectively, our findings revealed a crucial role of V-ATPase in auxin-mediated FG development in Arabidopsis and expanded our understanding of the functions of tonoplast proton pumps in seed plants reproductive development.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Zheng
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Rong-Han Li
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Wang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei, Japan
| | - Wen-Hui Lin
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
11
|
ATP synthesis in an ancient ATP synthase at low driving forces. Proc Natl Acad Sci U S A 2022; 119:e2201921119. [PMID: 35512103 DOI: 10.1073/pnas.2201921119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe ATP synthases of many anaerobic archaea have an unusual motor subunit c that otherwise is only found in eukaryotic V1VO ATPases. The evolutionary switch from synthase to hydrolase is thought to be caused by a doubling of the rotor subunit c, followed by a loss of the ion binding site. By purification and reconstitution of an ATP synthase with a V-type c subunit, we have unequivocally demonstrated, against expectations, the capability of such an enzyme to synthesize ATP at physiological relevant driving forces of 90 to 150 mV. This is the long-awaited answer to an eminent question in microbial energetics and physiology, especially for life near the thermodynamic limit of ATP synthesis.
Collapse
|
12
|
Vu Huu K, Zangl R, Hoffmann J, Just A, Morgner N. Bacterial F-type ATP synthases follow a well-choreographed assembly pathway. Nat Commun 2022; 13:1218. [PMID: 35260553 PMCID: PMC8904574 DOI: 10.1038/s41467-022-28828-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
F-type ATP synthases are multiprotein complexes composed of two separate coupled motors (F1 and FO) generating adenosine triphosphate (ATP) as the universal major energy source in a variety of relevant biological processes in mitochondria, bacteria and chloroplasts. While the structure of many ATPases is solved today, the precise assembly pathway of F1FO-ATP synthases is still largely unclear. Here, we probe the assembly of the F1 complex from Acetobacterium woodii. Using laser induced liquid bead ion desorption (LILBID) mass spectrometry, we study the self-assembly of purified F1 subunits in different environments under non-denaturing conditions. We report assembly requirements and identify important assembly intermediates in vitro and in cellula. Our data provide evidence that nucleotide binding is crucial for in vitro F1 assembly, whereas ATP hydrolysis appears to be less critical. We correlate our results with activity measurements and propose a model for the assembly pathway of a functional F1 complex. ATPases are the macromolecular machines for cellular energy production. Here the authors investigate factors that govern the assembly of the F1 complex from a bacterial F-type ATPase and relate differences in activity of complexes assembled in cells and in vitro to structural changes.
Collapse
Affiliation(s)
- Khanh Vu Huu
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Jan Hoffmann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Alicia Just
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
13
|
Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ. ATP Synthase K +- and H +-Fluxes Drive ATP Synthesis and Enable Mitochondrial K +-"Uniporter" Function: I. Characterization of Ion Fluxes. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab065. [PMID: 35229078 PMCID: PMC8867323 DOI: 10.1093/function/zqab065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
ATP synthase (F1Fo) synthesizes daily our body's weight in ATP, whose production-rate can be transiently increased several-fold to meet changes in energy utilization. Using purified mammalian F1Fo-reconstituted proteoliposomes and isolated mitochondria, we show F1Fo can utilize both ΔΨm-driven H+- and K+-transport to synthesize ATP under physiological pH = 7.2 and K+ = 140 mEq/L conditions. Purely K+-driven ATP synthesis from single F1Fo molecules measured by bioluminescence photon detection could be directly demonstrated along with simultaneous measurements of unitary K+ currents by voltage clamp, both blocked by specific Fo inhibitors. In the presence of K+, compared to osmotically-matched conditions in which this cation is absent, isolated mitochondria display 3.5-fold higher rates of ATP synthesis, at the expense of 2.6-fold higher rates of oxygen consumption, these fluxes being driven by a 2.7:1 K+: H+ stoichiometry. The excellent agreement between the functional data obtained from purified F1Fo single molecule experiments and ATP synthase studied in the intact mitochondrion under unaltered OxPhos coupling by K+ presence, is entirely consistent with K+ transport through the ATP synthase driving the observed increase in ATP synthesis. Thus, both K+ (harnessing ΔΨm) and H+ (harnessing its chemical potential energy, ΔμH) drive ATP generation during normal physiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), 28049, Madrid, Spain
| | - Sandra B Gabelli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA,Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
14
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
15
|
Álvarez-Lugo A, Becerra A. The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Front Genet 2021; 12:641817. [PMID: 34335678 PMCID: PMC8318041 DOI: 10.3389/fgene.2021.641817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a crucial process involved in the appearance of new genes and functions. It is thought to have played a major role in the growth of enzyme families and the expansion of metabolism at the biosphere's dawn and in recent times. Here, we analyzed paralogous enzyme content within each of the seven enzymatic classes for a representative sample of prokaryotes by a comparative approach. We found a high ratio of paralogs for three enzymatic classes: oxidoreductases, isomerases, and translocases, and within each of them, most of the paralogs belong to only a few subclasses. Our results suggest an intricate scenario for the evolution of prokaryotic enzymes, involving different fates for duplicated enzymes fixed in the genome, where around 20-40% of prokaryotic enzymes have paralogs. Intracellular organisms have a lesser ratio of duplicated enzymes, whereas free-living enzymes show the highest ratios. We also found that phylogenetically close phyla and some unrelated but with the same lifestyle share similar genomic and biochemical traits, which ultimately support the idea that gene duplication is associated with environmental adaptation.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
Franco LVR, Su CH, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase and cytochrome oxidase. Biol Chem 2021; 401:835-853. [PMID: 32142477 DOI: 10.1515/hsz-2020-0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
The respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brasil
| | - Chen Hsien Su
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
17
|
Liu Q, Liu P, Xu Y, Wang B, Liu P, Hao J, Liu X. Encapsulation of fluazinam to extend efficacy duration in controlling Botrytis cinerea on cucumber. PEST MANAGEMENT SCIENCE 2021; 77:2836-2842. [PMID: 33538400 DOI: 10.1002/ps.6318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fluazinam is an effective fungicide in controlling gray mold, but has short duration of efficacy. Increasing application dosage may cause phytotoxicity. To overcome this shortage, a controlled-release technology was studied by encapsulating fluazinam. Ethyl cellulose polymer microcapsules were loaded with fluazinam to formulate a fluazinam capsule suspension (FCS). The efficacy for inhibition of B. cinerea and persistency of the FCS were examined by comparing with fluazinam technical concentrate (FTC) and aqueous fluazinam suspension concentrate (FSC) using microscopic observation and high-performance liquid chromatography analysis. RESULTS FCS formed capsules, with median size of 3.17 μm in diameter, had 82.3% encapsulation efficiency. It had a stronger inhibitory activity against B. cinerea than FTC and FSC measured 7 days after the treatments. The half-life of FCS on cucumber leaves was 3.4 days, longer than the 2.3 days of FSC. CONCLUSION FCS formulation significantly improved the inhibition of B. cinerea and resulted in prolonged and sustained release. Moreover, microencapsulation increased the duration of the efficacy of fluazinam on target crops. This formulation could help to sustain pesticides and protect the environment. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qizheng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Panqing Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing, China
| | - Bin Wang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, China
| | - Pengfei Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Dai Z, Huang H, Zhang Q, Bei J, Chen Z, Liu Q, Gao J, Zhang S, Liu J. Comparative Multi-Omics of Tender Shoots from a Novel Evergrowing Tea Cultivar Provide Insight into the Winter Adaptation Mechanism. PLANT & CELL PHYSIOLOGY 2021; 62:366-377. [PMID: 33399871 DOI: 10.1093/pcp/pcaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/14/2020] [Indexed: 05/15/2023]
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) tree is a perennial plant in which winter dormancy is an important biological adaptation to environmental changes. We discovered and reported a novel tea tree cultivar that can generate tender shoots in winter several years ago, but the molecular mechanism for this unique phenotype remains unknown . Here, we conducted comparative transcriptomics, proteomics and metabolomics along with phytohormone quantitation between the winter and spring tender shoots to investigate the physiological basis and putative regulatory mechanisms of its evergrowing character during winter. Our multi-omics study has led to the following findings. Gibberellin (GA) levels and key enzymes for GA biosynthesis and the signal transduction pathway were increased in the winter shoots, causing the ABA/GA content ratio to decrease, which might play a key regulatory role in maintaining normal growth during winter. The abundance of proteins, genes and metabolites involved in energy metabolism was all increased in winter shoots, indicating that energy is critical for continuous growth under the relatively weak-light and low-temperature environment. Abiotic resistance-related proteins and free amino acids were also increased in abundance in the winter shoots, which possibly represents an adaptation response to winter conditions. These results allowed us to hypothesize a novel molecular mechanism of adaptation for this unique tender shoot evergrowing in winter.
Collapse
Affiliation(s)
- Zhangyan Dai
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Hualin Huang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qunjie Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Jinlong Bei
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Zhongjian Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Qinjian Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Jiadong Gao
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | | | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
19
|
Cypionka H, Reese JO. Recording and Simulating Proton-Related Metabolism in Bacterial Cell Suspensions. Front Microbiol 2021; 12:654065. [PMID: 33995312 PMCID: PMC8117226 DOI: 10.3389/fmicb.2021.654065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Proton release and uptake induced by metabolic activities were measured in non-buffered cell suspensions by means of a pH electrode. Recorded data were used for simulating substrate turnover rates by means of a new freeware app (proton.exe). The program applies Michaelis-Menten or first-order kinetics to the metabolic processes and allows for parametrization of simultaneously ongoing processes. The simulation includes changes of the transmembrane ΔpH, membrane potential and ATP gains, and demonstrates the principles of chemiosmotic energy conservation. In our experiments, the versatile sulfate-reducing bacterium Desulfovibrio desulfuricans CSN (DSM 9104) was used as model organism. We analysed sulfate uptake by proton-sulfate symport, scalar alkalinization by sulfate reduction to sulfide, as well as nitrate and nitrite reduction to ammonia, and electron transport-coupled proton translocation. Two types of experiments were performed: In oxidant pulse experiments, cells were kept under H2, and micromolar amounts of sulfate, nitrate or nitrite were added. For reductant pulse experiments, small amounts of H2-saturated KCl were added to cells incubated under N2 with an excess of one of the above-mentioned electron acceptors. To study electron-transport driven proton translocation, the membrane potential was neutralized by addition of KSCN (100 mM). H+/e– ratios of electron-transport driven proton translocation were calculated by simulation with proton.exe. This method gave lower but more realistic values than logarithmic extrapolation. We could verify the kinetic simulation parameters found with proton.exe using series of increasing additions of the reactants. Our approach allows for studying a broad variety of proton-related metabolic activities at micromolar concentrations and time scales of seconds to minutes.
Collapse
Affiliation(s)
- Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jan-Ole Reese
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
20
|
Miranda-Astudillo HV, Yadav KNS, Boekema EJ, Cardol P. Supramolecular associations between atypical oxidative phosphorylation complexes of Euglena gracilis. J Bioenerg Biomembr 2021; 53:351-363. [PMID: 33646522 PMCID: PMC8124061 DOI: 10.1007/s10863-021-09882-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
In vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - P Cardol
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
| |
Collapse
|
21
|
Westphal L, Litty D, Müller V. Functional production of an archaeal ATP synthase with a V-type c subunit in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148378. [PMID: 33460587 DOI: 10.1016/j.bbabio.2021.148378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
ATP synthases are the key elements of cellular bioenergetics and present in any life form and the overall structure and function of this rotary energy converter is conserved in all domains of life. However, ancestral microbes, the archaea, have a unique and huge diversity in the size and number of ion-binding sites in their membrane-embedded rotor subunit c. Due to the harsh conditions for ATP synthesis in these life forms it has never been possible to address the consequences of these unusual c subunits for ATP synthesis. Recently, we have found a Na+-dependent archaeal ATP synthase with a V-type c subunit in a mesophilic bacterium and here, we have cloned and expressed the genes in the ATP synthase-negative strain Escherichia coli DK8. The enzyme was present in membranes of E. coli DK8 and catalyzed ATP hydrolysis with a rate of 35 nmol·min-1·mg protein-1. Inverted membrane vesicles of this strain were then checked for their ability to synthesize ATP. Indeed, ATP was synthesized driven by NADH oxidation despite the V-type c subunit. ATP synthesis was dependent on Na+ and inhibited by ionophores. Most importantly, ATPase activity was inhibited by DCCD and this inhibition was relieved by addition of Na+, indicating a functional coupling of the F1 and FO domains, a prerequisite for studies on structure-function relationship. A first step in this direction was the exchange of a conserved arginine (Arg530) in the FO motor subunit a which led to loss of ATP synthesis whereas ATP hydrolysis was retained.
Collapse
Affiliation(s)
- Lars Westphal
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Dennis Litty
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
22
|
Comprehensive Bioenergetic Evaluation of Microbial Pathway Variants in Syntrophic Propionate Oxidation. mSystems 2020; 5:5/6/e00814-20. [PMID: 33293404 PMCID: PMC7743110 DOI: 10.1128/msystems.00814-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, an original methodology was developed that quantifies bioenergetically and physiologically feasible net ATP yields for large numbers of microbial metabolic pathways and their variants under different conditions. All variants are evaluated, which ensures global optimality in finding the pathway variant(s) leading to the highest ATP yield. In this work, a systematic methodology was developed (based on known biochemistry, physiology, and bioenergetics) for the automated feasibility evaluation and net ATP yield quantification of large sets of pathway variants. Possible pathway variants differ in their intermediate metabolites, in which electron carriers are involved, in which steps are consuming/producing ATP, and in which steps are coupled to (and to how many) proton (or its equivalent) translocations. A pathway variant is deemed feasible, under a given set of physiological and environmental conditions, only if all pathway reaction steps have nonpositive Gibbs energy changes and if all the metabolite concentrations remain within an acceptable physiological range (10−6 to 10−2 M). The complete understanding of syntrophic propionate oxidation remains elusive due to uncertainties in pathways and the mechanisms for interspecies electron transfer (IET). Several million combinations of pathway variants and parameters/conditions were evaluated for propionate oxidation, providing unprecedented mechanistic insight into its biochemical and bioenergetic landscape. Our results show that, under a scenario of optimum environmental conditions for propionate oxidation, the Smithella pathway yields the most ATP and the methylmalonyl-coenzyme A (CoA) pathways can generate sufficient ATP for growth only under a cyclical pathway configuration with pyruvate. The results under conditions typical of methanogenic environments show that propionate oxidation via the lactate and via the hydroxypropionyl-CoA pathways yield the most ATP. IET between propionate oxidizers and methanogens can proceed either by dissolved hydrogen via the Smithella pathway or by different mechanisms (e.g., formate or direct IET) if other pathways are used. IMPORTANCE In this work, an original methodology was developed that quantifies bioenergetically and physiologically feasible net ATP yields for large numbers of microbial metabolic pathways and their variants under different conditions. All variants are evaluated, which ensures global optimality in finding the pathway variant(s) leading to the highest ATP yield. The methodology is designed to be especially relevant to hypothesize on which microbial pathway variants should be most favored in microbial ecosystems under high selective pressure for efficient metabolic energy conservation. Syntrophic microbial oxidation of propionate to acetate has an extremely small quantity of available energy and requires an extremely high metabolic efficiency to sustain life. Our results bring mechanistic insights into the optimum pathway variants, other metabolic bottlenecks, and the impact of environmental conditions on the ATP yields. Additionally, our results conclude that, as previously reported, under specific conditions, IET mechanisms other than hydrogen must exist to simultaneously sustain the growth of both propionate oxidizers and hydrogenotrophic methanogens.
Collapse
|
23
|
Pecher SJ, Potthast AB, von Versen-Höynck F, Das AM. Impact of Short-Term Hypoxia on Sirtuins as Regulatory Elements in HUVECs. J Clin Med 2020; 9:jcm9082604. [PMID: 32796661 PMCID: PMC7464651 DOI: 10.3390/jcm9082604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Sirtuins (SIRT) are NAD+-dependent deacetylases that are involved in stress response, antioxidative defense, and longevity via posttranslational modifications. SIRT1 directly activates nitric oxide synthase (NOS). Aging is associated with a reduced sirtuin function and reduction of the cofactor NAD+. Age-related atherosclerosis and vascular diseases are linked to a compromised sirtuin function. Vascular events like stroke and cardiac infarction result in acute hypoxia, which can additionally impact sirtuins and thus the vascular function. This prompted us to study sirtuins in intact HUVECs, under acute, short-term hypoxic conditions. Methods: We measured intracellular sirtuin and NAD+ levels in HUVECs exposed to hypoxia (2% O₂) for 10–120 min, compared to normoxic controls. SIRT1, SIRT3, and SIRT4 were measured at the protein (Western Blot) and the transcript level (qRT-PCR), SIRT1 and SIRT3 at the enzyme level (fluorometrically), and NAD+ levels were measured spectrophotometrically. Results: We observed a reduction of SIRT1 and SIRT4 at the protein level, a downregulation of SIRT1 at the transcript level and increased NAD+ levels under hypoxia. SIRT3 was not affected by hypoxia. Conclusions: Downregulation of SIRT1 under hypoxia might reduce production of the reactive oxygen species (ROS) via the respiratory chain and inhibit the mitochondrial ATP-synthase, resulting in energy conservation. NOS might be impaired if SIRT1 is decreased. Increased NAD+ levels might compensate these effects. Hypoxic downregulation of SIRT4 might lead to mitochondrial uncoupling, hence endothelial dysfunction, and ADP/ATP-translocase 2 (ANT2)-inhibition. NAD+ upregulation might partly compensate this effect.
Collapse
Affiliation(s)
- Simone Johanna Pecher
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (S.J.P.); (A.B.P.)
| | - Arne Björn Potthast
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (S.J.P.); (A.B.P.)
| | - Frauke von Versen-Höynck
- Department of Obstetrics and Gynecology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Anibh Martin Das
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (S.J.P.); (A.B.P.)
- Correspondence: ; Tel.: +49-511-532-3220
| |
Collapse
|
24
|
Almasi S, El Hiani Y. Exploring the Therapeutic Potential of Membrane Transport Proteins: Focus on Cancer and Chemoresistance. Cancers (Basel) 2020; 12:cancers12061624. [PMID: 32575381 PMCID: PMC7353007 DOI: 10.3390/cancers12061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer research. This review provides a comprehensive update of our current knowledge on the functional expression profile of membrane transport proteins in cancer and chemoresistant tumours that may form the basis for new cancer treatment strategies.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON KIH 8M5, Canada;
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
25
|
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.
Collapse
Affiliation(s)
- Michael P Collins
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America
| | - Michael Forgac
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America; Dept. of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States of America.
| |
Collapse
|
26
|
Zhou L, Sazanov LA. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science 2020; 365:365/6455/eaaw9144. [PMID: 31439765 DOI: 10.1126/science.aaw9144] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
V (vacuolar)/A (archaeal)-type adenosine triphosphatases (ATPases), found in archaea and eubacteria, couple ATP hydrolysis or synthesis to proton translocation across the plasma membrane using the rotary-catalysis mechanism. They belong to the V-type ATPase family, which differs from the mitochondrial/chloroplast F-type ATP synthases in overall architecture. We solved cryo-electron microscopy structures of the intact Thermus thermophilus V/A-ATPase, reconstituted into lipid nanodiscs, in three rotational states and two substates. These structures indicate substantial flexibility between V1 and Vo in a working enzyme, which results from mechanical competition between central shaft rotation and resistance from the peripheral stalks. We also describe details of adenosine diphosphate inhibition release, V1-Vo torque transmission, and proton translocation, which are relevant for the entire V-type ATPase family.
Collapse
Affiliation(s)
- Long Zhou
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria.
| |
Collapse
|
27
|
Vasanthakumar T, Rubinstein JL. Structure and Roles of V-type ATPases. Trends Biochem Sci 2020; 45:295-307. [PMID: 32001091 DOI: 10.1016/j.tibs.2019.12.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022]
Abstract
V-ATPases are membrane-embedded protein complexes that function as ATP hydrolysis-driven proton pumps. V-ATPases are the primary source of organellar acidification in all eukaryotes, making them essential for many fundamental cellular processes. Enzymatic activity can be modulated by regulated and reversible disassembly of the complex, and several subunits of mammalian V-ATPase have multiple isoforms that are differentially localized. Although the biochemical properties of the different isoforms are currently unknown, mutations in specific subunit isoforms have been associated with various diseases, making V-ATPases potential drug targets. V-ATPase structure and activity have been best characterized in Saccharomyces cerevisiae, where recent structures have revealed details about the dynamics of the enzyme, the proton translocation pathway, and conformational changes associated with regulated disassembly and autoinhibition.
Collapse
Affiliation(s)
- Thamiya Vasanthakumar
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - John L Rubinstein
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
28
|
Litty D, Müller V. A Na + A 1 A O ATP synthase with a V-type c subunit in a mesophilic bacterium. FEBS J 2020; 287:3012-3023. [PMID: 31876375 DOI: 10.1111/febs.15193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023]
Abstract
A1 AO ATP synthases with a V-type c subunit have only been found in hyperthermophilic archaea which makes bioenergetic analyses impossible due to the instability of liposomes at high temperatures. A search for a potential archaeal A1 AO ATP synthase with a V-type c subunit in a mesophilic organism revealed an A1 AO ATP synthase cluster in the anaerobic, acetogenic bacterium Eubacterium limosum KIST612. The enzyme was purified to apparent homogeneity from cells grown on methanol to a specific activity of 1.2 U·mg-1 with a yield of 12%. The enzyme contained subunits A, B, C, D, E, F, H, a, and c. Subunit c is predicted to be a typical V-type c subunit with only one ion (Na+ )-binding site. Indeed, ATP hydrolysis was strictly Na+ -dependent. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis, but inhibition was relieved by addition of Na+ . Na+ was shown directly to abolish binding of the fluorescence DCCD derivative, NCD-4, to subunit c, demonstrating a competition of Na+ and DCCD/NCD-4 for a common binding site. After incorporation of the A1 AO ATP synthase into liposomes, ATP-dependent primary transport of 22 Na+ as well as ΔµNa+ -driven ATP synthesis could be demonstrated. The Na+ A1 AO ATP synthase from E. limosum is the first ATP synthase with a V-type c subunit from a mesophilic organism. This will enable future bioenergetic analysis of these unique ATP synthases.
Collapse
Affiliation(s)
- Dennis Litty
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
29
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
30
|
Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit. Int J Mol Sci 2019; 20:ijms20174186. [PMID: 31461845 PMCID: PMC6747279 DOI: 10.3390/ijms20174186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.
Collapse
|
31
|
Singharoy A, Chipot C, Ekimoto T, Suzuki K, Ikeguchi M, Yamato I, Murata T. Rotational Mechanism Model of the Bacterial V 1 Motor Based on Structural and Computational Analyses. Front Physiol 2019; 10:46. [PMID: 30804798 PMCID: PMC6371843 DOI: 10.3389/fphys.2019.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
V1-ATPase exemplifies the ubiquitous rotary motor, in which a central shaft DF complex rotates inside a hexagonally arranged catalytic A3B3 complex, powered by the energy from ATP hydrolysis. We have recently reported a number of crystal structures of the Enterococcus hirae A3B3DF (V1) complex corresponding to its nucleotide-bound intermediate states, namely the forms waiting for ATP hydrolysis (denoted as catalytic dwell), ATP binding (ATP-binding dwell), and ADP release (ADP-release dwell) along the rotatory catalytic cycle of ATPase. Furthermore, we have performed microsecond-scale molecular dynamics simulations and free-energy calculations to investigate the conformational transitions between these intermediate states and to probe the long-time dynamics of the molecular motor. In this article, the molecular structure and dynamics of the V1-ATPase are reviewed to bring forth a unified model of the motor’s remarkable rotational mechanism.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chris Chipot
- Laboratoire International Associé Centre, Université de Lorraine, Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kano Suzuki
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Ichiro Yamato
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Takeshi Murata
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiba, Japan
| |
Collapse
|
32
|
Haumann J, Camara AKS, Gadicherla AK, Navarro CD, Boelens AD, Blomeyer CA, Dash RK, Boswell MR, Kwok WM, Stowe DF. Slow Ca 2+ Efflux by Ca 2+/H + Exchange in Cardiac Mitochondria Is Modulated by Ca 2+ Re-uptake via MCU, Extra-Mitochondrial pH, and H + Pumping by F OF 1-ATPase. Front Physiol 2019; 9:1914. [PMID: 30804812 PMCID: PMC6378946 DOI: 10.3389/fphys.2018.01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial (m) Ca2+ influx is largely dependent on membrane potential (ΔΨm), whereas mCa2+ efflux occurs primarily via Ca2+ ion exchangers. We probed the kinetics of Ca2+/H+ exchange (CHEm) in guinea pig cardiac muscle mitochondria. We tested if net mCa2+ flux is altered during a matrix inward H+ leak that is dependent on matrix H+ pumping by ATPm hydrolysis at complex V (FOF1-ATPase). We measured [Ca2+]m, extra-mitochondrial (e) [Ca2+]e, ΔΨm, pHm, pHe, NADH, respiration, ADP/ATP ratios, and total [ATP]m in the presence or absence of protonophore dinitrophenol (DNP), mitochondrial uniporter (MCU) blocker Ru360, and complex V blocker oligomycin (OMN). We proposed that net slow influx/efflux of Ca2+ after adding DNP and CaCl2 is dependent on whether the ΔpHm gradient is/is not maintained by reciprocal outward H+ pumping by complex V. We found that adding CaCl2 enhanced DNP-induced increases in respiration and decreases in ΔΨm while [ATP]m decreased, ΔpHm gradient was maintained, and [Ca2+]m continued to increase slowly, indicating net mCa2+ influx via MCU. In contrast, with complex V blocked by OMN, adding DNP and CaCl2 caused larger declines in ΔΨm as well as a slow fall in pHm to near pHe while [Ca2+]m continued to decrease slowly, indicating net mCa2+ efflux in exchange for H+ influx (CHEm) until the ΔpHm gradient was abolished. The kinetics of slow mCa2+ efflux with slow H+ influx via CHEm was also observed at pHe 6.9 vs. 7.6 by the slow fall in pHm until ΔpHm was abolished; if Ca2+ reuptake via the MCU was also blocked, mCa2+ efflux via CHEm became more evident. Of the two components of the proton electrochemical gradient, our results indicate that CHEm activity is driven largely by the ΔpHm chemical gradient with H+ leak, while mCa2+ entry via MCU depends largely on the charge gradient ΔΨm. A fall in ΔΨm with excess mCa2+ loading can occur during cardiac cell stress. Cardiac cell injury due to mCa2+ overload may be reduced by temporarily inhibiting FOF1-ATPase from pumping H+ due to ΔΨm depolarization. This action would prevent additional slow mCa2+ loading via MCU and permit activation of CHEm to mediate efflux of mCa2+. HIGHLIGHTSWe examined how slow mitochondrial (m) Ca2+ efflux via Ca2+/H+ exchange (CHEm) is triggered by matrix acidity after a rapid increase in [Ca2+]m by adding CaCl2 in the presence of dinitrophenol (DNP) to permit H+ influx, and oligomycin (OMN) to block H+ pumping via FOF1-ATP synthase/ase (complex V). Declines in ΔΨm and pHm after DNP and added CaCl2 were larger when complex V was blocked. [Ca2+]m slowly increased despite a fall in ΔΨm but maintained pHm when H+ pumping by complex V was permitted. [Ca2+]m slowly decreased and external [Ca2+]e increased with declines in both ΔΨm and pHm when complex V was blocked. ATPm hydrolysis supports a falling pHm and redox state and promotes a slow increase in [Ca2+]m. After rapid Ca2+ influx due to a bolus of CaCl2, slow mCa2+ efflux by CHEm occurs directly if pHe is low.
Collapse
Affiliation(s)
- Johan Haumann
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ashish K Gadicherla
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher D Navarro
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Age D Boelens
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Michael R Boswell
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States.,Research Service, Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
33
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
34
|
Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Adaptive effect of sericin on hepatic mitochondrial conformation through its regulation of apoptosis, autophagy and energy maintenance: a proteomics approach. Sci Rep 2018; 8:14943. [PMID: 30297713 PMCID: PMC6175853 DOI: 10.1038/s41598-018-33372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
We recently demonstrated that in addition to its protective effect on pancreatic and adrenal biosynthesis, antioxidant properties of sericin decrease blood cholesterol levels and improve the liver mitochondrial architecture. However, little is known about the detailed mechanisms underlying these effects. Using proteomics and electron microscopy, we identified mitochondrial proteins that play important roles in the preservation of the mitochondrial ultrastructure and cholesterol-lowering properties of sericin. Our results showed that sericin maintains the mitochondrial architecture during conditions of high blood cholesterol by regulating apoptotic (NADH-ubiquinone oxidoreductase 75 kDa subunit) and autophagic (mitochondrial elongation factor Tu and prohibitin-2) proteins as well as energy maintenance proteins [haloacid dehalogenase-like hydrolase domain-containing protein 3, succinate dehydrogenase (ubiquinone) flavoprotein subunit, ATP synthase-α subunit precursor, enoyl-CoA hydratase domain-containing protein 3 and electron transfer flavoprotein subunit-α]. Sericin also exerts anti-oxidative properties via aconitate hydratase and Chain A, crystal structure of rat carnitine palmitoyltrasferase 2 proteins. Together, these activities may reduce hepatocytic triglyceride deposition, thereby decreasing steatosis, as demonstrated by the modulatory effects on ornithine aminotransferase, mitochondrial aspartate aminotransferase, acyl-CoA synthase, hydroxyacyl-CoA dehydrogenase and D-beta-hydroxybutyrate dehydrogenase. Sericin activity further balanced nitrogenous waste detoxification, characterised by carbamoyl-phosphate synthase (ammonia), aldehyde dehydrogenase and uricase, or folate biosynthesis via sarcosine dehydrogenase and dimethyl glycine dehydrogenase. These results suggest that sericin maintains the hepatic mitochondrial architecture through apoptotic, autophagic, energy maintenance and anti-oxidative mitochondrial proteins for alleviating hepatic steatosis and promoting liver function under conditions of hypercholesterolaemia.
Collapse
Affiliation(s)
- Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
35
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
36
|
Darbani B, Kell DB, Borodina I. Energetic evolution of cellular Transportomes. BMC Genomics 2018; 19:418. [PMID: 29848286 PMCID: PMC5977736 DOI: 10.1186/s12864-018-4816-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters. RESULTS We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers. CONCLUSIONS The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.
Collapse
Affiliation(s)
- Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
37
|
Miranda-Astudillo H, Colina-Tenorio L, Jiménez-Suárez A, Vázquez-Acevedo M, Salin B, Giraud MF, Remacle C, Cardol P, González-Halphen D. Oxidative phosphorylation supercomplexes and respirasome reconstitution of the colorless alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [PMID: 29540299 DOI: 10.1016/j.bbabio.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-β-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico; Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium.
| | - Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra Jiménez-Suárez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Bénédicte Salin
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Claire Remacle
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
38
|
Structure and dynamics of rotary V 1 motor. Cell Mol Life Sci 2018; 75:1789-1802. [PMID: 29387903 PMCID: PMC5910484 DOI: 10.1007/s00018-018-2758-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/25/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F1-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V1-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V1-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V1-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V1-ATPase with a focus on differences between rotary molecular motors.
Collapse
|
39
|
Robinson BL, Dumas M, Ali SF, Paule MG, Gu Q, Kanungo J. Mechanistic studies on ketamine-induced mitochondrial toxicity in zebrafish embryos. Neurotoxicol Teratol 2017; 69:63-72. [PMID: 29225006 DOI: 10.1016/j.ntt.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022]
Abstract
Ketamine, a phencyclidine derivative, is an antagonist of the Ca2+-permeable N-methyl-d-aspartate (NMDA)-type glutamate receptors. It is a pediatric anesthetic and has been implicated in developmental neurotoxicity. Ketamine has also been shown to deplete ATP in mammalian cells. Our previous studies showed that acetyl l-carnitine (ALCAR) prevented ketamine-induced cardiotoxicity and neurotoxicity in zebrafish embryos. Based on our finding that ALCAR's protective effect was blunted by oligomycin A, an inhibitor of ATP synthase, we further investigated the effects of ketamine and ALCAR on ATP levels, mitochondria and ATP synthase in zebrafish embryos. The results demonstrated that ketamine reduced ATP levels in the embryos but not in the presence of ALCAR. Ketamine reduced total mitochondrial protein levels and mitochondrial potential, which were prevented with ALCAR co-treatment. To determine the cause of ketamine-induced ATP deficiency, we explored the status of ATP synthase. The results showed that a subunit of ATP synthase, atp5α1, was transcriptionally down-regulated by ketamine, but not in the presence of ALCAR, although ketamine caused a significant upregulation in another ATP synthase subunit, atp5β and total ATP synthase protein levels. Most of the ATP generated by heart mitochondria are utilized for its contraction and relaxation. Ketamine-treated embryos showed abnormal heart structure, which was abolished with ALCAR co-treatment. This study offers evidence for a potential mechanism by which ketamine could cause ATP deficiency mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
40
|
Abstract
Intracellular membrane-bounded organelles of eukaryotic cells transiently contact the extracellular environment during endocytosis and secretion. Such contacts must be precisely timed to prevent leakage of cargo. I argue that early eukaryotes evolved organelle acidification as a way to detect and prevent leakage.
Collapse
Affiliation(s)
- Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
41
|
Wang C, Zhao T, Li Y, Huang G, White MA, Gao J. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv Drug Deliv Rev 2017; 113:87-96. [PMID: 27612550 PMCID: PMC5339051 DOI: 10.1016/j.addr.2016.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH4Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes.
Collapse
Affiliation(s)
- Chensu Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Wang J, Shi Y, Elzo MA, Dang S, Jia X, Lai S. Genetic diversity of ATP8 and ATP6 genes is associated with high-altitude adaptation in yak. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:385-393. [PMID: 28306370 DOI: 10.1080/24701394.2017.1285292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ATP synthase 8 (ATP8) and ATPase synthase 6 (ATP6) play an important role in mitochondrial ATPase assembly. Mutations in either of these units could affect the ATP processing and the respiration chain in mitochondria. To find out if there were differences in gene diversity between Tibetan yaks and domestic cattle, we sequenced the ATP8 and ATP6 genes in 66 Tibetan yaks and 81 domestic cattle. We identified 20 SNPs in the ATP8 gene and 60 SNPs in the ATP6 gene. Ten SNPs detected in ATP8 were probably positively associated with high-altitude adaptation, of which SNPs m.8164 G > A, m.8210 G > A, m.8231 C > T and m. 8249 C > T resulted in amino acid changes. Similarly, SNPs m.8308A > G, m.8370A > C, m.8514G > A of ATP6 also appeared to be associated with high-altitude adaptability. Specifically, m.8308 A > G, located in the overlap region, might bring in a conserved region found in cytochrome b561 which play an important role in iron regulation, thus it might help the Tibetan yaks with this mutation to utilize rare oxygen efficiently. Considering all mutations, three of eight haplotypes identified in gene ATP8 were present only in Tibetan yaks, and six (H3 to H8) out of 21 haplotypes (H1 to H21) in gene ATP6 were restricted to Tibetan yaks. Haplotypes present only in Tibetan yaks could be positively associated with high-altitude adaptation.
Collapse
Affiliation(s)
- Jie Wang
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Yu Shi
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Mauricio A Elzo
- b Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Shuzhang Dang
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Xianbo Jia
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Songjia Lai
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| |
Collapse
|
43
|
Singh D, Sielaff H, Börsch M, Grüber G. Conformational dynamics of the rotary subunit F in the A 3 B 3 DF complex of Methanosarcina mazei Gö1 A-ATP synthase monitored by single-molecule FRET. FEBS Lett 2017; 591:854-862. [PMID: 28231387 DOI: 10.1002/1873-3468.12605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022]
Abstract
In archaea the A1 AO ATP synthase uses a transmembrane electrochemical potential to generate ATP, while the soluble A1 domain (subunits A3 B3 DF) alone can hydrolyse ATP. The three nucleotide-binding AB pairs form a barrel-like structure with a central orifice that hosts the rotating central stalk subunits DF. ATP binding, hydrolysis and product release cause a conformational change inside the A:B-interface, which enforces the rotation of subunits DF. Recently, we reported that subunit F is a stimulator of ATPase activity. Here, we investigated the nucleotide-dependent conformational changes of subunit F relative to subunit D during ATP hydrolysis in the A3 B3 DF complex of the Methanosarcina mazei Gö1 A-ATP synthase using single-molecule Förster resonance energy transfer. We found two conformations for subunit F during ATP hydrolysis.
Collapse
Affiliation(s)
- Dhirendra Singh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hendrik Sielaff
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Single-Molecule Microscopy Group, Jena University Hospital, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Germany
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
44
|
Advances in Consolidated Bioprocessing Using Clostridium thermocellumand Thermoanaerobacter saccharolyticum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Suzuki K, Mizutani K, Maruyama S, Shimono K, Imai FL, Muneyuki E, Kakinuma Y, Ishizuka-Katsura Y, Shirouzu M, Yokoyama S, Yamato I, Murata T. Crystal structures of the ATP-binding and ADP-release dwells of the V 1 rotary motor. Nat Commun 2016; 7:13235. [PMID: 27807367 PMCID: PMC5095293 DOI: 10.1038/ncomms13235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kenji Mizutani
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Shintaro Maruyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Fabiana L. Imai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Eiro Muneyuki
- Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Tokyo 112-8551, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Yoshiko Ishizuka-Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
46
|
Sielaff H, Martin J, Singh D, Biuković G, Grüber G, Frasch WD. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors. J Biol Chem 2016; 291:25351-25363. [PMID: 27729450 PMCID: PMC5207238 DOI: 10.1074/jbc.m116.745240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/03/2016] [Indexed: 01/21/2023] Open
Abstract
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits.
Collapse
Affiliation(s)
- Hendrik Sielaff
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - James Martin
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Dhirendra Singh
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Goran Biuković
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Wayne D Frasch
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
47
|
Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process. Proc Natl Acad Sci U S A 2016; 113:11220-11225. [PMID: 27647911 DOI: 10.1073/pnas.1608533113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ATP synthase (F-ATPase) is a highly complex rotary machine that synthesizes ATP, powered by a proton electrochemical gradient. Why did evolution select such an elaborate mechanism over arguably simpler alternating-access processes that can be reversed to perform ATP synthesis? We studied a systematic enumeration of alternative mechanisms, using numerical and theoretical means. When the alternative models are optimized subject to fundamental thermodynamic constraints, they fail to match the kinetic ability of the rotary mechanism over a wide range of conditions, particularly under low-energy conditions. We used a physically interpretable, closed-form solution for the steady-state rate for an arbitrary chemical cycle, which clarifies kinetic effects of complex free-energy landscapes. Our analysis also yields insights into the debated "kinetic equivalence" of ATP synthesis driven by transmembrane pH and potential difference. Overall, our study suggests that the complexity of the F-ATPase may have resulted from positive selection for its kinetic advantage.
Collapse
|
48
|
Lysine acetylation in mitochondria: From inventory to function. Mitochondrion 2016; 33:58-71. [PMID: 27476757 DOI: 10.1016/j.mito.2016.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Cellular signaling pathways are regulated in a highly dynamic fashion in order to quickly adapt to distinct environmental conditions. Acetylation of lysine residues represents a central process that orchestrates cellular metabolism and signaling. In mitochondria, acetylation seems to be the most prevalent post-translational modification, presumably linked to the compartmentation and high turnover of acetyl-CoA in this organelle. Similarly, the elevated pH and the higher concentration of metabolites in mitochondria seem to favor non-enzymatic lysine modifications, as well as other acylations. Hence, elucidating the mechanisms for metabolic control of protein acetylation is crucial for our understanding of cellular processes. Recent advances in mass spectrometry-based proteomics have considerably increased our knowledge of the regulatory scope of acetylation. Here, we review the current knowledge and functional impact of mitochondrial protein acetylation across species. We first cover the experimental approaches to identify and analyze lysine acetylation on a global scale, we then explore both commonalities and specific differences of plant and animal acetylomes and the evolutionary conservation of protein acetylation, as well as its particular impact on metabolism and diseases. Important future directions and technical challenges are discussed, and it is pointed out that the transfer of knowledge between species and diseases, both in technology and biology, is of particular importance for further advancements in this field.
Collapse
|
49
|
Wu WL, Lai SJ, Yang JT, Chern J, Liang SY, Chou CC, Kuo CH, Lai MC, Wu SH. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1(T) identified the role of protein phosphorylation in methanogenesis and osmoregulation. Sci Rep 2016; 6:29013. [PMID: 27357474 PMCID: PMC4928046 DOI: 10.1038/srep29013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023] Open
Abstract
Methanogens have gained much attention for their metabolic product, methane, which could be an energy substitute but also contributes to the greenhouse effect. One factor that controls methane emission, reversible protein phosphorylation, is a crucial signaling switch, and phosphoproteomics has become a powerful tool for large-scale surveying. Here, we conducted the first phosphorylation-mediated regulation study in halophilic Methanohalophilus portucalensis FDF1(T), a model strain for studying stress response mechanisms in osmoadaptation. A shotgun approach and MS-based analysis identified 149 unique phosphoproteins. Among them, 26% participated in methanogenesis and osmolytes biosynthesis pathways. Of note, we uncovered that protein phosphorylation might be a crucial factor to modulate the pyrrolysine (Pyl) incorporation and Pyl-mediated methylotrophic methanogenesis. Furthermore, heterologous expression of glycine sarcosine N-methyltransferase (GSMT) mutant derivatives in the osmosensitive Escherichia coli MKH13 revealed that the nonphosphorylated T68A mutant resulted in increased salt tolerance. In contrast, mimic phosphorylated mutant T68D proved defective in both enzymatic activity and salinity tolerance for growth. Our study provides new insights into phosphorylation modification as a crucial role of both methanogenesis and osmoadaptation in methanoarchaea, promoting biogas production or reducing future methane emission in response to global warming and climate change.
Collapse
Affiliation(s)
- Wan-Ling Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Jung Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jhih-Tian Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Ph.D program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Jeffy Chern
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
50
|
Mozzi A, Forni D, Clerici M, Pozzoli U, Mascheretti S, Guerini FR, Riva S, Bresolin N, Cagliani R, Sironi M. The evolutionary history of genes involved in spoken and written language: beyond FOXP2. Sci Rep 2016; 6:22157. [PMID: 26912479 PMCID: PMC4766443 DOI: 10.1038/srep22157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Humans possess a communication system based on spoken and written language. Other animals can learn vocalization by imitation, but this is not equivalent to human language. Many genes were described to be implicated in language impairment (LI) and developmental dyslexia (DD), but their evolutionary history has not been thoroughly analyzed. Herein we analyzed the evolution of ten genes involved in DD and LI. Results show that the evolutionary history of LI genes for mammals and aves was comparable in vocal-learner species and non-learners. For the human lineage, several sites showing evidence of positive selection were identified in KIAA0319 and were already present in Neanderthals and Denisovans, suggesting that any phenotypic change they entailed was shared with archaic hominins. Conversely, in FOXP2, ROBO1, ROBO2, and CNTNAP2 non-coding changes rose to high frequency after the separation from archaic hominins. These variants are promising candidates for association studies in LI and DD.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20100 Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | | | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
- Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| |
Collapse
|