1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Chen P, Lin L, Lin X, Liao K, Qiang J, Wang Z, Wu J, Li Y, Yang L, Yao N, Song H, Hong Y, Liu WH, Zhang Y, Chang X, Du D, Xiao C. A Csde1-Strap complex regulates plasma cell differentiation by coupling mRNA translation and decay. Nat Commun 2025; 16:2906. [PMID: 40133358 PMCID: PMC11937441 DOI: 10.1038/s41467-025-58212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Upon encountering antigens, B cells may undergo multiple differentiation paths, including becoming plasma cells and memory B cells. Although it is well-known that transcription factors govern gene expression programs underpinning these fate decisions in transcriptional level, the role of post-transcriptional regulators, with a focus on RNA-binding proteins, in the fate determination are lesser known. Here we find by RNA interactome capture-coupled CRISPR/Cas9 functional screening that the Csde1-Strap complex plays an important role in plasma cell differentiation. Mechanistically, the Csde1-Strap complex establishes the expression kinetics of Bach2, a key regulator of plasma cell differentiation. Bach2 expression is rapidly induced to promote B cell expansion and then decreased to initiate plasma cell differentiation. The Csde1-Strap interaction is critical for their binding to Bach2 mRNA to couple its decay with translation to restrain the magnitude and duration of Bach2 protein expression. In the absence of Csde1 or Strap, Bach2 translation is de-coupled from mRNA decay, leading to elevated and prolonged expression of Bach2 protein and impaired plasma cell differentiation. This study thus establishes the functional RBP landscape in B cells and illustrates the fundamental importance of controlling protein expression kinetics in cell fate determination.
Collapse
Affiliation(s)
- Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lianghua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xinyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhizhang Wang
- Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Nan Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Huilin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Xing Chang
- Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Dan Du
- State Key Laboratory of Cellular Stress Biology, Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Dreyfuss G. RNA-binding proteins in disease etiology: fragile X syndrome and spinal muscular atrophy. RNA (NEW YORK, N.Y.) 2025; 31:277-283. [PMID: 39694825 PMCID: PMC11874976 DOI: 10.1261/rna.080353.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
All RNAs exist in complexes (RNPs) with RNA-binding proteins (RBPs). Studies in my lab since the 1980s have identified, sequenced and characterized the major pre-mRNA- and mRNA-RBPs (hnRNPs/mRNPs), revealing RNA-binding domains and common features of numerous RBPs and their central roles in posttranscriptional gene regulation. The first links between RBPs and RNPs to diseases emerged serendipitously for fragile X syndrome, as its gene (FMR1) encoded RBP (FMRP), and spinal muscular atrophy (SMA), caused by deficits in survival motor neurons (SMN). Discoveries of the SMN complex and its unanticipated function in RNP assembly, essential for spliceosomal snRNP biogenesis, advanced understanding of RNA biology and pathogenesis. I reflect on how these and other contributions (e.g., nucleocytoplasmic shuttling, telescripting) originated from curiosity-driven exploration and highly collaborative lab culture. The vast RNA and RBP assortments are beneficial, but increase complexity and chances of disorders, making the RNP sphere a rich source for future discoveries.
Collapse
Affiliation(s)
- Gideon Dreyfuss
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Ciocia A, Mestre-Farràs N, Vicent-Nacht I, Guitart T, Gebauer F. CSDE1: a versatile regulator of gene expression in cancer. NAR Cancer 2024; 6:zcae014. [PMID: 38600987 PMCID: PMC11005786 DOI: 10.1093/narcan/zcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
RNA-binding proteins (RBPs) have garnered significant attention in the field of cancer due to their ability to modulate diverse tumor traits. Once considered untargetable, RBPs have sparked renewed interest in drug development, particularly in the context of RNA-binding modulators of translation. This review focuses on one such modulator, the protein CSDE1, and its pivotal role in regulating cancer hallmarks. We discuss context-specific functions of CSDE1 in tumor development, its mechanisms of action, and highlight features that support its role as a molecular adaptor. Additionally, we discuss the regulation of CSDE1 itself and its potential value as biomarker and therapeutic target.
Collapse
Affiliation(s)
- Annagiulia Ciocia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Neus Mestre-Farràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Ignacio Vicent-Nacht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| |
Collapse
|
5
|
Esser LM, Li Q, Jüdt M, Kähne T, Stork B, Grimmler M, Wesselborg S, Peter C. The Impact of p70S6 Kinase-Dependent Phosphorylation of Gemin2 in UsnRNP Biogenesis. Int J Mol Sci 2023; 24:15552. [PMID: 37958537 PMCID: PMC10649565 DOI: 10.3390/ijms242115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
The survival motor neuron (SMN) complex is a multi-megadalton complex involved in post-transcriptional gene expression in eukaryotes via promotion of the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). The functional center of the complex is formed from the SMN/Gemin2 subunit. By binding the pentameric ring made up of the Sm proteins SmD1/D2/E/F/G and allowing for their transfer to a uridine-rich short nuclear RNA (UsnRNA), the Gemin2 protein in particular is crucial for the selectivity of the Sm core assembly. It is well established that post-translational modifications control UsnRNP biogenesis. In our work presented here, we emphasize the crucial role of Gemin2, showing that the phospho-status of Gemin2 influences the capacity of the SMN complex to condense in Cajal bodies (CBs) in vivo. Additionally, we define Gemin2 as a novel and particular binding partner and phosphorylation substrate of the mTOR pathway kinase ribosomal protein S6 kinase beta-1 (p70S6K). Experiments using size exclusion chromatography further demonstrated that the Gemin2 protein functions as a connecting element between the 6S complex and the SMN complex. As a result, p70S6K knockdown lowered the number of CBs, which in turn inhibited in vivo UsnRNP synthesis. In summary, these findings reveal a unique regulatory mechanism of UsnRNP biogenesis.
Collapse
Affiliation(s)
- Lea Marie Esser
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Qiaoping Li
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maximilian Jüdt
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matthias Grimmler
- Institute for Biomolecular Research, Hochschule Fresenius gGmbH, University of Applied Sciences, 65510 Idstein, Germany
- DiaServe Laboratories GmbH, 82393 Iffeldorf, Germany
| | - Sebastian Wesselborg
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Halbout M, Bury M, Hanet A, Gerin I, Graff J, Killian T, Gatto L, Vertommen D, Bommer GT. SUZ domain-containing proteins have multiple effects on nonsense-mediated decay target transcripts. J Biol Chem 2023; 299:105095. [PMID: 37507022 PMCID: PMC10470013 DOI: 10.1016/j.jbc.2023.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.
Collapse
Affiliation(s)
- Mathias Halbout
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Marina Bury
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Aoife Hanet
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Isabelle Gerin
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Julie Graff
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Theodore Killian
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Laurent Gatto
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium.
| |
Collapse
|
7
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
8
|
Booy EP, McRae EK, Ezzati P, Choi T, Gussakovsky D, McKenna SA. Comprehensive analysis of the BC200 ribonucleoprotein reveals a reciprocal regulatory function with CSDE1/UNR. Nucleic Acids Res 2019; 46:11575-11591. [PMID: 30247708 PMCID: PMC6265466 DOI: 10.1093/nar/gky860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BC200 is a long non-coding RNA primarily expressed in brain but aberrantly expressed in various cancers. To gain a further understanding of the function of BC200, we performed proteomic analyses of the BC200 ribonucleoprotein (RNP) by transfection of 3′ DIG-labelled BC200. Protein binding partners of the functionally related murine RNA BC1 as well as a scrambled BC200 RNA were also assessed in both human and mouse cell lines. Stringent validation of proteins identified by mass spectrometry confirmed 14 of 84 protein binding partners and excluded eight proteins that did not appreciably bind BC200 in reverse experiments. Gene ontology analyses revealed general roles in RNA metabolic processes, RNA processing and splicing. Protein/RNA interaction sites were mapped with a series of RNA truncations revealing three distinct modes of interaction involving either the 5′ Alu-domain, 3′ A-rich or 3′ C-rich regions. Due to their high enrichment values in reverse experiments, CSDE1 and STRAP were further analyzed demonstrating a direct interaction between CSDE1 and BC200 and indirect binding of STRAP to BC200 via heterodimerization with CSDE1. Knock-down studies identified a reciprocal regulatory relationship between CSDE1 and BC200 and immunofluorescence analysis of BC200 knock-down cells demonstrated a dramatic reorganization of CSDE1 into distinct nuclear foci.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ewan Ks McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Composition of the Survival Motor Neuron (SMN) Complex in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:491-503. [PMID: 30563832 PMCID: PMC6385987 DOI: 10.1534/g3.118.200874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila melanogaster Using transgenic flies that exclusively express Flag-tagged SMN from its native promoter, we previously found that Gemin2, Gemin3, Gemin5, and all nine classical Sm proteins, including Lsm10 and Lsm11, co-purify with SMN. Here, we show that CG2941 is also highly enriched in the pulldown. Reciprocal co-immunoprecipitation reveals that epitope-tagged CG2941 interacts with endogenous SMN in Schneider2 cells. Bioinformatic comparisons show that CG2941 shares sequence and structural similarity with metazoan Gemin4. Additional analysis shows that three other genes (CG14164, CG31950 and CG2371) are not orthologous to Gemins 6-7-8, respectively, as previously suggested. In D.melanogaster, CG2941 is located within an evolutionarily recent genomic triplication with two other nearly identical paralogous genes (CG32783 and CG32786). RNAi-mediated knockdown of CG2941 and its two close paralogs reveals that Gemin4 is essential for organismal viability.
Collapse
|
10
|
Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018; 75:3877-3894. [PMID: 29872871 PMCID: PMC6182345 DOI: 10.1007/s00018-018-2849-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin-proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Jiang D, Zou X, Zhang C, Chen J, Li Z, Wang Y, Deng Z, Wang L, Chen S. Gemin5 plays a role in unassembled-U1 snRNA disposal in SMN-deficient cells. FEBS Lett 2018; 592:1400-1411. [PMID: 29537490 DOI: 10.1002/1873-3468.13031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 11/07/2022]
Abstract
Gemin5 acts as a U1 small nuclear RNA (snRNA)-binding protein in U1 small nuclear ribonucleic protein (snRNP) biogenesis. Here, we report a role for Gemin5 in unassembled U1 snRNP disposal under survival of motor neuron (SMN) protein-deficient conditions. We demonstrate that non-Sm protein-associated U1 snRNA and U1A are enriched in cytoplasmic granules and colocalize to P bodies in SMN-deficient cells. Immunoprecipitation assays show increased associations of the U1 snRNP component U1A with P body components and Gemin5 in SMN-deficient cells. More importantly, Gemin5 knockdown eliminates the unassembled U1 snRNP granules and rescues U1 snRNA levels in SMN-deficient cells. Taken together, our study provides direct evidence that Gemin5 is involved in unassembled-U1 snRNA disposal under conditions of SMN deficiency.
Collapse
Affiliation(s)
- Dongxu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Cheng Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Jincao Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Liangrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| |
Collapse
|
12
|
Meier ID, Walker MP, Matera AG. Gemin4 is an essential gene in mice, and its overexpression in human cells causes relocalization of the SMN complex to the nucleoplasm. Biol Open 2018; 7:bio.032409. [PMID: 29371219 PMCID: PMC5861365 DOI: 10.1242/bio.032409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gemin4 is a member of the Survival Motor Neuron (SMN) protein complex, which is responsible for the assembly and maturation of Sm-class small nuclear ribonucleoproteins (snRNPs). In metazoa, Sm snRNPs are assembled in the cytoplasm and subsequently imported into the nucleus. We previously showed that the SMN complex is required for snRNP import in vitro, although it remains unclear which specific components direct this process. Here, we report that Gemin4 overexpression drives SMN and the other Gemin proteins from the cytoplasm into the nucleus. Moreover, it disrupts the subnuclear localization of the Cajal body marker protein, coilin, in a dose-dependent manner. We identified three putative nuclear localization signal (NLS) motifs within Gemin4, one of which is necessary and sufficient to direct nuclear import. Overexpression of Gemin4 constructs lacking this NLS sequestered Gemin3 and, to a lesser extent Gemin2, in the cytoplasm but had little effect on the nuclear accumulation of SMN. We also investigated the effects of Gemin4 depletion in the laboratory mouse, Mus musculus. Gemin4 null mice die early in embryonic development, demonstrating that Gemin4 is an essential mammalian protein. When crossed onto a severe SMA mutant background, heterozygous loss of Gemin4 failed to modify the early postnatal mortality phenotype of SMA type I (Smn−/−;SMN2+/+) mice. We conclude that Gemin4 plays an essential role in mammalian snRNP biogenesis, and may facilitate import of the SMN complex (or subunits thereof) into the nucleus. Summary:Gemin4 loss-of-function is recessive lethal in mice, whereas in cell culture its overexpression results in a dominant, gain-of-function relocalization of SMN and other Gemin proteins to the nucleus.
Collapse
Affiliation(s)
- Ingo D Meier
- Integrative Program for Biological and Genome Sciences, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michael P Walker
- Integrative Program for Biological and Genome Sciences, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA.,Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | | |
Collapse
|
13
|
Lanfranco M, Cacciottolo R, Borg RM, Vassallo N, Juge F, Bordonné R, Cauchi RJ. Novel interactors of the Drosophila
Survival Motor Neuron (SMN) Complex suggest its full conservation. FEBS Lett 2017; 591:3600-3614. [DOI: 10.1002/1873-3468.12853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Maia Lanfranco
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Rebecca Cacciottolo
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Rebecca M. Borg
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
| | - Ruben J. Cauchi
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| |
Collapse
|
14
|
Tang X, Bharath SR, Piao S, Tan VQ, Bowler MW, Song H. Structural basis for specific recognition of pre-snRNA by Gemin5. Cell Res 2016; 26:1353-1356. [PMID: 27834343 PMCID: PMC5143419 DOI: 10.1038/cr.2016.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shunfu Piao
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vanessa Qianmin Tan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181 F-38042 Grenoble, France.,Unit of Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, CS 90181 F-38042 Grenoble, France
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore
| |
Collapse
|
15
|
Kamenska A, Simpson C, Vindry C, Broomhead H, Bénard M, Ernoult-Lange M, Lee BP, Harries LW, Weil D, Standart N. The DDX6-4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Res 2016; 44:6318-34. [PMID: 27342281 PMCID: PMC5291280 DOI: 10.1093/nar/gkw565] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.
Collapse
Affiliation(s)
- Anastasiia Kamenska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Clare Simpson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Caroline Vindry
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Helen Broomhead
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Marianne Bénard
- Sorbonne Universités, UPMC, CNRS, IBPS, Developmental Biology Laboratory, 75005 Paris, France
| | - Michèle Ernoult-Lange
- Sorbonne Universités, UPMC, CNRS, IBPS, Developmental Biology Laboratory, 75005 Paris, France
| | - Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW
| | - Dominique Weil
- Sorbonne Universités, UPMC, CNRS, IBPS, Developmental Biology Laboratory, 75005 Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| |
Collapse
|
16
|
Borg RM, Fenech Salerno B, Vassallo N, Bordonne R, Cauchi RJ. Disruption of snRNP biogenesis factors Tgs1 and pICln induces phenotypes that mirror aspects of SMN-Gemins complex perturbation in Drosophila, providing new insights into spinal muscular atrophy. Neurobiol Dis 2016; 94:245-58. [PMID: 27388936 DOI: 10.1016/j.nbd.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 01/27/2023] Open
Abstract
The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.
Collapse
Affiliation(s)
- Rebecca M Borg
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta; Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Benji Fenech Salerno
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Rémy Bordonne
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.
| |
Collapse
|
17
|
Stoehr A, Yang Y, Patel S, Evangelista AM, Aponte A, Wang G, Liu P, Boylston J, Kloner PH, Lin Y, Gucek M, Zhu J, Murphy E. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2016; 110:346-58. [PMID: 27095734 DOI: 10.1093/cvr/cvw081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. METHODS AND RESULTS We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. CONCLUSIONS This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing.
Collapse
Affiliation(s)
- Andrea Stoehr
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sajni Patel
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia M Evangelista
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Boylston
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip H Kloner
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Bizarro J, Dodré M, Huttin A, Charpentier B, Schlotter F, Branlant C, Verheggen C, Massenet S, Bertrand E. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res 2015; 43:8973-89. [PMID: 26275778 PMCID: PMC4605303 DOI: 10.1093/nar/gkv809] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
The Sm proteins are loaded on snRNAs by the SMN complex, but how snRNP-specific proteins are assembled remains poorly characterized. U4 snRNP and box C/D snoRNPs have structural similarities. They both contain the 15.5K and proteins with NOP domains (PRP31 for U4, NOP56/58 for snoRNPs). Biogenesis of box C/D snoRNPs involves NUFIP and the HSP90/R2TP chaperone system and here, we explore the function of this machinery in U4 RNP assembly. We show that yeast Prp31 interacts with several components of the NUFIP/R2TP machinery, and that these interactions are separable from each other. In human cells, PRP31 mutants that fail to stably associate with U4 snRNA still interact with components of the NUFIP/R2TP system, indicating that these interactions precede binding of PRP31 to U4 snRNA. Knock-down of NUFIP leads to mislocalization of PRP31 and decreased association with U4. Moreover, NUFIP is associated with the SMN complex through direct interactions with Gemin3 and Gemin6. Altogether, our data suggest a model in which the NUFIP/R2TP system is connected with the SMN complex and facilitates assembly of U4 snRNP-specific proteins.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Maxime Dodré
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Alexandra Huttin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Céline Verheggen
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
19
|
Neuenkirchen N, Englbrecht C, Ohmer J, Ziegenhals T, Chari A, Fischer U. Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization. EMBO J 2015; 34:1925-41. [PMID: 26069323 DOI: 10.15252/embj.201490350] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.
Collapse
Affiliation(s)
- Nils Neuenkirchen
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Clemens Englbrecht
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Ohmer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Ziegenhals
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ashwin Chari
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany Department of Radiation Medicine and Applied Sciences, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
20
|
Cauchi RJ. Gem depletion: amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther 2014; 20:574-81. [PMID: 24645792 DOI: 10.1111/cns.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
The determining factor of spinal muscular atrophy (SMA), the most common motor neuron degenerative disease of childhood, is the survival motor neuron (SMN) protein. SMN and its Gemin associates form a complex that is indispensible for the biogenesis of small nuclear ribonucleoproteins (snRNPs), which constitute the building blocks of spliceosomes. It is as yet unclear whether a decreased capacity of SMN in snRNP assembly, and, hence, transcriptome abnormalities, account for the specific neuromuscular phenotype in SMA. Across metazoa, the SMN-Gemins complex concentrates in multiple nuclear gems that frequently neighbour or overlap Cajal bodies. The number of gems has long been known to be a faithful indicator of SMN levels, which are linked to SMA severity. Intriguingly, a flurry of recent studies have revealed that depletion of this nuclear structure is also a signature feature of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease. This review discusses such a surprising crossover in addition to highlighting the most recent work on the intricate world of spliceosome building, which seems to be at the heart of motor neuron physiology and survival.
Collapse
Affiliation(s)
- Ruben J Cauchi
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| |
Collapse
|
21
|
Kariya S, Obis T, Garone C, Akay T, Sera F, Iwata S, Homma S, Monani UR. Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 2014; 124:785-800. [PMID: 24463453 DOI: 10.1172/jci72017] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/31/2013] [Indexed: 02/03/2023] Open
Abstract
Spinal muscular atrophy is a common motor neuron disease caused by low survival motoneuron (SMN), a key protein in the proper splicing of genes. Restoring the protein is therefore a promising therapeutic strategy. Implementation of this strategy, however, depends on defining the temporal requirements for SMN. Here, we used controlled knockdown of SMN in transgenic mice to determine the precise postnatal stage requirements for this protein. Reducing SMN in neonatal mice resulted in a classic SMA-like phenotype. Unexpectedly, depletion of SMN in adults had relatively little effect. Insensitivity to low SMN emerged abruptly at postnatal day 17, which coincided with establishment of the fully mature neuromuscular junction (NMJ). Mature animals depleted of SMN eventually exhibited evidence of selective neuromuscular pathology that was made worse by traumatic injury. The ability to regenerate the mature NMJ in aged or injured SMN-depleted mice was grossly impaired, a likely consequence of the inability to meet the surge in demand for motoneuronal SMN that was seen in controls. Our results demonstrate that relative maturity of the NMJ determines the temporal requirement for the SMN protein. These observations suggest that the use of potent but potentially deleterious SMN-enhancing agents could be tapered in human patients once the neuromuscular system matures and reintroduced as needed to enhance SMN for remodeling aged or injured NMJs.
Collapse
|
22
|
The Gemin associates of survival motor neuron are required for motor function in Drosophila. PLoS One 2013; 8:e83878. [PMID: 24391840 PMCID: PMC3877121 DOI: 10.1371/journal.pone.0083878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/09/2013] [Indexed: 12/13/2022] Open
Abstract
Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.
Collapse
|
23
|
Low WK, Li J, Zhu M, Kommaraju SS, Shah-Mittal J, Hull K, Liu JO, Romo D. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents. Bioorg Med Chem 2013; 22:116-25. [PMID: 24359706 DOI: 10.1016/j.bmc.2013.11.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 02/06/2023]
Abstract
A series of pateamine A (1) derivatives were synthesized for structure/activity relationship (SAR) studies and a selection of previous generation analogs were re-evaluated based on current information regarding the mechanism of action of these translation inhibitors. Structural modifications in the new generation of derivatives focused on alterations to the C19-C22 Z,E-diene and the trienyl side chain of the previously described simplified, des-methyl, des-amino pateamine A (DMDAPatA, 2). Derivatives were tested for anti-proliferative activity in cell culture and for inhibition of mammalian cap-dependent translation in vitro. Activity was highly dependent on the rigidity and conformation of the macrolide and the functionality of the side chain. The only well tolerated substitutions were replacement of the N,N-dimethyl amino group found on the side chain of 2 with other tertiary amine groups. SAR reported here suggests that this site may be modified in future studies to improve serum stability, cell-type specificity, and/or specificity towards rapidly proliferating cells.
Collapse
Affiliation(s)
- Woon-Kai Low
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Jing Li
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA
| | - Mingzhao Zhu
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA
| | - Sai Shilpa Kommaraju
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Janki Shah-Mittal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Ken Hull
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Daniel Romo
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA; Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA.
| |
Collapse
|
24
|
Li DK, Tisdale S, Espinoza-Derout J, Saieva L, Lotti F, Pellizzoni L. A cell system for phenotypic screening of modifiers of SMN2 gene expression and function. PLoS One 2013; 8:e71965. [PMID: 23967270 PMCID: PMC3744461 DOI: 10.1371/journal.pone.0071965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease caused by homozygous inactivation of the SMN1 gene and reduced levels of the survival motor neuron (SMN) protein. Since higher copy numbers of the nearly identical SMN2 gene reduce disease severity, to date most efforts to develop a therapy for SMA have focused on enhancing SMN expression. Identification of alternative therapeutic approaches has partly been hindered by limited knowledge of potential targets and the lack of cell-based screening assays that serve as readouts of SMN function. Here, we established a cell system in which proliferation of cultured mouse fibroblasts is dependent on functional SMN produced from the SMN2 gene. To do so, we introduced the entire human SMN2 gene into NIH3T3 cell lines in which regulated knockdown of endogenous mouse Smn severely decreases cell proliferation. We found that low SMN2 copy number has modest effects on the cell proliferation phenotype induced by Smn depletion, while high SMN2 copy number is strongly protective. Additionally, cell proliferation correlates with the level of SMN activity in small nuclear ribonucleoprotein assembly. Following miniaturization into a high-throughput format, our cell-based phenotypic assay accurately measures the beneficial effects of both pharmacological and genetic treatments leading to SMN upregulation. This cell model provides a novel platform for phenotypic screening of modifiers of SMN2 gene expression and function that act through multiple mechanisms, and a powerful new tool for studies of SMN biology and SMA therapeutic development.
Collapse
Affiliation(s)
- Darrick K. Li
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Jorge Espinoza-Derout
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Natalizio AH, Matera AG. Identification and characterization of Drosophila Snurportin reveals a role for the import receptor Moleskin/importin-7 in snRNP biogenesis. Mol Biol Cell 2013; 24:2932-42. [PMID: 23885126 PMCID: PMC3771954 DOI: 10.1091/mbc.e13-03-0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous work established Importin-β and Snurportin1 as the vertebrate snRNP import receptor and adaptor proteins, respectively. This study identifies Drosophila Snurportin and shows that it uses an alternative import receptor, Importin7/Moleskin. Moleskin is required for the stability of other snRNP biogenesis factors. Nuclear import is an essential step in small nuclear ribonucleoprotein (snRNP) biogenesis. Snurportin1 (SPN1), the import adaptor, binds to trimethylguanosine (TMG) caps on spliceosomal small nuclear RNAs. Previous studies indicated that vertebrate snRNP import requires importin-β, the transport receptor that binds directly to SPN1. We identify CG42303/snup as the Drosophila orthologue of human snurportin1 (SNUPN). Of interest, the importin-β binding (IBB) domain of SPN1, which is essential for TMG cap–mediated snRNP import in humans, is not well conserved in flies. Consistent with its lack of an IBB domain, we find that Drosophila SNUP (dSNUP) does not interact with Ketel/importin-β. Fruit fly snRNPs also fail to bind Ketel; however, the importin-7 orthologue Moleskin (Msk) physically associates with both dSNUP and spliceosomal snRNPs and localizes to nuclear Cajal bodies. Strikingly, we find that msk-null mutants are depleted of the snRNP assembly factor, survival motor neuron, and the Cajal body marker, coilin. Consistent with a loss of snRNP import function, long-lived msk larvae show an accumulation of TMG cap signal in the cytoplasm. These data indicate that Ketel/importin-β does not play a significant role in Drosophila snRNP import and demonstrate a crucial function for Msk in snRNP biogenesis.
Collapse
Affiliation(s)
- Amanda Hicks Natalizio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Departments of Biology, University of North Carolina, Chapel Hill, NC 27599 Departments of Genetics, University of North Carolina, Chapel Hill, NC 27599 Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | | |
Collapse
|
26
|
Sabra M, Texier P, El Maalouf J, Lomonte P. The tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated histone H3 lysine 79. J Cell Sci 2013; 126:3664-77. [DOI: 10.1242/jcs.126003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a muscular disease characterized by the death of motoneurons, and is a major genetic cause of infant mortality. Mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), are responsible for the disease due to compensation deficit. SMN belongs to the Tudor domain protein family, whose members are known to interact with methylated arginine (R) or lysine (K) residues. SMN has well-defined roles in the metabolism of small non-coding ribonucleoproteins (snRNPs) and spliceosome activity. We previously showed that SMN relocated to damaged interphase centromeres, together with the Cajal body-associated proteins coilin and fibrillarin, during the so-called interphase centromere damage response (iCDR). Here we reveal that SMN is a chromatin-binding protein that specifically interacts with methylated histone H3K79, a gene expression- and splicing-associated histone modification. SMN relocation to damaged centromeres requires its functional Tudor domain and activity of the H3K79 methyltransferase DOT1-L. In vitro pull-down assays showed that SMN interacts with H3K79me1,2 via its functional Tudor domain. Chromatin immunoprecipitation confirmed that SMN binds to H3K79me1,2-containing chromatin in iCDR-induced cells. These data reveal a novel SMN property in the detection of specific chromatin modifications, and shed new light on the involvement of a putative epigenetic dimension to the occurrence of SMA.
Collapse
|
27
|
Donnelly EM, Boulis NM. Update on gene and stem cell therapy approaches for spinal muscular atrophy. Expert Opin Biol Ther 2012; 12:1463-71. [PMID: 22849423 DOI: 10.1517/14712598.2012.711306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is the leading genetic cause of pediatric death to which at present there is no effective therapeutic. The genetic defect is well characterized as a mutation in exon 7 of the survival of motor neuron (SMN) gene. The current gene therapy approach focuses on two main methodologies, the replacement of SMN1 or augmentation of SMN2 readthrough. The most promising of the current work focuses on the delivery of SMN via AAV9 vectors via intravenous delivery. AREAS COVERED In the review the authors examine the current research in the field of stem cell and gene therapy approaches for SMA. Also focusing on delivery methods, timing of administration and general caveats that must be considered with translational work for SMA. EXPERT OPINION Gene therapy currently offers the most promising avenue of research for a successful therapeutic for SMA. There are many important practical and ethical considerations which must be carefully considered when dealing with clinical trial in infants such as the invasiveness of the surgery, the correct patient cohort and the potential risks.
Collapse
|
28
|
Renvoisé B, Quérol G, Verrier ER, Burlet P, Lefebvre S. A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies. J Cell Sci 2012; 125:2862-74. [PMID: 22454514 DOI: 10.1242/jcs.096255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spinal muscular atrophy (SMA) gene product SMN forms with gem-associated protein 2-8 (Gemin2-8) and unrip (also known as STRAP) the ubiquitous survival motor neuron (SMN) complex, which is required for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs), their nuclear import and their localization to subnuclear domain Cajal bodies (CBs). The concentration of the SMN complex and snRNPs in CBs is reduced upon SMN deficiency in SMA cells. Subcellular localization of the SMN complex is regulated in a phosphorylation-dependent manner and the precise mechanisms remain poorly understood. Using co-immunoprecipitation in HeLa cell extracts and in vitro protein binding assays, we show here that the SMN complex and its component Gemin8 interact directly with protein phosphatase PP1γ. Overexpression of Gemin8 in cells increases the number of CBs and results in targeting of PP1γ to CBs. Moreover, depletion of PP1γ by RNA interference enhances the localization of the SMN complex and snRNPs to CBs. Consequently, the interaction between SMN and Gemin8 increases in cytoplasmic and nuclear extracts of PP1γ-depleted cells. Two-dimensional protein gel electrophoresis revealed that SMN is hyperphosphorylated in nuclear extracts of PP1γ-depleted cells and expression of PP1γ restores these isoforms. Notably, SMN deficiency in SMA leads to the aberrant subcellular localization of Gemin8 and PP1γ in the atrophic skeletal muscles, suggesting that the function of PP1γ is likely to be affected in disease. Our findings reveal a role of PP1γ in the formation of the SMN complex and the maintenance of CB integrity. Finally, we propose Gemin8 interaction with PP1γ as a target for therapeutic intervention in SMA.
Collapse
Affiliation(s)
- Benoît Renvoisé
- Laboratoire de Biologie Cellulaire des Membranes, Programme de Biologie Cellulaire, Institut Jacques-Monod, UMR 7592 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | | | | | | | | |
Collapse
|
29
|
A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 2011; 32:126-38. [PMID: 22037760 DOI: 10.1128/mcb.06077-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by homozygous loss of the Survival Motor Neuron 1 (SMN1) gene. In the absence of SMN1, inefficient inclusion of exon 7 in transcripts from the nearly identical SMN2 gene results in ubiquitous SMN decrease but selective motor neuron degeneration. Here we investigated whether cell type-specific differences in the efficiency of exon 7 splicing contribute to the vulnerability of SMA motor neurons. We show that normal motor neurons express markedly lower levels of full-length SMN mRNA from SMN2 than do other cells in the spinal cord. This is due to inefficient exon 7 splicing that is intrinsic to motor neurons under normal conditions. We also find that SMN depletion in mammalian cells decreases exon 7 inclusion through a negative feedback loop affecting the splicing of its own mRNA. This mechanism is active in vivo and further decreases the efficiency of exon 7 inclusion specifically in motor neurons of severe-SMA mice. Consistent with expression of lower levels of full-length SMN, we find that SMN-dependent downstream molecular defects are exacerbated in SMA motor neurons. These findings suggest a mechanism to explain the selective vulnerability of motor neurons to loss of SMN1.
Collapse
|
30
|
Zhang R, So BR, Li P, Yong J, Glisovic T, Wan L, Dreyfuss G. Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. Cell 2011; 146:384-95. [PMID: 21816274 PMCID: PMC3160754 DOI: 10.1016/j.cell.2011.06.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/10/2011] [Accepted: 06/27/2011] [Indexed: 01/10/2023]
Abstract
The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5 Å crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.
Collapse
Affiliation(s)
- Rundong Zhang
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Current research on SMN protein and treatment strategies for spinal muscular atrophy. Neuromuscul Disord 2011; 22:193-7. [PMID: 21820901 DOI: 10.1016/j.nmd.2011.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/20/2011] [Accepted: 06/06/2011] [Indexed: 02/04/2023]
|
32
|
Lutz CM, Kariya S, Patruni S, Osborne MA, Liu D, Henderson CE, Li DK, Pellizzoni L, Rojas J, Valenzuela DM, Murphy AJ, Winberg ML, Monani UR. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 2011; 121:3029-41. [PMID: 21785219 DOI: 10.1172/jci57291] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/18/2011] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disorder in humans. In fact, it is the most frequently inherited cause of infant mortality, being the result of mutations in the survival of motor neuron 1 (SMN1) gene that reduce levels of SMN protein. Restoring levels of SMN protein in individuals with SMA is perceived to be a viable therapeutic option, but the efficacy of such a strategy once symptoms are apparent has not been determined. We have generated mice harboring an inducible Smn rescue allele and used them in a model of SMA to investigate the effects of turning on SMN expression at different time points during the course of the disease. Restoring SMN protein even after disease onset was sufficient to reverse neuromuscular pathology and effect robust rescue of the SMA phenotype. Importantly, our findings also indicated that there was a therapeutic window of opportunity from P4 through P8 defined by the extent of neuromuscular synapse pathology and the ability of motor neurons to respond to SMN induction, following which restoration of the protein to the organism failed to produce therapeutic benefit. Nevertheless, our results suggest that even in severe SMA, timely reinstatement of the SMN protein may halt the progression of the disease and serve as an effective postsymptomatic treatment.
Collapse
|
33
|
Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC, Junqueira M, Shevchenko A, Mann M, Neugebauer KM, Buchholz F. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol 2011; 13:809-18. [PMID: 21642980 DOI: 10.1038/ncb2264] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 04/20/2011] [Indexed: 12/13/2022]
Abstract
TP53 (tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes.
Collapse
Affiliation(s)
- Dragomir B Krastev
- University of Technology Dresden, University Hospital and Medical Faculty Carl Gustav Carus, Department of Medical Systems Biology, Fetscherstraße 74, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu CY, Whye D, Glazewski L, Choe L, Kerr D, Lee KH, Mason RW, Wang W. Proteomic assessment of a cell model of spinal muscular atrophy. BMC Neurosci 2011; 12:25. [PMID: 21385431 PMCID: PMC3063191 DOI: 10.1186/1471-2202-12-25] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/08/2011] [Indexed: 12/29/2022] Open
Abstract
Background Deletion or mutation(s) of the survival motor neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), a neuromuscular disease characterized by spinal motor neuron death and muscle paralysis. Complete loss of the SMN protein is embryonically lethal, yet reduced levels of this protein result in selective death of motor neurons. Why motor neurons are specifically targeted by SMN deficiency remains to be determined. In this study, embryonic stem (ES) cells derived from a severe SMA mouse model were differentiated into motor neurons in vitro by addition of retinoic acid and sonic hedgehog agonist. Proteomic and western blot analyses were used to probe protein expression alterations in this cell-culture model of SMA that could be relevant to the disease. Results When ES cells were primed with Noggin/fibroblast growth factors (bFGF and FGF-8) in a more robust neural differentiation medium for 2 days before differentiation induction, the efficiency of in vitro motor neuron differentiation was improved from ~25% to ~50%. The differentiated ES cells expressed a pan-neuronal marker (neurofilament) and motor neuron markers (Hb9, Islet-1, and ChAT). Even though SMN-deficient ES cells had marked reduced levels of SMN (~20% of that in control ES cells), the morphology and differentiation efficiency for these cells are comparable to those for control samples. However, proteomics in conjunction with western blot analyses revealed 6 down-regulated and 14 up-regulated proteins with most of them involved in energy metabolism, cell stress-response, protein degradation, and cytoskeleton stability. Some of these activated cellular pathways showed specificity for either undifferentiated or differentiated cells. Increased p21 protein expression indicated that SMA ES cells were responding to cellular stress. Up-regulation of p21 was confirmed in spinal cord tissues from the same SMA mouse model from which the ES cells were derived. Conclusion SMN-deficient ES cells provide a cell-culture model for SMA. SMN deficiency activates cellular stress pathways, causing a dysregulation of energy metabolism, protein degradation, and cytoskeleton stability.
Collapse
Affiliation(s)
- Chia-Yen Wu
- Department of Biological Science, University of Delaware, Newark, DE, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
36
|
Reiner JE, Datta PK. TGF-beta-dependent and -independent roles of STRAP in cancer. Front Biosci (Landmark Ed) 2011; 16:105-15. [PMID: 21196161 DOI: 10.2741/3678] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The serine-threonine kinase receptor-associated protein (STRAP) was initially identified as a putative inhibitor of the canonical TGF-beta signaling pathway. Because the Smad-dependent TGF-beta pathway negatively regulates cellular growth, early functional studies suggested that STRAP behaves as an oncogene. Indeed, a correlation between STRAP overexpression and various cancers has been identified. With the emergence of new studies on the biological function of STRAP, it is becoming clear that STRAP regulates several distinct cellular processes and modulates multiple signaling pathways. While STRAP itself does not possess enzymatic activity, it appears that STRAP influences biological processes through associations with cellular proteins. In this review, we will describe the TGF-beta-dependent and -independent functions of STRAP and provide a context for the significance of STRAP activity in the development of cancer.
Collapse
Affiliation(s)
- Jennifer Elisabeth Reiner
- Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
37
|
Hubers L, Valderrama-Carvajal H, Laframboise J, Timbers J, Sanchez G, Côté J. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum Mol Genet 2010; 20:553-79. [PMID: 21088113 DOI: 10.1093/hmg/ddq500] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy is an autosomal-recessive neuromuscular disease caused by disruption of the survival of motor neuron (SMN) gene, which promotes cytoplasmic assembly of the splicing core machinery. It remains unclear how a deficiency in SMN results in a disorder leading to selective degeneration of lower motor neurons. We report here that SMN interacts with RNA-binding protein HuD in neurites of motorneuron-derived MN-1 cells. This interaction is mediated through the Tudor domain of SMN and, importantly, naturally occurring Tudor mutations found in patients with severe spinal muscular atrophy (SMA) completely abrogate the interaction, underscoring its relevance to the disease process. We also characterized a regulatory pathway involving coactivator-associated arginine methyltransferase 1 (CARM1) and HuD. Specifically, we show that CARM1 expression is rapidly downregulated, at the protein level, following induction of differentiation through retinoid and neurotrophic signaling. Using purified proteins, we demonstrate that methylation of HuD by CARM1 reduces its interaction with the p21(cip1/waf1) mRNA, showing that CARM1 can directly influence RNA-binding activity. We further demonstrate that this CARM1-dependent regulatory switch mainly controls the activity of HuD in promoting cell-cycle exit, whereas the interaction between HuD and SMN is required for proper recruitment of HuD and its mRNA targets in neuronal RNA granules. Finally, we were able to rescue SMA-like defects in a hypomorphic Smn knockdown MN-1 cell line through overexpression of HuD. Together, these findings extend our understanding of specific role(s) of SMN in motor neurons and provide crucial insights into potential new avenues for SMA therapeutic strategies.
Collapse
Affiliation(s)
- Lisa Hubers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario,Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Yong J, Kasim M, Bachorik JL, Wan L, Dreyfuss G. Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol Cell 2010; 38:551-62. [PMID: 20513430 PMCID: PMC2901871 DOI: 10.1016/j.molcel.2010.03.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/16/2010] [Accepted: 03/26/2010] [Indexed: 12/26/2022]
Abstract
The SMN complex assembles Sm cores on snRNAs, a key step in the biogenesis of snRNPs, the spliceosome's major components. Here, using SMN complex inhibitors identified by high-throughput screening and a ribo-proteomic strategy on formaldehyde crosslinked RNPs, we dissected this pathway in cells. We show that protein synthesis inhibition impairs the SMN complex, revealing discrete SMN and Gemin subunits and accumulating an snRNA precursor (pre-snRNA)-Gemin5 intermediate. By high-throughput sequencing of this transient intermediate's RNAs, we discovered the previously undetectable precursors of all the snRNAs and identified their Gemin5-binding sites. We demonstrate that pre-snRNA 3' sequences function to enhance snRNP biogenesis. The SMN complex is also inhibited by oxidation, and we show that it stalls an inventory-complete SMN complex containing pre-snRNAs. We propose a stepwise pathway of SMN complex formation and snRNP biogenesis, highlighting Gemin5's function in delivering pre-snRNAs as substrates for Sm core assembly and processing.
Collapse
Affiliation(s)
| | | | - Jennifer L. Bachorik
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Lili Wan
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
40
|
Fuller HR, Man NT, Lam LT, Thanh LT, Keough RA, Asperger A, Gonda TJ, Morris GE. The SMN interactome includes Myb-binding protein 1a. J Proteome Res 2010; 9:556-63. [PMID: 19928837 DOI: 10.1021/pr900884g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding networks of interacting proteins is a major goal in cell biology. The survival of motor neurons protein (SMN) interacts, directly or indirectly, with a large number of other proteins and reduced levels of SMN cause the inherited disorder spinal muscular atrophy (SMA). Some SMN interactions are stable and stoichiometric, such as those with gemins, while others are expected to be transient and substoichiometric, such as the functional interaction of SMN with coilin in Cajal bodies. This study set out to determine whether novel components of the extensive SMN interactome can be identified by a proteomic approach. SMN complexes were immuno-precipitated from HeLa nuclear extracts, using anti-SMN monoclonal antibody attached to magnetic beads, digested with trypsin, separated by capillary-liquid chromatography and analyzed by MALDI TOF/TOF mass spectrometry. One-hundred and one proteins were detected with a p value of <0.05, SMN, gemins and U snRNPs being the dominant "hits". Sixty-nine of these were rejected after MALDI analysis of two control pull-downs using antibodies against unrelated nuclear proteins. The proteins found only in anti-SMN pulldowns were either known SMN partners, and/or contained dimethylated RG domains involved in direct interaction with the SMN tudor domain, or they were known binding partners of such direct SMN interactors. Myb-binding protein 1a, identified as a novel candidate, is a mainly nucleolar protein of unknown function but it partially colocalized with SMN in Cajal bodies in HeLa cell nucleoplasm and, like SMN, was reduced in cells from an SMA patient.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
AbstractReduced levels of the survival of motor neurons protein (SMN), cause the inherited neuromuscular disorder, spinal muscular atrophy (SMA). The majority of therapeutic approaches to date have been focused on finding ways to increase expression of functional SMN protein, though stabilization of SMN protein may also be an important consideration. SMN interacts, directly or indirectly, stably or transiently, with a large number of other proteins, some of which contribute to SMN stability and may therefore be potential targets for SMA therapy. We recently characterized the nuclear SMN interactome using LC-MALDI-TOF/TOF analysis of anti-SMN pull-downs and identified myb-binding protein-1a (Mybbp1a) as a novel partner. In light of interest in cytoplasm-specific roles of the SMN complex, we have applied the same approach to characterise the cytoplasmic SMN interactome. We now show that SMN complexes from HeLa cytoplasmic extracts differ significantly from those found in nuclear extracts, with gemin5, importinbeta and annexin A2 easily detected only in the cytoplasmic extracts, whereas interaction of SMN with Mybbp1a appears to occur only in the nucleus. SMN is ubiquitinylated and we also found proteins of the ubiquitin-proteasome system associated with SMN in the cytoplasm.
Collapse
|
42
|
Kashikar ND, Reiner J, Datta A, Datta PK. Serine threonine receptor-associated protein (STRAP) plays a role in the maintenance of mesenchymal morphology. Cell Signal 2009; 22:138-49. [PMID: 19781628 DOI: 10.1016/j.cellsig.2009.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/14/2009] [Indexed: 12/20/2022]
Abstract
The stromal tissue, made of extracellular matrix and mesenchymal cells, is vital for the functional design of all complex tissues. Fibroblasts are key components of stromal tissue and play a crucial role during organ development, wound repair, angiogenesis and fibrosis. We have previously reported the identification of a novel WD-domain protein, STRAP(1) that inhibits transforming growth factor-beta (TGF-beta) signaling and enhances tumorigenicity via TGF-beta-dependent and TGF-beta-independent mechanisms. Here, we report, for the first time, that deletion of STRAP from Mouse Embryonic Fibroblasts (MEFs) results in a loss of mesenchymal morphology. These cells lose their spindle shape and exhibit features of an epithelial morphology. Gene expression profiling has confirmed that deletion of STRAP affects expression of sets of genes important for diverse functions including cell-cell adhesion and cell polarization, and upregulates E-cadherin expression leading to the formation of adherens junctions, subsequent localization of beta-catenin to the cell membrane and downregulation of the mesenchymal markers like LEF1 (lymphoid enhancer-binding factor 1). Upregulation of WT1 (Wilms tumor homolog 1) in STRAP null MEFs plays a role in E-cadherin induction. Finally, stable expression of STRAP in these cells results in a loss of WT1 and E-cadherin expressions, and a reversal from epithelial to the mesenchymal morphology. Thus, these results provide a novel TGF-beta-independent function of STRAP and describe a mechanism for the role of STRAP in the maintenance of mesenchymal morphology.
Collapse
Affiliation(s)
- Nilesh D Kashikar
- Department of Surgery and Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
43
|
Ogawa C, Usui K, Ito F, Itoh M, Hayashizaki Y, Suzuki H. Role of survival motor neuron complex components in small nuclear ribonucleoprotein assembly. J Biol Chem 2009; 284:14609-17. [PMID: 19321448 PMCID: PMC2682908 DOI: 10.1074/jbc.m809031200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/19/2009] [Indexed: 11/06/2022] Open
Abstract
Survival motor neuron (SMN) complex is essential for the biogenesis of the small nuclear ribonucleoprotein (snRNP) complex, although the complete role of each SMN complex component for the snRNP synthesis is largely unclear. We have identified an interaction between the two components Gemin2-Gemin7 using the mammalian two-hybrid system. In vitro stability assay revealed that the known SMN-Gemin7 interaction becomes stable in the presence of Gemin2 possibly via the identified Gemin2-Gemin7 interaction. Gemin7 knockdown revealed a decrease in snRNP assembly activity and a decrease in SmE protein, a component of snRNP, in the SMN complex, which was consistent with a previous discussion that the Gemin6-Gemin7 heterodimer may serve as a surrogate for the SmD3-SmB particle in forming a subcore, the intermediate complex for snRNP. Interestingly, we found that Unrip, but not Gemin8, can remove Gemin7 from the stable SMN-Gemin2-Gemin7 ternary complex. In an in vitro snRNP assembly assay using the Unrip knockdown and the untreated cell lysates, we revealed that there was a decrease in Gemin7 and increase in SmB/B' in the SMN complex observed in untreated cells during the assay, suggesting that the Gemin6-Gemin7 heterodimer in the subcore is exchanged by the SmD3-SmB particle to form snRNP. Surprisingly, these changes were not observed in the assay using the Unrip knockdown cell extracts, indicating the importance of Unrip in the formation of snRNP likely via removal of the Gemin6-Gemin7 from the SMN complex. Taken together, these results indicate that snRNP is synthesized by harmonization of the SMN complex components.
Collapse
Affiliation(s)
- Chihiro Ogawa
- RIKEN Omics Sciences Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains. Nat Struct Mol Biol 2009; 16:486-91. [PMID: 19377484 DOI: 10.1038/nsmb.1584] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 03/06/2009] [Indexed: 11/09/2022]
Abstract
Gemin5 binds specifically to the small nuclear RNA (snRNA)-defining small nuclear ribonucleoprotein (snRNP) code sequence and is essential, together with other components of the survival of motor neurons (SMN) complex, for the biogenesis of snRNPs, the major constituents of spliceosomes. We show that this binding is mediated by Gemin5's WD repeat domain, a common domain not previously known to bind RNA independently. The entire WD repeat domain, comprising 13 WD motifs, is both necessary and sufficient for sequence-specific, high-affinity binding of Gemin5 to its RNA targets. Using an RNA-mediated hydroxyl radical probing method and mass spectrometry, we mapped a discrete region of the WD repeat domain that contacts snRNAs and demonstrated by mutagenesis that specific amino acids in this region are crucial for Gemin5-snRNA binding. The WD repeat domain is thus a previously undescribed RNA binding domain, and we suggest that the presence of WD repeats should be considered as predictive of potential function in RNA binding.
Collapse
|
45
|
Walker MP, Rajendra T, Saieva L, Fuentes JL, Pellizzoni L, Matera AG. SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain. Hum Mol Genet 2008; 17:3399-410. [PMID: 18689355 PMCID: PMC2566527 DOI: 10.1093/hmg/ddn234] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/23/2008] [Accepted: 08/06/2008] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive neuromuscular disease caused by mutations in the human survival motor neuron 1 (SMN1) gene. The human SMN protein is part of a large macromolecular complex involved in the biogenesis of small ribonucleoproteins. Previously, we showed that SMN is a sarcomeric protein in flies and mice. In this report, we show that the entire mouse Smn complex localizes to the sarcomeric Z-disc. Smn colocalizes with alpha-actinin, a Z-disc marker protein, in both skeletal and cardiac myofibrils. Furthermore, this localization is both calcium- and calpain-dependent. Calpains are known to release proteins from various regions of the sarcomere as a part of the normal functioning of the muscle; however, this removal can be either direct or indirect. Using mammalian cell lysates, purified native SMN complexes, as well as recombinant SMN protein, we show that SMN is a direct target of calpain cleavage. Finally, myofibers from a mouse model of severe SMA, but not controls, display morphological defects that are consistent with a Z-disc deficiency. These results support the view that the SMN complex performs a muscle-specific function at the Z-discs.
Collapse
Affiliation(s)
- Michael P. Walker
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA
- Department of Biology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - T.K. Rajendra
- Department of Biology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jennifer L. Fuentes
- Department of Biology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - A. Gregory Matera
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA
- Department of Biology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
46
|
Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert FM, Vandermoere F, Morrice NA, Swift S, Rothbauer U, Leonhardt H, Lamond A. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 2008; 183:223-39. [PMID: 18936248 PMCID: PMC2568020 DOI: 10.1083/jcb.200805092] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/22/2008] [Indexed: 01/28/2023] Open
Abstract
The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shpargel KB, Praveen K, Rajendra TK, Matera AG. Gemin3 is an essential gene required for larval motor function and pupation in Drosophila. Mol Biol Cell 2008; 20:90-101. [PMID: 18923150 DOI: 10.1091/mbc.e08-01-0024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy. The SMN complex is comprised of SMN and a number of tightly associated proteins, collectively called Gemins. In this report, we identify and characterize the fruitfly ortholog of the DEAD box protein, Gemin3. Drosophila Gemin3 (dGem3) colocalizes and interacts with dSMN in vitro and in vivo. RNA interference for dGem3 codepletes dSMN and inhibits efficient Sm core assembly in vitro. Transposon insertion mutations in Gemin3 are larval lethals and also codeplete dSMN. Transgenic overexpression of dGem3 rescues lethality, but overexpression of dSMN does not, indicating that loss of dSMN is not the primary cause of death. Gemin3 mutant larvae exhibit motor defects similar to previously characterized Smn alleles. Remarkably, appreciable numbers of Gemin3 mutants (along with one previously undescribed Smn allele) survive as larvae for several weeks without pupating. Our results demonstrate the conservation of Gemin3 protein function in metazoan snRNP assembly and reveal that loss of either Smn or Gemin3 can contribute to neuromuscular dysfunction.
Collapse
Affiliation(s)
- Karl B Shpargel
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | | | | | | |
Collapse
|
48
|
Lorson MA, Dickson AM, Shaw DJ, Todd AG, Young EC, Morse R, Wolstencroft C, Lorson CL, Young PJ. Identification and characterisation of a nuclear localisation signal in the SMN associated protein, Gemin4. Biochem Biophys Res Commun 2008; 375:33-7. [PMID: 18675250 PMCID: PMC3613997 DOI: 10.1016/j.bbrc.2008.07.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022]
Abstract
Gemin4 is a ubiquitously expressed multifunctional protein that is involved in U snRNP assembly, apoptosis, nuclear/cytoplasmic transportation, transcription, and RNAi pathways. Gemin4 is one of the core components of the Gemin-complex, which also contains survival motor neuron (SMN), the seven Gemin proteins (Gemin2-8), and Unrip. Mutations in the SMN1 gene cause the autosomal recessive disorder spinal muscular atrophy (SMA). Although the functions assigned to Gemin4 predominantly occur in the nucleus, the mechanisms that mediate the nuclear import of Gemin4 remain unclear. Here, using a novel panel of Gemin4 constructs we identify a canonical nuclear import sequence (NLS) in the N-terminus of Gemin4. The Gemin4 NLS is necessary and independently sufficient to mediate nuclear import of Gemin4. This is the first functional NLS identified within the SMN-Gemin complex.
Collapse
Affiliation(s)
- Monique A. Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO, 65211
| | - Alexa M. Dickson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO, 65211
| | - Debra J. Shaw
- Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, St. Luke’s Campus, Exeter, EX1 2LU, UK
| | - Adrian G. Todd
- Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, St. Luke’s Campus, Exeter, EX1 2LU, UK
| | - Elizabeth C. Young
- Department of Veterinary Pathobiology, Bond Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO, 65211
| | - Robert Morse
- Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, St. Luke’s Campus, Exeter, EX1 2LU, UK
| | - Catherine Wolstencroft
- Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, St. Luke’s Campus, Exeter, EX1 2LU, UK
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO, 65211
| | - Philip J. Young
- Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, St. Luke’s Campus, Exeter, EX1 2LU, UK
| |
Collapse
|
49
|
Morris GE. The Cajal body. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2108-15. [PMID: 18755223 DOI: 10.1016/j.bbamcr.2008.07.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/21/2008] [Accepted: 07/23/2008] [Indexed: 12/30/2022]
Abstract
The Cajal body, originally identified over 100 years ago as a nucleolar accessory body in neurons, has come to be identified with nucleoplasmic structures, often quite tiny, that contain coiled threads of the marker protein, coilin. The interaction of coilin with other proteins appears to increase the efficiency of several nuclear processes by concentrating their components in the Cajal body. The best-known of these processes is the modification and assembly of U snRNPs, some of which eventually form the RNA splicing machinery, or spliceosome. Over the last 10 years, research into the function of Cajal bodies has been greatly stimulated by the discovery that SMN, the protein deficient in the inherited neuromuscular disease, spinal muscular atrophy, is a Cajal body component and has an essential role in the assembly of spliceosomal U snRNPs in the cytoplasm and their delivery to the Cajal body in the nucleus.
Collapse
Affiliation(s)
- Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, OSWESTRY, SY10 7AG, UK.
| |
Collapse
|
50
|
Piazzon N, Rage F, Schlotter F, Moine H, Branlant C, Massenet S. In vitro and in cellulo evidences for association of the survival of motor neuron complex with the fragile X mental retardation protein. J Biol Chem 2007; 283:5598-610. [PMID: 18093976 DOI: 10.1074/jbc.m707304200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein. Although the SMN complex is essential for assembly of spliceosomal U small nuclear RNPs, it is still not understood why reduced levels of the SMN protein specifically cause motor neuron degeneration. SMN was recently proposed to have specific functions in mRNA transport and translation regulation in neuronal processes. The defective protein in Fragile X mental retardation syndrome (FMRP) also plays a role in transport of mRNPs and in their translation. Therefore, we examined possible relationships of SMN with FMRP. We observed granules containing both transiently expressed red fluorescent protein(RFP)-tagged SMN and green fluorescent protein(GFP)-tagged FMRP in cell bodies and processes of rat primary neurons of hypothalamus in culture. By immunoprecipitation experiments, we detected an association of FMRP with the SMN complex in human neuroblastoma SH-SY5Y cells and in murine motor neuron MN-1 cells. Then, by in vitro experiments, we demonstrated that the SMN protein is essential for this association. We showed that the COOH-terminal region of FMRP, as well as the conserved YG box and the region encoded by exon 7 of SMN, are required for the interaction. Our findings suggest a link between the SMN complex and FMRP in neuronal cells.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex
| | | | | | | | | | | |
Collapse
|