1
|
De Salis SKF, Li L, Chen Z, Lam KW, Skarratt KK, Balle T, Fuller SJ. Alternatively Spliced Isoforms of the P2X7 Receptor: Structure, Function and Disease Associations. Int J Mol Sci 2022; 23:ijms23158174. [PMID: 35897750 PMCID: PMC9329894 DOI: 10.3390/ijms23158174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated membrane ion channel that is expressed by multiple cell types. Following activation by extracellular ATP, the P2X7R mediates a broad range of cellular responses including cytokine and chemokine release, cell survival and differentiation, the activation of transcription factors, and apoptosis. The P2X7R is made up of three P2X7 subunits that contain specific domains essential for the receptor’s varied functions. Alternative splicing produces P2X7 isoforms that exclude one or more of these domains and assemble in combinations that alter P2X7R function. The modification of the structure and function of the P2X7R may adversely affect cellular responses to carcinogens and pathogens, and alternatively spliced (AS) P2X7 isoforms have been associated with several cancers. This review summarizes recent advances in understanding the structure and function of AS P2X7 isoforms and their associations with cancer and potential role in modulating the inflammatory response.
Collapse
Affiliation(s)
- Sophie K. F. De Salis
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Lanxin Li
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Kam Wa Lam
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Kristen K. Skarratt
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
- Correspondence: ; Tel.: +61-2-4734-3732
| |
Collapse
|
2
|
Abstract
Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to cis-acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes.
Collapse
Affiliation(s)
- Siobhan Cleary
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| |
Collapse
|
3
|
Yang C, Zhou Y, Marcus S, Formenti G, Bergeron LA, Song Z, Bi X, Bergman J, Rousselle MMC, Zhou C, Zhou L, Deng Y, Fang M, Xie D, Zhu Y, Tan S, Mountcastle J, Haase B, Balacco J, Wood J, Chow W, Rhie A, Pippel M, Fabiszak MM, Koren S, Fedrigo O, Freiwald WA, Howe K, Yang H, Phillippy AM, Schierup MH, Jarvis ED, Zhang G. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature 2021; 594:227-233. [PMID: 33910227 PMCID: PMC8189906 DOI: 10.1038/s41586-021-03535-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.
Collapse
Affiliation(s)
- Chentao Yang
- BGI-Shenzhen, Shenzhen, China.,Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephanie Marcus
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Lucie A Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhenzhen Song
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | | | | | - Yuan Deng
- BGI-Shenzhen, Shenzhen, China.,Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Duo Xie
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | | | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA.,Center for Brains, Minds and Machines (CBMM), The Rockefeller University, New York, NY, USA
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,University of the Chinese Academy of Sciences, Beijing, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
4
|
Skarratt KK, Gu BJ, Lovelace MD, Milligan CJ, Stokes L, Glover R, Petrou S, Wiley JS, Fuller SJ. A P2RX7 single nucleotide polymorphism haplotype promotes exon 7 and 8 skipping and disrupts receptor function. FASEB J 2020; 34:3884-3901. [PMID: 32003498 DOI: 10.1096/fj.201901198rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
P2X7 is an ATP-gated membrane ion channel that is expressed by multiple cell types. Brief exposure to ATP induces the opening of a nonselective cation channel; while repeated or prolonged exposure induces formation of a transmembrane pore. This process may be partially regulated by alternative splicing of full-length P2RX7A pre-mRNA, producing isoforms that delete or retain functional domains. Here, we report cloning and expression of a novel P2RX7 splice variant, P2RX7L, that is, characterized by skipping of exons 7 and 8. In HEK 293 cells, expression of P2RX7L produces a protein isoform, P2X7L, that forms a heteromer with P2X7A. A haplotype defined by six single nucleotide polymorphisms (SNPs) (rs208307, rs208306, rs36144485, rs208308, rs208309, and rs373655596) promotes allele-specific alternative splicing, increasing mRNA levels of P2RX7L and another isoform, P2RX7E, which in addition has a truncated C-terminus. Skipping of exons 7 and 8 is predicted to delete critical amino acids in the ATP-binding site. P2X7L-transfected HEK 293 cells have phagocytic but not channel, pore, or membrane-blebbing function, and double-transfected P2X7L and P2X7A cells have reduced pore function. Heteromeric receptor complexes of P2X7A and P2X7L are predicted to have reduced numbers of ATP-binding sites, which potentially alters receptor function compared to homomeric P2X7A complexes.
Collapse
Affiliation(s)
- Kristen K Skarratt
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael D Lovelace
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Leanne Stokes
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Rachel Glover
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Fuller
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| |
Collapse
|
5
|
Xie J, Ji T, Ferreira MAR, Li Y, Patel BN, Rivera RM. Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model. BMC Bioinformatics 2019; 20:530. [PMID: 31660858 PMCID: PMC6819473 DOI: 10.1186/s12859-019-3141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND High-throughput sequencing experiments, which can determine allele origins, have been used to assess genome-wide allele-specific expression. Despite the amount of data generated from high-throughput experiments, statistical methods are often too simplistic to understand the complexity of gene expression. Specifically, existing methods do not test allele-specific expression (ASE) of a gene as a whole and variation in ASE within a gene across exons separately and simultaneously. RESULTS We propose a generalized linear mixed model to close these gaps, incorporating variations due to genes, single nucleotide polymorphisms (SNPs), and biological replicates. To improve reliability of statistical inferences, we assign priors on each effect in the model so that information is shared across genes in the entire genome. We utilize Bayesian model selection to test the hypothesis of ASE for each gene and variations across SNPs within a gene. We apply our method to four tissue types in a bovine study to de novo detect ASE genes in the bovine genome, and uncover intriguing predictions of regulatory ASEs across gene exons and across tissue types. We compared our method to competing approaches through simulation studies that mimicked the real datasets. The R package, BLMRM, that implements our proposed algorithm, is publicly available for download at https://github.com/JingXieMIZZOU/BLMRM . CONCLUSIONS We will show that the proposed method exhibits improved control of the false discovery rate and improved power over existing methods when SNP variation and biological variation are present. Besides, our method also maintains low computational requirements that allows for whole genome analysis.
Collapse
Affiliation(s)
- Jing Xie
- Department of Statistics, University of Missouri at Columbia, Columbia, 65211 MO USA
| | - Tieming Ji
- Department of Statistics, University of Missouri at Columbia, Columbia, 65211 MO USA
| | | | - Yahan Li
- Division of Animal Science, University of Missouri at Columbia, Columbia, 65211 MO USA
| | - Bhaumik N. Patel
- Division of Animal Science, University of Missouri at Columbia, Columbia, 65211 MO USA
| | - Rocio M. Rivera
- Division of Animal Science, University of Missouri at Columbia, Columbia, 65211 MO USA
| |
Collapse
|
6
|
Martin G, Selcuklu SD, Schouest K, Nembaware V, McKeown PC, Seoighe C, Spillane C. Allele-specific splicing effects on DKKL1 and ZNF419 transcripts in HeLa cells. Gene 2017; 598:107-112. [PMID: 27826023 DOI: 10.1016/j.gene.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/16/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Allele-specific splicing is the production of different RNA isoforms from different alleles of a gene. Altered splicing patterns such as exon skipping can have a dramatic effect on the final protein product yet have traditionally proven difficult to predict. We investigated the splicing effects of a set of nine single nucleotide polymorphisms (SNPs) which are predicted to have a direct impact on mRNA splicing, each in a different gene. Predictions were based on SNP location relative to splice junctions and intronic/exonic splicing elements, combined with an analysis of splice isoform expression data from public sources. Of the nine genes tested, six SNPs led to direct impacts on mRNA splicing as determined by the splicing reporter minigene assay and RT-PCR in human HeLa cells, of which four were allele-specific effects. These included previously unreported alternative splicing patterns in the genes ZNF419 and DKKL1. Notably, the SNP in ZNF419, a transcription factor, leads to the deletion of a DNA-binding domain from the protein and is associated with an expression QTL, while the SNP in DKKL1 leads to shortened transcripts predicted to produce a truncated protein. We conclude that the impact of SNP mutations on mRNA splicing, and its biological relevance, can be predicted by integrating SNP position with available data on relative isoform abundance in human cell lines.
Collapse
Affiliation(s)
- Grace Martin
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - S Duygu Selcuklu
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - Katherine Schouest
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - Victoria Nembaware
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag, Rondebosch, 7700 Cape Town, South Africa
| | - Peter C McKeown
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Charles Spillane
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Kurmangaliyev YZ, Favorov AV, Osman NM, Lehmann KV, Campo D, Salomon MP, Tower J, Gelfand MS, Nuzhdin SV. Natural variation of gene models in Drosophila melanogaster. BMC Genomics 2015; 16:198. [PMID: 25888292 PMCID: PMC4373058 DOI: 10.1186/s12864-015-1415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/28/2015] [Indexed: 01/10/2025] Open
Abstract
Background Variation within splicing regulatory sequences often leads to differences in gene models among individuals within a species. Two alleles of the same gene may express transcripts with different exon/intron structures and consequently produce functionally different proteins. Matching genomic and transcriptomic data allows us to identify putative regulatory variants associated with changes in splicing patterns. Results Here we analyzed natural variation of splicing patterns in the transcriptomes of 81 natural strains of Drosophila melanogaster with known genotypes. We identified dozens of genotype-specific splicing patterns associated with putative cis-splicing quantitative trait loci (sQTL). The majority of changes can be explained by mutations in splice sites. Allelic-imbalance in splicing patterns confirmed that the majority are regulated mainly by cis-genetic effects. Remarkably, allele-specific splicing changes often lead to qualitative changes in gene models, yielding many isoforms not previously annotated. The observed alterations are typically outside protein-coding regions or affect only very short protein segments. Conclusions Overall, the sets of gene models appear to be flexible within D. melanogaster populations. The observed variation in splicing patterns are predicted to have limited effects on the encoded protein sequences. To our knowledge, this is the first sQTL mapping study in Drosophila. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1415-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- University of Southern California, Los Angeles, CA, USA. .,Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia.
| | - Alexander V Favorov
- Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Vavilov Institute of General Genetics, Moscow, Russia. .,Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia.
| | - Noha M Osman
- University of Southern California, Los Angeles, CA, USA. .,National Research Center, Dokki, Giza, Egypt.
| | - Kjong-Van Lehmann
- Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, USA.
| | - Daniel Campo
- University of Southern California, Los Angeles, CA, USA.
| | | | - John Tower
- University of Southern California, Los Angeles, CA, USA.
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia. .,Lomonosov Moscow State University, Moscow, Russia.
| | - Sergey V Nuzhdin
- University of Southern California, Los Angeles, CA, USA. .,Saint Petersburg Polytechnical University, St Petersburg, Russia.
| |
Collapse
|
8
|
Zhang X, Joehanes R, Chen BH, Huan T, Ying S, Munson PJ, Johnson AD, Levy D, O'Donnell CJ. Identification of common genetic variants controlling transcript isoform variation in human whole blood. Nat Genet 2015; 47:345-52. [PMID: 25685889 DOI: 10.1038/ng.3220] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
An understanding of the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of common disease. The available evidence from splicing quantitative trait locus (sQTL) studies has been limited to small samples. We performed genome-wide screening to identify SNPs that might control mRNA splicing in whole blood collected from 5,257 Framingham Heart Study participants. We identified 572,333 cis sQTLs involving 2,650 unique genes. Many sQTL-associated genes (40%) undergo alternative splicing. Using the National Human Genome Research Institute (NHGRI) genome-wide association study (GWAS) catalog, we determined that 528 unique sQTLs were significantly enriched for 8,845 SNPs associated with traits in previous GWAS. In particular, we found 395 (4.5%) GWAS SNPs with evidence of cis sQTLs but not gene-level cis expression quantitative trait loci (eQTLs), suggesting that sQTL analysis could provide additional insights into the functional mechanism underlying GWAS results. Our findings provide an informative sQTL resource for further characterizing the potential functional roles of SNPs that control transcript isoforms relevant to common diseases.
Collapse
Affiliation(s)
- Xiaoling Zhang
- 1] Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | - Roby Joehanes
- 1] Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA. [3] Mathematical and Statistical Computing Laboratory, Center for Information Technology, US National Institutes of Health, Bethesda, Maryland, USA
| | - Brian H Chen
- 1] Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | - Tianxiao Huan
- 1] Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | - Saixia Ying
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, US National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, US National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew D Johnson
- 1] Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | - Daniel Levy
- 1] Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | - Christopher J O'Donnell
- 1] Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA. [3] Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Korir PK, Roberts L, Ramesar R, Seoighe C. A mutation in a splicing factor that causes retinitis pigmentosa has a transcriptome-wide effect on mRNA splicing. BMC Res Notes 2014; 7:401. [PMID: 24969741 PMCID: PMC4084799 DOI: 10.1186/1756-0500-7-401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Substantial progress has been made in the identification of sequence elements that control mRNA splicing and the genetic variants in these elements that alter mRNA splicing (referred to as splicing quantitative trait loci - sQTLs). Genetic variants that affect mRNA splicing in trans are harder to identify because their effects can be more subtle and diffuse, and the variants are not co-located with their targets. We carried out a transcriptome-wide analysis of the effects of a mutation in a ubiquitous splicing factor that causes retinitis pigmentosa (RP) on mRNA splicing, using exon microarrays. RESULTS Exon microarray data was generated from whole blood samples obtained from four individuals with a mutation in the splicing factor PRPF8 and four sibling controls. Although the mutation has no known phenotype in blood, there was evidence of widespread differences in splicing between cases and controls (affecting approximately 20% of exons). Most probesets with significantly different inclusion (defined as the expression intensity of the exon divided by the expression of the corresponding transcript) between cases and controls had higher inclusion in cases and corresponded to exons that were shorter than average, AT rich, located towards the 5' end of the gene and flanked by long introns. Introns flanking affected probesets were particularly depleted for the shortest category of introns, associated with splicing via intron definition. CONCLUSIONS Our results show that a mutation in a splicing factor, with a phenotype that is restricted to retinal tissue, acts as a trans-sQTL cluster in whole blood samples. Characteristics of the affected exons suggest that they are spliced co-transcriptionally and via exon definition. However, due to the small sample size available for this study, further studies are required to confirm the widespread impact of this PRPF8 mutation on mRNA splicing outside the retina.
Collapse
Affiliation(s)
- Paul K Korir
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| | - Lisa Roberts
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| |
Collapse
|
10
|
Juan WC, Roca X, Ong ST. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PLoS One 2014; 9:e95210. [PMID: 24743263 PMCID: PMC3990581 DOI: 10.1371/journal.pone.0095210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.
Collapse
Affiliation(s)
- Wen Chun Juan
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (XR); (STO)
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Chapel Hill, North Carolina, United States of America
- * E-mail: (XR); (STO)
| |
Collapse
|
11
|
Morata J, Béjar S, Talavera D, Riera C, Lois S, de Xaxars GM, de la Cruz X. The relationship between gene isoform multiplicity, number of exons and protein divergence. PLoS One 2013; 8:e72742. [PMID: 24023641 PMCID: PMC3758341 DOI: 10.1371/journal.pone.0072742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/14/2013] [Indexed: 11/18/2022] Open
Abstract
At present we know that phenotypic differences between organisms arise from a variety of sources, like protein sequence divergence, regulatory sequence divergence, alternative splicing, etc. However, we do not have yet a complete view of how these sources are related. Here we address this problem, studying the relationship between protein divergence and the ability of genes to express multiple isoforms. We used three genome-wide datasets of human-mouse orthologs to study the relationship between isoform multiplicity co-occurrence between orthologs (the fact that two orthologs have more than one isoform) and protein divergence. In all cases our results showed that there was a monotonic dependence between these two properties. We could explain this relationship in terms of a more fundamental one, between exon number of the largest isoform and protein divergence. We found that this last relationship was present, although with variations, in other species (chimpanzee, cow, rat, chicken, zebrafish and fruit fly). In summary, we have identified a relationship between protein divergence and isoform multiplicity co-occurrence and explained its origin in terms of a simple gene-level property. Finally, we discuss the biological implications of these findings for our understanding of inter-species phenotypic differences.
Collapse
Affiliation(s)
- Jordi Morata
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Santi Béjar
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - David Talavera
- Faculty of Life Sciences, Manchester University, Manchester, United Kingdom
| | - Casandra Riera
- Laboratory of Translational Bioinformatics in Neuroscience, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Sergio Lois
- Laboratory of Translational Bioinformatics in Neuroscience, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Gemma Mas de Xaxars
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Laboratory of Translational Bioinformatics in Neuroscience, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Bao H, Li E, Mansfield SD, Cronk QCB, El-Kassaby YA, Douglas CJ. The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genomics 2013; 14:359. [PMID: 23718132 PMCID: PMC3680236 DOI: 10.1186/1471-2164-14-359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 05/23/2013] [Indexed: 11/13/2022] Open
Abstract
Background Alternative splicing (AS) of genes is an efficient means of generating variation in protein structure and function. AS variation has been observed between tissues, cell types, and different treatments in non-woody plants such as Arabidopsis thaliana (Arabidopsis) and rice. However, little is known about AS patterns in wood-forming tissues and how much AS variation exists within plant populations. Results Here we used high-throughput RNA sequencing to analyze the Populus trichocarpa (P. trichocarpa) xylem transcriptome in 20 individuals from different populations across much of its range in western North America. Deep transcriptome sequencing and mapping of reads to the P. trichocarpa reference genome identified a suite of xylem-expressed genes common to all accessions. Our analysis suggests that at least 36% of the xylem-expressed genes in P. trichocarpa are alternatively spliced. Extensive AS was observed in cell-wall biosynthesis related genes such as glycosyl transferases and C2H2 transcription factors. 27902 AS events were documented and most of these events were not conserved across individuals. Differences in isoform-specific read densities indicated that 7% and 13% of AS events showed significant differences between individuals within geographically separated southern and northern populations, a level that is in general agreement with AS variation in human populations. Conclusions This genome-wide analysis of alternative splicing reveals high levels of AS in P. trichocarpa and extensive inter-individual AS variation. We provide the most comprehensive analysis of AS in P. trichocarpa to date, which will serve as a valuable resource for the plant community to study transcriptome complexity and AS regulation during wood formation.
Collapse
Affiliation(s)
- Hua Bao
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Kurmangaliyev YZ, Sutormin RA, Naumenko SA, Bazykin GA, Gelfand MS. Functional implications of splicing polymorphisms in the human genome. Hum Mol Genet 2013; 22:3449-59. [PMID: 23640990 DOI: 10.1093/hmg/ddt200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proper splicing is often crucial for gene functioning and its disruption may be strongly deleterious. Nevertheless, even the essential for splicing canonical dinucleotides of the splice sites are often polymorphic. Here, we use data from The 1000 Genomes Project to study single-nucleotide polymorphisms (SNPs) in the canonical dinucleotides. Splice sites carrying SNPs are enriched in weakly expressed genes and in rarely used alternative splice sites. Genes with disrupted splice sites tend to have low selective constraint, and the splice sites disrupted by SNPs are less likely to be conserved in mouse. Furthermore, SNPs are enriched in splice sites whose effects on gene function are minor: splice sites located outside of protein-coding regions, in shorter exons, closer to the 3'-ends of proteins, and outside of functional protein domains. Most of these effects are more pronounced for high-frequency SNPs. Despite these trends, many of the polymorphic sites may still substantially affect the function of the corresponding genes. A number of the observed splice site-disrupting SNPs, including several high-frequency ones, were found among mutations described in OMIM.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow 127994, Russia
| | | | | | | | | |
Collapse
|
14
|
Zalewski G, Wołczyński S, Chyczewski L. Association of rs6166 polymorphism with FSH receptor transcript variants and steroid production in human granulosa cell cultures. Syst Biol Reprod Med 2013; 59:191-8. [DOI: 10.3109/19396368.2012.745035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Lu ZX, Jiang P, Xing Y. Genetic variation of pre-mRNA alternative splicing in human populations. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:581-92. [PMID: 22095823 DOI: 10.1002/wrna.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human individuals and consequently impact expression level or protein function. In several well-documented examples, such natural variation of alternative splicing has indeed been shown to influence disease susceptibility and drug response. With new microarray and sequencing-based genomic technologies that can analyze eukaryotic transcriptomes at the exon or nucleotide level, it has become possible to globally compare the alternative splicing profiles across human individuals in any tissue or cell type of interest. Recent large-scale transcriptome studies using high-density splicing-sensitive microarray and deep RNA sequencing (RNA-Seq) have revealed widespread genetic variation of alternative splicing in humans. In the future, an extensive catalog of alternative splicing variation in human populations will help elucidate the molecular underpinnings of complex traits and human diseases, and shed light on the mechanisms of splicing regulation in human cells.
Collapse
Affiliation(s)
- Zhi-Xiang Lu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
16
|
Seoighe C, Gehring C. Heritability in the efficiency of nonsense-mediated mRNA decay in humans. PLoS One 2010; 5:e11657. [PMID: 20657766 PMCID: PMC2908117 DOI: 10.1371/journal.pone.0011657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/22/2010] [Indexed: 01/28/2023] Open
Abstract
Background In eukaryotes mRNA transcripts of protein-coding genes in which an intron has been retained in the coding region normally result in premature stop codons and are therefore degraded through the nonsense-mediated mRNA decay (NMD) pathway. There is evidence in the form of selective pressure for in-frame stop codons in introns and a depletion of length three introns that this is an important and conserved quality-control mechanism. Yet recent reports have revealed that the efficiency of NMD varies across tissues and between individuals, with important clinical consequences. Principal Findings Using previously published Affymetrix exon microarray data from cell lines genotyped as part of the International HapMap project, we investigated whether there are heritable, inter-individual differences in the abundance of intron-containing transcripts, potentially reflecting differences in the efficiency of NMD. We identified intronic probesets using EST data and report evidence of heritability in the extent of intron expression in 56 HapMap trios. We also used a genome-wide association approach to identify genetic markers associated with intron expression. Among the top candidates was a SNP in the DCP1A gene, which forms part of the decapping complex, involved in NMD. Conclusions While we caution that some of the apparent inter-individual difference in intron expression may be attributable to different handling or treatments of cell lines, we hypothesize that there is significant polymorphism in the process of NMD, resulting in heritable differences in the abundance of intronic mRNA. Part of this phenotype is likely to be due to a polymorphism in a decapping enzyme on human chromosome 3.
Collapse
Affiliation(s)
- Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland.
| | | |
Collapse
|
17
|
Li J, Ribeiro JMC, Yan G. Allelic gene structure variations in Anopheles gambiae mosquitoes. PLoS One 2010; 5:e10699. [PMID: 20502664 PMCID: PMC2873427 DOI: 10.1371/journal.pone.0010699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/22/2010] [Indexed: 11/19/2022] Open
Abstract
Background Allelic gene structure variations and alternative splicing are responsible for transcript structure variations. More than 75% of human genes have structural isoforms of transcripts, but to date few studies have been conducted to verify the alternative splicing systematically. Methodology/Principal Findings The present study used expressed sequence tags (ESTs) and EST tagged SNP patterns to examine the transcript structure variations resulting from allelic gene structure variations in the major human malaria vector, Anopheles gambiae. About 80% of 236,004 available A. gambiae ESTs were successfully aligned to A. gambiae reference genomes. More than 2,340 transcript structure variation events were detected. Because the current A. gambiae annotation is incomplete, we re-annotated the A. gambiae genome with an A. gambiae-specific gene model so that the effect of variations on gene coding could be better evaluated. A total of 15,962 genes were predicted. Among them, 3,873 were novel genes and 12,089 were previously identified genes. The gene completion rate improved from 60% to 84%. Based on EST support, 82.5% of gene structures were predicted correctly. In light of the new annotation, we found that ∼78% of transcript structure variations were located within the coding sequence (CDS) regions, and >65% of variations in the CDS regions have the same open-reading-frame. The association between transcript structure isoforms and SNPs indicated that more than 28% of transcript structure variation events were contributed by different gene alleles in A. gambiae. Conclusions/Significance We successfully expanded the A. gambiae genome annotation. We predicted and analyzed transcript structure variations in A. gambiae and found that allelic gene structure variation plays a major role in transcript diversity in this important human malaria vector.
Collapse
Affiliation(s)
- Jun Li
- Department of Microbiology, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
18
|
Shimada MK, Hayakawa Y, Takeda JI, Gojobori T, Imanishi T. A comprehensive survey of human polymorphisms at conserved splice dinucleotides and its evolutionary relationship with alternative splicing. BMC Evol Biol 2010; 10:122. [PMID: 20433709 PMCID: PMC2882926 DOI: 10.1186/1471-2148-10-122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/30/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a key molecular process that endows biological functions with diversity and complexity. Generally, functional redundancy leads to the generation of new functions through relaxation of selective pressure in evolution, as exemplified by duplicated genes. It is also known that alternatively spliced exons (ASEs) are subject to relaxed selective pressure. Within consensus sequences at the splice junctions, the most conserved sites are dinucleotides at both ends of introns (splice dinucleotides). However, a small number of single nucleotide polymorphisms (SNPs) occur at splice dinucleotides. An intriguing question relating to the evolution of AS diversity is whether mutations at splice dinucleotides are maintained as polymorphisms and produce diversity in splice patterns within the human population. We therefore surveyed validated SNPs in the database dbSNP located at splice dinucleotides of all human genes that are defined by the H-Invitational Database. RESULTS We found 212 validated SNPs at splice dinucleotides (sdSNPs); these were confirmed to be consistent with the GT-AG rule at either allele. Moreover, 53 of them were observed to neighbor ASEs (AE dinucleotides). No significant differences were observed between sdSNPs at AE dinucleotides and those at constitutive exons (CE dinucleotides) in SNP properties including average heterozygosity, SNP density, ratio of predicted alleles consistent with the GT-AG rule, and scores of splice sites formed with the predicted allele. We also found that the proportion of non-conserved exons was higher for exons with sdSNPs than for other exons. CONCLUSIONS sdSNPs are found at CE dinucleotides in addition to those at AE dinucleotides, suggesting two possibilities. First, sdSNPs at CE dinucleotides may be robust against sdSNPs because of unknown mechanisms. Second, similar to sdSNPs at AE dinucleotides, those at CE dinucleotides cause differences in AS patterns because of the arbitrariness in the classification of exons into alternative and constitutive type that varies according to the dataset. Taking into account the absence of differences in sdSNP properties between those at AE and CE dinucleotides, the increased proportion of non-conserved exons found in exons flanked by sdSNPs suggests the hypothesis that sdSNPs are maintained at the splice dinucleotides of newly generated exons at which negative selection pressure is relaxed.
Collapse
Affiliation(s)
- Makoto K Shimada
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-45 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yosuke Hayakawa
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-45 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Hitachi Software Engineering Co., Ltd., 1-1-43 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-ichi Takeda
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-45 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Takashi Gojobori
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tadashi Imanishi
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
| |
Collapse
|
19
|
Abstract
Statins, or 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, are widely prescribed to lower plasma cholesterol levels and reduce cardiovascular disease risk. Despite the well-documented efficacy of statins, there is large interindividual variation in response. Using a panel of immortalized lymphocyte cell lines incubated with simvastatin, we recently found that the magnitude of expression of an alternatively spliced HMGCR transcript lacking exon 13 was inversely correlated with in vivo reductions of total cholesterol, low-density lipoprotein cholesterol, apoB, and triglycerides after statin treatment of the individuals from whom the cells were derived. This review will discuss the potential significance of alternative splicing as a mechanism contributing to variation in statin efficacy as well as the use of immortalized lymphocyte cell lines for identifying pharmacogenetically relevant polymorphisms and molecular mechanisms.
Collapse
|
20
|
Coulombe-Huntington J, Lam KCL, Dias C, Majewski J. Fine-scale variation and genetic determinants of alternative splicing across individuals. PLoS Genet 2009; 5:e1000766. [PMID: 20011102 PMCID: PMC2780703 DOI: 10.1371/journal.pgen.1000766] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/11/2009] [Indexed: 01/21/2023] Open
Abstract
Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre–mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72%) candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and it is likely some of these differences are involved in phenotypic diversity and susceptibility to complex diseases. Alternative splicing (AS), through the alternative use of exons, can produce many different mRNA transcripts from the same genomic locus, thus possibly resulting in the production of many different proteins. We know that splicing differences between individuals exist and that these changes are often associated with genetic variants. Thus far, very few of these associations have led to the precise localization of the causative polymorphisms. In this work, using in-depth analysis of previously published splicing sensitive micro-array data from human cell lines, we identified and validated a large number of splicing changes which are highly correlated with nearby genetic variations. We then sequenced the genomic DNA around candidate exons and used in silico modeling tools to identify causative SNPs for most of our candidates. Using a plasmid reporter construct, we further demonstrated that five selected SNPs reproduce the expected effect in vivo. Our results indicate that genetically controlled splicing differences between individuals may be more common than previously suggested and can be very subtle; and most are caused by SNPs affecting either the splice-site region or exonic splicing enhancers (ESEs) sequences.
Collapse
Affiliation(s)
- Jasmin Coulombe-Huntington
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Kevin C. L. Lam
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Christel Dias
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum Genet 2009; 127:135-54. [PMID: 19823873 DOI: 10.1007/s00439-009-0752-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/27/2009] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) make up a half of the human genome, but the extent of their contribution to cryptic exon activation that results in genetic disease is unknown. Here, a comprehensive survey of 78 mutation-induced cryptic exons previously identified in 51 disease genes revealed the presence of TEs in 40 cases (51%). Most TE-containing exons were derived from short interspersed nuclear elements (SINEs), with Alus and mammalian interspersed repeats (MIRs) covering >18 and >16% of the exonized sequences, respectively. The majority of SINE-derived cryptic exons had splice sites at the same positions of the Alu/MIR consensus as existing SINE exons and their inclusion in the mRNA was facilitated by phylogenetically conserved changes that improved both traditional and auxiliary splicing signals, thus marking intronic TEs amenable for pathogenic exonization. The overrepresentation of MIRs among TE exons is likely to result from their high average exon inclusion levels, which reflect their strong splice sites, a lack of splicing silencers and a high density of enhancers, particularly (G)AA(G) motifs. These elements were markedly depleted in antisense Alu exons, had the most prominent position on the exon-intron gradient scale and are proposed to promote exon definition through enhanced tertiary RNA interactions involving unpaired (di)adenosines. The identification of common mechanisms by which the most dynamic parts of the genome contribute both to new exon creation and genetic disease will facilitate detection of intronic mutations and the development of computational tools that predict TE hot-spots of cryptic exon activation.
Collapse
Affiliation(s)
- Igor Vorechovsky
- Division of Human Genetics, University of Southampton School of Medicine, MP808, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
22
|
Blencowe BJ, Ahmad S, Lee LJ. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev 2009; 23:1379-86. [DOI: 10.1101/gad.1788009] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Abstract
Cellular functions depend on numerous protein-coding and noncoding RNAs and the RNA-binding proteins associated with them, which form ribonucleoprotein complexes (RNPs). Mutations that disrupt either the RNA or protein components of RNPs or the factors required for their assembly can be deleterious. Alternative splicing provides cells with an exquisite capacity to fine-tune their transcriptome and proteome in response to cues. Splicing depends on a complex code, numerous RNA-binding proteins, and an enormously intricate network of interactions among them, increasing the opportunity for exposure to mutations and misregulation that cause disease. The discovery of disease-causing mutations in RNAs is yielding a wealth of new therapeutic targets, and the growing understanding of RNA biology and chemistry is providing new RNA-based tools for developing therapeutics.
Collapse
Affiliation(s)
- Thomas A. Cooper
- Departments of Pathology and Molecular and Cellular Biology Baylor College of Medicine Houston, TX 77030, USA
| | - Lili Wan
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, PA 19104, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456:470-6. [PMID: 18978772 PMCID: PMC2593745 DOI: 10.1038/nature07509] [Citation(s) in RCA: 3837] [Impact Index Per Article: 225.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/27/2008] [Accepted: 10/03/2008] [Indexed: 11/23/2022]
Abstract
Through alternative processing of pre-mRNAs, individual mammalian genes often produce multiple mRNA and protein isoforms that may have related, distinct or even opposing functions. Here we report an in-depth analysis of 15 diverse human tissue and cell line transcriptomes based on deep sequencing of cDNA fragments, yielding a digital inventory of gene and mRNA isoform expression. Analysis of mappings of sequence reads to exon-exon junctions indicated that 92-94% of human genes undergo alternative splicing (AS), ∼86% with a minor isoform frequency of 15% or more. Differences in isoform-specific read densities indicated that a majority of AS and of alternative cleavage and polyadenylation (APA) events vary between tissues, while variation between individuals was ∼2- to 3-fold less common. Extreme or ‘switch-like’ regulation of splicing between tissues was associated with increased sequence conservation in regulatory regions and with generation of full-length open reading frames. Patterns of AS and APA were strongly correlated across tissues, suggesting coordinated regulation of these processes, and sequence conservation of a subset of known regulatory motifs in both alternative introns and 3′ UTRs suggested common involvement of specific factors in tissue-level regulation of both splicing and polyadenylation.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Genome-wide survey of allele-specific splicing in humans. BMC Genomics 2008; 9:265. [PMID: 18518984 PMCID: PMC2427040 DOI: 10.1186/1471-2164-9-265] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 06/02/2008] [Indexed: 12/31/2022] Open
Abstract
Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST) and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array data, including several examples for which there is experimental evidence of polymorphisms affecting splicing in the literature. We also present a set of novel allele-specific splicing candidates and discuss the strengths and weaknesses of alternative technologies for inferring the effect of sequence variants on mRNA splicing.
Collapse
|
26
|
Kwan T, Benovoy D, Dias C, Gurd S, Provencher C, Beaulieu P, Hudson TJ, Sladek R, Majewski J. Genome-wide analysis of transcript isoform variation in humans. Nat Genet 2008; 40:225-31. [PMID: 18193047 DOI: 10.1038/ng.2007.57] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 10/31/2007] [Indexed: 12/22/2022]
Abstract
We have performed a genome-wide analysis of common genetic variation controlling differential expression of transcript isoforms in the CEU HapMap population using a comprehensive exon tiling microarray covering 17,897 genes. We detected 324 genes with significant associations between flanking SNPs and transcript levels. Of these, 39% reflected changes in whole gene expression and 55% reflected transcript isoform changes such as splicing variants (exon skipping, alternative splice site use, intron retention), differential 5' UTR (initiation of transcription) use, and differential 3' UTR (alternative polyadenylation) use. These results demonstrate that the regulatory effects of genetic variation in a normal human population are far more complex than previously observed. This extra layer of molecular diversity may account for natural phenotypic variation and disease susceptibility.
Collapse
Affiliation(s)
- Tony Kwan
- Department of Human Genetics, McGill University, 740 Dr. Penfield, Room 7210, Montréal, Québec H3A 1A4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hull J, Campino S, Rowlands K, Chan MS, Copley RR, Taylor MS, Rockett K, Elvidge G, Keating B, Knight J, Kwiatkowski D. Identification of common genetic variation that modulates alternative splicing. PLoS Genet 2007; 3:e99. [PMID: 17571926 PMCID: PMC1904363 DOI: 10.1371/journal.pgen.0030099] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 05/04/2007] [Indexed: 01/25/2023] Open
Abstract
Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron–exon boundary, although the distance between these SNPs and the intron–exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function. Genetic variation, through its effects on gene expression, influences many aspects of the human phenotype. Understanding the impact of genetic variation on human disease risk has become a major goal for biomedical research and has the potential of revealing both novel disease mechanisms and novel functional elements controlling gene expression. Recent large-scale studies have suggested that a relatively high proportion of human genes show allele-specific variation in expression. Effects of common DNA polymorphisms on mRNA splicing are less well studied. Variation in splicing patterns is known to be tissue specific, and for a small number of genes has been shown to vary among individuals. What is not known is whether allele-specific splicing events are an important mechanism by which common genetic variation affects gene expression. In this study we show that allele-specific alternative splicing was observed in six out of 70 exon-skipping events. Sequence analysis of the relevant splice sites and of the regions surrounding single nucleotide polymorphisms correlated with the splicing events failed to identify any predictive bioinformatic signals. A genome-wide study of allele-specific splicing, using an experimental rather than a bioinformatic approach, is now required.
Collapse
Affiliation(s)
- Jeremy Hull
- University Department of Paediatrics, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hiller M, Huse K, Szafranski K, Rosenstiel P, Schreiber S, Backofen R, Platzer M. Phylogenetically widespread alternative splicing at unusual GYNGYN donors. Genome Biol 2007; 7:R65. [PMID: 16869967 PMCID: PMC1779574 DOI: 10.1186/gb-2006-7-7-r65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/25/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Splice donor sites have a highly conserved GT or GC dinucleotide and an extended intronic consensus sequence GTRAGT that reflects the sequence complementarity to the U1 snRNA. Here, we focus on unusual donor sites with the motif GYNGYN (Y stands for C or T; N stands for A, C, G, or T). RESULTS While only one GY functions as a splice donor for the majority of these splice sites in human, we provide computational and experimental evidence that 110 (1.3%) allow alternative splicing at both GY donors. The resulting splice forms differ in only three nucleotides, which results mostly in the insertion/deletion of one amino acid. However, we also report the insertion of a stop codon in four cases. Investigating what distinguishes alternatively from not alternatively spliced GYNGYN donors, we found differences in the binding to U1 snRNA, a strong correlation between U1 snRNA binding strength and the preferred donor, over-represented sequence motifs in the adjacent introns, and a higher conservation of the exonic and intronic flanks between human and mouse. Extending our genome-wide analysis to seven other eukaryotic species, we found alternatively spliced GYNGYN donors in all species from mouse to Caenorhabditis elegans and even in Arabidopsis thaliana. Experimental verification of a conserved GTAGTT donor of the STAT3 gene in human and mouse reveals a remarkably similar ratio of alternatively spliced transcripts in both species. CONCLUSION In contrast to alternative splicing in general, GYNGYN donors in addition to NAGNAG acceptors enable subtle protein variations.
Collapse
Affiliation(s)
- Michael Hiller
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Klaus Huse
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Karol Szafranski
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
- Max Planck Institute for Molecular Genetics, Ihnestr. 63, 14195 Berlin, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Rolf Backofen
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| |
Collapse
|
29
|
Hiller M, Huse K, Platzer M, Backofen R. Non-EST based prediction of exon skipping and intron retention events using Pfam information. Nucleic Acids Res 2005; 33:5611-21. [PMID: 16204458 PMCID: PMC1243800 DOI: 10.1093/nar/gki870] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/19/2005] [Accepted: 09/09/2005] [Indexed: 11/12/2022] Open
Abstract
Most of the known alternative splice events have been detected by the comparison of expressed sequence tags (ESTs) and cDNAs. However, not all splice events are represented in EST databases since ESTs have several biases. Therefore, non-EST based approaches are needed to extend our view of a transcriptome. Here, we describe a novel method for the ab initio prediction of alternative splice events that is solely based on the annotation of Pfam domains. Furthermore, we applied this approach in a genome-wide manner to all human RefSeq transcripts and predicted a total of 321 exon skipping and intron retention events. We show that this method is very reliable as 78% (250 of 321) of our predictions are confirmed by ESTs or cDNAs. Subsequent analyses of splice events within Pfam domains revealed a significant preference of alternative exon junctions to be located at the protein surface and to avoid secondary structure elements. Thus, splice events within Pfams are probable to alter the structure and function of a domain which makes them highly interesting for detailed biological investigation. As Pfam domains are annotated in many other species, our strategy to predict exon skipping and intron retention events might be important for species with a lower number of ESTs.
Collapse
Affiliation(s)
- Michael Hiller
- Institute of Computer Science, Friedrich-Schiller-University Jena, Chair for Bioinformatics, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
30
|
Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB. Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci U S A 2005; 102:2850-5. [PMID: 15708978 PMCID: PMC548664 DOI: 10.1073/pnas.0409742102] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Indexed: 12/29/2022] Open
Abstract
Alternative pre-mRNA splicing affects a majority of human genes and plays important roles in development and disease. Alternative splicing (AS) events conserved since the divergence of human and mouse are likely of primary biological importance, but relatively few of such events are known. Here we describe sequence features that distinguish exons subject to evolutionarily conserved AS, which we call alternative conserved exons (ACEs), from other orthologous human/mouse exons and integrate these features into an exon classification algorithm, acescan. Genome-wide analysis of annotated orthologous human-mouse exon pairs identified approximately 2,000 predicted ACEs. Alternative splicing was verified in both human and mouse tissues by using an RT-PCR-sequencing protocol for 21 of 30 (70%) predicted ACEs tested, supporting the validity of a majority of acescan predictions. By contrast, AS was observed in mouse tissues for only 2 of 15 (13%) tested exons that had EST or cDNA evidence of AS in human but were not predicted ACEs, and AS was never observed for 11 negative control exons in human or mouse tissues. Predicted ACEs were much more likely to preserve the reading frame and less likely to disrupt protein domains than other AS events and were enriched in genes expressed in the brain and in genes involved in transcriptional regulation, RNA processing, and development. Our results also imply that the vast majority of AS events represented in the human EST database are not conserved in mouse.
Collapse
Affiliation(s)
- Gene W Yeo
- Department of Biology and Center for Biological and Computational Learning, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
| | | | | | | | | |
Collapse
|