1
|
Transcriptome Analysis of the Influence of High-Pressure Carbon Dioxide on Saccharomyces cerevisiae under Sub-Lethal Condition. J Fungi (Basel) 2022; 8:jof8101011. [PMID: 36294576 PMCID: PMC9605315 DOI: 10.3390/jof8101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
High-pressure carbon dioxide (HPCD), a novel non-thermal pasteurization technology, has attracted the attention of scientists due to its high pasteurization efficiency at a lower temperature and pressure. However, the inactivation mechanism has not been well researched, and this has hindered its commercial application. In this work, we used a sub-lethal HPCD condition (4.0 MPa, 30 °C) and a recovery condition (30 °C) to repair the damaged cells. Transcriptome analysis was performed by using RNA sequencing and gene ontology analysis to investigate the detailed lethal mechanism caused by HPCD treatment. RT-qPCR analysis was conducted for certain upregulated genes, and the influence of HPCD on protoplasts and single-gene deletion strains was investigated. Six major categories of upregulated genes were identified, including genes associated with the pentose phosphate pathway (oxidative phase), cell wall organization or biogenesis, glutathione metabolism, protein refolding, phosphatidylcholine biosynthesis, and AdoMet synthesis, which are all considered to be associated with cell death induced by HPCD. The inactivation or structure alteration of YNL194Cp in the organelle membrane is considered the critical reason for cell death. We believe this work contributes to elucidating the cell-death mechanism and providing a direction for further research on non-thermal HPCD sterilization technology.
Collapse
|
2
|
Ceron-Chafla P, García-Timermans C, de Vrieze J, Ganigué R, Boon N, Rabaey K, van Lier JB, Lindeboom REF. Pre-incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure. Biotechnol Bioeng 2022; 119:1792-1807. [PMID: 35312065 PMCID: PMC9325544 DOI: 10.1002/bit.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022]
Abstract
Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, that is, acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP; < 10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity, and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature-halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Cristina García-Timermans
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Jo de Vrieze
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Ramon Ganigué
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
3
|
Edgcomb VP, Teske AP, Mara P. Microbial Hydrocarbon Degradation in Guaymas Basin-Exploring the Roles and Potential Interactions of Fungi and Sulfate-Reducing Bacteria. Front Microbiol 2022; 13:831828. [PMID: 35356530 PMCID: PMC8959706 DOI: 10.3389/fmicb.2022.831828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin.
Collapse
Affiliation(s)
| | - Andreas P. Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paraskevi Mara
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
4
|
Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. BIOLOGY 2021; 10:biology10121305. [PMID: 34943220 PMCID: PMC8698847 DOI: 10.3390/biology10121305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary High hydrostatic pressure generally has an adverse effect on the biological systems of organisms inhabiting lands or shallow sea regions. Deep-sea piezophiles that prefer high hydrostatic pressure for growth have garnered considerable scientific attention. However, the underlying molecular mechanisms of their adaptation to high pressure remains unclear owing to the challenges of culturing and manipulating the genome of piezophiles. Humans also experience high hydrostatic pressure during exercise. A long-term stay in space can cause muscle weakness in astronauts. Thus, the human body indubitably senses mechanical stresses such as hydrostatic pressure and gravity. Nonetheless, the mechanisms underlying biological responses to high pressures are not clearly understood. This review summarizes the occurrence and significance of high-pressure effects in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Abstract High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.
Collapse
|
5
|
The Combined Effect of Pressure and Temperature on Kefir Production-A Case Study of Food Fermentation in Unconventional Conditions. Foods 2020; 9:foods9081133. [PMID: 32824663 PMCID: PMC7466173 DOI: 10.3390/foods9081133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Food fermentation under pressure has been studied in recent years as a way to produce foods with novel properties. The purpose of this work was to study kefir production under pressure (7–50 MPa) at different temperatures (17–32 °C), as a case study of unconventional food fermentation. The fermentation time to produce kefir was similar at all temperatures (17, 25, and 32 °C) up to 15 MPa, compared to atmospheric pressure. At 50 MPa, the fermentation rate was slower, but the difference was reduced as temperature increased. During fermentation, lactic and acetic acid concentration increased while citric acid decreased. The positive activation volumes (Va) obtained indicate that pressure decreased the fermentation rate, while the temperature rise led to the attenuation of the pressure effect (lower Va). On the other hand, higher activation energies (Ea) were observed with pressure increase, indicating that fermentation became more sensitive to temperature. The condition that resulted in a faster fermentation, higher titratable acidity, and higher concentration of lactic acid was 15 MPa/32 °C. As the authors are aware, this is the second work in the literature to study the combined effect of pressure and temperature on a fermentative process.
Collapse
|
6
|
Queiroz MG, Elsztein C, de Morais MA. The effects of the Ncw2 protein of Saccharomyces cerevisiae on the positioning of chitin in response to cell wall damage. Antonie van Leeuwenhoek 2019; 113:265-277. [PMID: 31598818 DOI: 10.1007/s10482-019-01335-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
The recently described NCW2 gene encodes a protein that is assumed to be located in the cell wall (CW). This protein was proposed to participate in the repair of CW damages induced by polyhexamethylene biguanide (PHMB). However, much of the information on the biological function(s) of Ncw2p still remains unclear. In view of this, this study seeks to extend the analysis of this gene in light of the way its protein functions in the Cell Wall Integrity (CWI) mechanism. Deletion of the NCW2 gene led to constitutive overexpression of some key CWI genes and increased chitin deposition in the walls of cells exposed to PHMB. This means the lack of Ncw2p might activate a compensatory mechanism that upregulates glucan CWI genes for cell protection by stiffening the CW. This condition seems to alleviate the response through the HOG pathway and makes cells sensitive to osmotic stress. However, Ncw2p may not have been directly involved in tolerance to osmotic stress itself. The results obtained definitely place the NCW2 gene in the list of CWI genes of S. cerevisiae and indicate that its protein has an auxiliary function in the maintenance of the glucan/chitin balance and ensuring the correct structure of the yeast cell wall.
Collapse
Affiliation(s)
- Maíse Gomes Queiroz
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil
| | - Carolina Elsztein
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil
| | - Marcos Antonio de Morais
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil.
| |
Collapse
|
7
|
Utilization of glycerol during consecutive cycles of Lactobacillus reuteri fermentation under pressure: The impact on cell growth and fermentation profile. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Ferreira RM, Mota MJ, Lopes RP, Sousa S, Gomes AM, Delgadillo I, Saraiva JA. Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35 MPa) to enhance the production of bioethanol. Food Res Int 2018; 115:352-359. [PMID: 30599952 DOI: 10.1016/j.foodres.2018.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/28/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Abstract
Saccharomyces cerevisiae is a yeast of great importance in many industries and it has been frequently used to produce food products and beverages. More recently, other uses have also been described for this microorganism, such as the production of bioethanol, as a clean, renewable and sustainable alternative fuel. High pressure processing (HPP) is a technology that has attracted a lot of interest and is increasingly being used in the food industry as a non-thermal method of food processing. However, other applications of high pressure (HP) are being studied with this technology in different areas, for example, for fermentation processes, because microbial cells can resist to pressure sub-lethal levels, due to the development of different adaptation mechanisms. The present work intended to study the adaptation of S. cerevisiae to high pressure, using consecutive cycles of fermentation under pressure (at sub-lethal levels), in an attempt to enhance the production of bioethanol. In this context, three pressure levels (15, 25 and 35 MPa) were tested, with each of them showing different effects on S. cerevisiae fermentation behavior. After each cycle at 15 and 25 MPa, both cell growth and ethanol production showed a tendency to increase, suggesting the adaptation of S. cerevisiae to these pressure levels. In fact, at the end of the 4th cycle, the ethanol production was higher under pressure than at atmospheric pressure (0.1 MPa) (8.75 g.L-1 and 10.69 g.L-1 at 15 and 25 MPa, respectively, compared to 8.02 g.L-1 at atmospheric pressure). However, when the pressure was increased to 35 MPa, cell growth and bioethanol production decreased, with minimal production after the 4 consecutive fermentation cycles. In general, the results of this work suggest that consecutive cycles of fermentation under sub-lethal pressure conditions (15 and 25 MPa) can stimulate adaptation to pressure and improve the bioethanol production capacity by S. cerevisiae; hence, this technology can be used to increase rates, yields and productivities of alcoholic fermentation.
Collapse
Affiliation(s)
- Ricardo M Ferreira
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria J Mota
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita P Lopes
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Ana M Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Ivonne Delgadillo
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Mota MJ, Lopes RP, Sousa S, Gomes AM, Delgadillo I, Saraiva JA. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol. Food Res Int 2018; 113:424-432. [PMID: 30195537 DOI: 10.1016/j.foodres.2018.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 01/28/2023]
Abstract
Lactobacillus reuteri is a lactic acid bacterium able to produce several relevant bio-based compounds, including 1,3-propanediol (1,3-PDO), a compound used in food industry for a wide range of purposes. The performance of fermentations under high pressure (HP) is a novel strategy for stimulation of microbial growth and possible improvement of fermentation processes. Therefore, the present work intended to evaluate the effects of HP (10-35 MPa) on L. reuteri growth and glycerol/glucose co-fermentation, particularly on 1,3-PDO production. Two different types of samples were used: with or without acetate added in the culture medium. The production of 1,3-PDO was stimulated at 10 MPa, resulting in enhanced final titers, yields and productivities, compared to 0.1 MPa. The highest 1,3-PDO titer (4.21 g L-1) was obtained in the presence of acetate at 10 MPa, representing yield and productivity improvements of ≈ 11 and 12%, respectively, relatively to the same samples at 0.1 MPa. In the absence of acetate, 1,3-PDO titer and productivity were similar to 0.1 MPa, but the yield increased ≈ 26%. High pressure also affected the formation of by-products (lactate, acetate and ethanol) and, as a consequence, higher molar ratios 1,3-PDO:by-products were achieved at 10 MPa, regardless of the presence/absence of acetate. This indicates a metabolic shift, with modification of product selectivity towards production of 1,3-PDO. Overall, this work suggests that HP can be a useful tool to improve of 1,3-PDO production from glycerol by L. reuteri, even if proper process optimization and scale-up are still needed to allow its industrial application. It also opens the possibility of using this technology to stimulate other glycerol fermentations processes that are relevant for food science and biotechnology.
Collapse
Affiliation(s)
- Maria J Mota
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita P Lopes
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Ana M Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Ivonne Delgadillo
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- QOPNA, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
NCW2, a Gene Involved in the Tolerance to Polyhexamethylene Biguanide (PHMB), May Help in the Organisation of β-1,3-Glucan Structure of Saccharomyces cerevisiae Cell Wall. Curr Microbiol 2016; 73:341-345. [DOI: 10.1007/s00284-016-1067-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
|
11
|
Acetylated Deoxynivalenol Generates Differences of Gene Expression that Discriminate Trichothecene Toxicity. Toxins (Basel) 2016; 8:42. [PMID: 26861396 PMCID: PMC4773795 DOI: 10.3390/toxins8020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 01/06/2023] Open
Abstract
Deoxynivalenol (DON), which is a toxic secondary metabolite generated by Fusarium species, is synthesized through two separate acetylation pathways. Both acetylation derivatives, 3-acetyl-DON (3ADON) and 15-acetyl-DON (15ADON), also contaminate grain and corn widely. These derivatives are deacetylated via a variety of processes after ingestion, so it has been suggested that they have the same toxicity as DON. However, in the intestinal entry region such as the duodenum, the derivatives might come into contact with intestinal epithelium cells because metabolism by microflora or import into the body has not progressed. Therefore, the differences of toxicity between DON and these derivatives need to be investigated. Here, we observed gene expression changes in the yeast pdr5Δ mutant strain under concentration-dependent mycotoxin exposure conditions. 15ADON exposure induced significant gene expression changes and DON exposure generally had a similar but smaller effect. However, the glucose transporter genes HXT2 and HXT4 showed converse trends. 3ADON also induced a different expression trend in these genes than DON and 15ADON. These differences in gene expression suggest that DON and its derivatives have different effects on cells.
Collapse
|
12
|
Nomura K, Iwahashi H, Iguchi A, Shigematsu T. Barosensitivity in Saccharomyces cerevisiae is Closely Associated with a Deletion of the COX1 Gene. J Food Sci 2015; 80:M1051-9. [PMID: 25881710 DOI: 10.1111/1750-3841.12873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
High hydrostatic pressure causes physical stress to microorganisms; therefore, this technology may be applied to food pasteurization without introducing the unfavorable effects of thermal denaturation. However, its application is limited to high-value foods because the treatment requires a robust steel vessel and expensive pressurization equipment. To reduce these costs, we studied the pasteurization of Saccharomyces cerevisiae using relatively moderate high-pressure levels. A mutant strain isolated by ultraviolet mutagenesis showed significant loss of viability under high-pressure conditions. Gene expression analysis of the mutant strain revealed that it incurred a deletion of the COX1 gene. Our results suggest that the pressure-sensitivity can readily be introduced into industrial/food microorganisms by complementing a COX1 deleted mitochondria.
Collapse
Affiliation(s)
- Kazuki Nomura
- The United Graduate School of Agricultural Science, Gifu Univ., 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Hitoshi Iwahashi
- The United Graduate School of Agricultural Science, Gifu Univ., 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Akinori Iguchi
- Dept. of Food Science, Faculty of Applied Life Sciences, Niigata Univ. of Pharmacy and Applied Life Sciences (NUPALS), 265-1 Higashijima, Akiha-ku, Niigata-shi, Niigata, 956-8603, Japan
| | - Toru Shigematsu
- Dept. of Food Science, Faculty of Applied Life Sciences, Niigata Univ. of Pharmacy and Applied Life Sciences (NUPALS), 265-1 Higashijima, Akiha-ku, Niigata-shi, Niigata, 956-8603, Japan
| |
Collapse
|
13
|
Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins (Basel) 2015; 7:187-200. [PMID: 25609182 PMCID: PMC4303822 DOI: 10.3390/toxins7010187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
Host plants excrete a glucosylation enzyme onto the plant surface that changes mycotoxins derived from fungal secondary metabolites to glucosylated products. Deoxynivalenol-3-glucoside (DON3G) is synthesized by grain uridine diphosphate-glucosyltransferase, and is found worldwide, although information on its toxicity is lacking. Here, we conducted growth tests and DNA microarray analysis to elucidate the characteristics of DON3G. The Saccharomyces cerevisiaePDR5 mutant strain exposed to DON3G demonstrated similar growth to the dimethyl sulfoxide control, and DNA microarray analysis revealed limited differences. Only 10 genes were extracted, and the expression profile of stress response genes was similar to that of DON, in contrast to metabolism genes like SER3, which encodes 3-phosphoglycerate dehydrogenase. Growth tests with Chlamydomonas reinhardtii also showed a similar growth rate to the control sample. These results suggest that DON3G has extremely low toxicity to these cells, and the glucosylation of mycotoxins is a useful protective mechanism not only for host plants, but also for other species.
Collapse
|
14
|
Abstract
Hydrostatic pressure is one of the physical factors affecting cellular physiology. Hydrostatic pressure of a few tens MPa decreases the growth rate and a few hundred MPa decreases the cellular viability. To find clues to understand how such pressure effects on living cells relating to damages on protein molecules, we employed yeast DNA microarrays and analyzed genome-wide gene-expression levels in yeast cells which have been exposed to different levels of hydrostatic pressure. These include the cells temporarily adapted to a high pressure (from 0.1 to 30 MPa) and to a low pressure (from 30 to 0.1 MPa). These conditions cause yeast cells decreases of growth rate. We also analyzed gene expression profiles from the cells recovering after the sublethal pressure treatment at 180 MPa at 4 °C for 0 min and at 40 MPa at 4 °C for 16 h. These conditions cause yeast cells decreases of cellular viability. The activated genes by the temporary adaptations to both of the high pressure and the low pressure suggest that proteins related to membrane biosynthesis and cell wall biosynthesis can be crucial targets of pressure-induced damages, whereas the activated genes under recovering conditions after exposure to the sublethal high pressure suggest that proteasome activity and proteins localized in endoplasmic reticulum can be the crucial targets or the essential factors to survive.
Collapse
Affiliation(s)
- Hitoshi Iwahashi
- Department of Applied Life Science, Faculty of Applied Biological Science, Gifu University, 1-1, Yanagido, Gifu, Gifu, 501-1193, Japan,
| |
Collapse
|
15
|
Fu LL, Wang R, Wang Y, Lin J. Proteomic identification of responsive proteins of Vibrio parahaemolyticus under high hydrostatic pressure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2630-2638. [PMID: 24473993 DOI: 10.1002/jsfa.6595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND High hydrostatic pressure (HHP) processing is currently being used as a treatment for certain foods to inhibit spoilage organisms and control the presence of foodborne pathogens. In this study proteome profiles were performed by two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF identification to determine the effects of HHP (50, 100, 150 and 200 MPa, each for 10 min) on Vibrio parahaemolyticus ATCC 17802 (∼8 log CFU mL⁻¹) in order to understand how it responds to mechanical stress injury. RESULTS Multiple comparisons of 2-DE revealed that the majority of changes in protein abundance occurred in a pressure-dependent fashion. A total of 18 differentially expressed protein spots were successfully identified by MALDI-TOF/TOF analysis. Moreover, quantitative RT-PCR and immunoblotting also substantiated the changes of transcriptional and translational levels of representative proteins. CONCLUSIONS Our results suggested that V. parahaemolyticus may respond to HHP treatment through suppression of membrane stability and functionality (PfaC, Alr2, MltA, PLA2 and PatH), depression of biosynthesis and cellular processes (NadB, PyrB and ArgB), decreased levels of transcription (RpoD) and translation (RpsA, RplJ and PheS), and effective activation of protein folding and stress-related elements (GroES, DnaK and GroEL). This study may provide insight into the nature of the cellular targets of high pressure and in high-pressure resistance mechanisms in V. parahaemolyticus.
Collapse
Affiliation(s)
- Ling-Lin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, P.R. China
| | | | | | | |
Collapse
|
16
|
Exploration of the Effects of High Hydrostatic Pressure on Microbial Growth, Physiology and Survival: Perspectives from Piezophysiology. Biosci Biotechnol Biochem 2014; 71:2347-57. [DOI: 10.1271/bbb.70015] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Zhang W, Liu X, Zheng F, Zeng S, Wu K, da Silva JAT, Duan J. Induction of rice mutations by high hydrostatic pressure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:182-187. [PMID: 23786816 DOI: 10.1016/j.plaphy.2013.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
High hydrostatic pressure (HHP) is an extreme thermo-physical factor that affects the synthesis of DNA, RNA and proteins and induces mutagenesis in microorganisms. Our previous studies showed that exposure to 25-100 MPa HHP for 12 h retarded the germination and affected the viability of rice (Oryza sativa L.) seeds, increased the tolerance of rice plants to cold stress and altered gene expression patterns in germinating rice seeds. However, the mutagenic effect of HHP on rice remains unknown. In this study, exposure to 25, 50, 75 or 100 MPa for 12 h HHP could efficiently induce variation in rice plants. Furthermore, presoaking time and HHP strength during HHP treatment affected the efficiency of mutation. In addition, the Comet assay revealed that exposure to 25-100 MPa HHP for 12 h induced DNA strand breakage in germinating seeds and may have been the source of mutations. Our results suggest that HHP is a promising physical mutagen in rice breeding.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Mota MJ, Lopes RP, Delgadillo I, Saraiva JA. Microorganisms under high pressure--adaptation, growth and biotechnological potential. Biotechnol Adv 2013; 31:1426-34. [PMID: 23831003 DOI: 10.1016/j.biotechadv.2013.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022]
Abstract
Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology.
Collapse
Affiliation(s)
- Maria J Mota
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
19
|
Bravim F, da Silva LF, Souza DT, Lippman SI, Broach JR, Fernandes AAR, Fernandes PMB. High hydrostatic pressure activates transcription factors involved in Saccharomyces cerevisiae stress tolerance. Curr Pharm Biotechnol 2013; 13:2712-20. [PMID: 23072392 DOI: 10.2174/138920112804724891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/05/2012] [Accepted: 09/30/2012] [Indexed: 11/22/2022]
Abstract
A number of transcriptional control elements are activated when Saccharomyces cerevisiae cells are submitted to various stress conditions, including high hydrostatic pressure (HHP). Exposure of Saccharomyces cerevisiae cells to HHP results in global transcriptional reprogramming, similar to that observed under other industrial stresses, such as temperature, ethanol and oxidative stresses. Moreover, treatment with a mild hydrostatic pressure renders yeast cells multistress tolerant. In order to identify transcriptional factors involved in coordinating response to high hydrostatic pressure, we performed a time series microarray expression analysis on a wild S. cerevisiae strain exposed to 50 MPa for 30 min followed by recovery at atmospheric pressure (0.1 MPa) for 5, 10 and 15 min. We identified transcription factors and corresponding DNA and RNA motifs targeted in response to hydrostatic pressure. Moreover, we observed that different motif elements are present in the promoters of induced or repressed genes during HHP treatment. Overall, as we have already published, mild HHP treatment to wild yeast cells provides multiple protection mechanisms, and this study suggests that the TFs and motifs identified as responding to HHP may be informative for a wide range of other biotechnological and industrial applications, such as fermentation, that may utilize HHP treatment.
Collapse
Affiliation(s)
- Fernanda Bravim
- Núcleo de Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
RNA preparation of Saccharomyces cerevisiae using the digestion method may give misleading results. Appl Biochem Biotechnol 2013; 169:1620-32. [PMID: 23325148 PMCID: PMC3593083 DOI: 10.1007/s12010-012-0051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/17/2012] [Indexed: 11/20/2022]
Abstract
Zymolyase (lyticase) is used for cell wall digestion in yeast experiments and is needed for incubation processes under moderate experimental conditions. This has been thought to cause unfavorable effects, and many researchers are aware that the enzyme method is unsuitable for RNA preparation following several reports of stress responses to the enzyme process. However, RNA preparation with enzyme digestion continues to be used. This may be because there have been insufficient data directly comparing RNA preparation conditions with previous studies. We investigated the influence of enzyme processes in RNA preparation using a DNA microarray, and compared superoxide dismutase (SOD) activities with a non-treated control and the results of previous research. Gene expressions were commonly changed by enzyme processes, and SOD activities increased only during short-term incubation. Meanwhile, both SOD gene expressions and SOD activity during RNA preparation indicated different results than gained under conditions of long-term incubation. These results suggest that zymolyase treatment surely influences gene expressions and enzyme activity, although the effect assumed by previous studies is not necessarily in agreement with that of RNA preparation.
Collapse
|
21
|
Suzuki T, Iwahashi Y. Comprehensive gene expression analysis of type B trichothecenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9519-9527. [PMID: 22897823 DOI: 10.1021/jf3020975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Type B trichothecenes, deoxynivalenol (DON) and nivalenol (NIV), are secondary metabolites of Fusarium species and are major pollutants in food and feed products. Recently, the production trend of their derivatives, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), and 4-acetylnivalenol (4-AcNIV or fusarenon-X), has been changing in various regions worldwide. Although in vivo behavior has been reported, it is necessary to acquire more detailed information about these derivatives. Here, the yeast PDR5 mutant was used for toxicity evaluation, and the growth test revealed that DON, 15-AcDON, and 4-AcNIV had higher toxicity compared to 3-AcDON and NIV. 15-AcDON exerted the most significant gene expression changes, and cellular localization clustering exhibited repression of mitochondrial ribosomal genes. This study suggests that the toxicity trends of both DON products (DON and its derivatives) and NIV products (NIV and its derivatives) are similar to those observed in mammalian cells, with a notable toxic response to 15-AcDON.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
22
|
Bravim F, Lippman SI, da Silva LF, Souza DT, Fernandes AAR, Masuda CA, Broach JR, Fernandes PMB. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain. Appl Microbiol Biotechnol 2012; 97:2093-107. [PMID: 22915193 DOI: 10.1007/s00253-012-4356-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 11/26/2022]
Abstract
High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries.
Collapse
Affiliation(s)
- Fernanda Bravim
- Núcleo de Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES 29040-090, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kołaczkowska A, Manente M, Kołaczkowski M, Laba J, Ghislain M, Wawrzycka D. The regulatory inputs controlling pleiotropic drug resistance and hypoxic response in yeast converge at the promoter of the aminocholesterol resistance gene RTA1. FEMS Yeast Res 2011; 12:279-92. [DOI: 10.1111/j.1567-1364.2011.00768.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Anna Kołaczkowska
- Department of Biochemistry, Pharmacology and Toxicology; University of Environmental and Life Sciences; Wroclaw; Poland
| | - Myriam Manente
- Unité de biochimie physiologique; Institut des sciences de la vie; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | | | - Justyna Laba
- Department of Biochemistry, Pharmacology and Toxicology; University of Environmental and Life Sciences; Wroclaw; Poland
| | - Michel Ghislain
- Unité de biochimie physiologique; Institut des sciences de la vie; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Donata Wawrzycka
- Department of Genetics and Cell Physiology; Institute of Plant Biology; Wroclaw University; Wroclaw; Poland
| |
Collapse
|
24
|
Ambily Nath IV, Loka Bharathi PA. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles. Extremophiles 2011; 15:129-53. [DOI: 10.1007/s00792-010-0348-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 12/09/2010] [Indexed: 11/28/2022]
|
25
|
Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol 2010; 161:799-809. [DOI: 10.1016/j.resmic.2010.09.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/09/2010] [Indexed: 12/14/2022]
|
26
|
Genome-Wide Expression Changes in Saccharomyces cerevisiae in Response to High-LET Ionizing Radiation. Appl Biochem Biotechnol 2010; 162:855-70. [DOI: 10.1007/s12010-009-8825-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 10/13/2009] [Indexed: 12/15/2022]
|
27
|
Iwahashi Y, Kitagawa E, Iwahashi H. Analysis of mechanisms of T-2 toxin toxicity using yeast DNA microarrays. Int J Mol Sci 2008; 9:2585-2600. [PMID: 19330094 PMCID: PMC2635635 DOI: 10.3390/ijms9122585] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/16/2022] Open
Abstract
T-2 toxin is a mycotoxin that belongs to a group of type A tricothecenes found in agricultural products. The cytotoxicity of T-2 toxin was characterized by analysis of the yeast transcriptome upon challenge with T-2 toxin. Interestingly, T-2 toxin-induced yeast gene expression profiles were found to be similar to profiles obtained following cycloheximide treatment. Moreover, T-2 toxin treatment was found to activate facilitators, gluconeogenesis and cell arrest related genes such as mitogen-activated protein kinase genes (FUS3). T-2 toxin attacks the membrane and as a result the membrane transport system was disturbed. A large number of genes are induced to restore the toxicity caused by T-2 toxin. However, the data did not suggest that DNA damage by alkylation (Mag1, a gene 3-methyl-adenine DNA glycosylase, 0.46-fold down regulated), no induction of DNA repair mechanisms such as recombination (RAD26, RAD52 and etc.) and excision repair (RAD7, RAD14, RAD16, RAD23 and etc.). These results suggested that the toxicity of the T-2 toxin was due to the disturbance of the cell membrane of the yeast cell and that T-2 toxin caused mild mutagenesis.
Collapse
Affiliation(s)
- Yumiko Iwahashi
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba-shi, Ibaraki 305-8642, Japan
- *Author to whom correspondence should be addressed. E-Mail:
; Tel. +81-298-8103; Fax: +81-298-7996
| | - Emiko Kitagawa
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Osaka, Japan. E-Mails:
(E. K.);
(H. I.)
| | - Hitoshi Iwahashi
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Osaka, Japan. E-Mails:
(E. K.);
(H. I.)
| |
Collapse
|
28
|
Liu X, Zhang M, Duan J, Wu K. Gene expression analysis of germinating rice seeds responding to high hydrostatic pressure. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1855-1864. [PMID: 18639954 DOI: 10.1016/j.jplph.2008.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 05/25/2023]
Abstract
High hydrostatic pressure (HHP) is an extreme thermal-physical stress affecting multiple cellular activities. Recently, we found that HHP treatment caused various physiological changes in rice. To investigate the molecular mechanisms of plant response to HHP, we constructed forward and reverse subtracted cDNA libraries of rice seeds treated with 75MPa hydrostatic pressure for 12h by suppression subtractive hybridization in combination with mirror orientation selection. Of 97 clones isolated through microarray dot-blot and sequenced, 45 were unique genes. Among these 45 unique cDNAs, 29 clones showed significant sequence similarity to known genes, 12 were homologous to genes with unknown function, and the remaining 4 clones did not match any known sequences. Most of the genes with known function were involved in metabolism, defense response, transcriptional regulation, transportation regulation, and signal transduction. To our knowledge, this is the first gene expression analysis of rice in response to HHP. The expression profiles of the genes identified in this study provide useful information regarding molecular processes, including alteration of metabolism and adaptation response caused by HHP.
Collapse
Affiliation(s)
- Xuncheng Liu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | | | | | | |
Collapse
|
29
|
Rowan NJ, Espie S, Harrower J, Farrell H, Marsili L, Anderson JG, MacGregor SJ. Evidence of lethal and sublethal injury in food-borne bacterial pathogens exposed to high-intensity pulsed-plasma gas discharges. Lett Appl Microbiol 2007; 46:80-6. [PMID: 17983430 DOI: 10.1111/j.1472-765x.2007.02268.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To apply scanning electron microscopy, image analysis and a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to pulsed-plasma gas discharges (PPGD). METHODS AND RESULTS The fluorescent redox probe 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used for enumerating actively respiring cells of Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Salmonella enterica serovar Typhimurium that were suspended in sterile water at 4 degrees C and exposed to separate PPGD and heat treatments. While there was good agreement between use of respiratory staining (RS) and direct-selective agar plate counting (PC) for enumerating untreated bacteria, there were c. 1 and 3 log-unit differences in surviving cell numbers per millilitre for test organisms subjected to PPGD and heat treatments respectively, when enumerated by these different viability indicators. PPGD-treated bacteria were markedly altered at the cellular level when examined by scanning electron microscopy. CONCLUSIONS Use of this RS method revealed that substantial subpopulations of test bacteria rendered incapable of forming colonies by separate PPGD and heat treatments may remain metabolically active. SIGNIFICANCE AND IMPACT OF THE STUDY Use of this RS method offers interesting perspectives on assessing established and novel microbial inactivation methods, and may also provide a better understanding of mechanisms involved in microbial inactivation induced by high-intensity PPGD treatments.
Collapse
Affiliation(s)
- N J Rowan
- Department of Nursing and Health Science, Athlone Institute of Technology, Dublin Road, Athlone, Ireland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abe F. Induction of DAN/TIR yeast cell wall mannoprotein genes in response to high hydrostatic pressure and low temperature. FEBS Lett 2007; 581:4993-8. [PMID: 17910955 DOI: 10.1016/j.febslet.2007.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/14/2007] [Accepted: 09/18/2007] [Indexed: 11/16/2022]
Abstract
Global transcriptional profiles of Saccharomyces cerevisiae were studied following changes in growth conditions to high hydrostatic pressure and low temperature. These profiles were quantitatively very similar, encompassing 561 co-upregulated genes and 161 co-downregulated genes. In particular, expression of the DAN/TIR cell wall mannoprotein genes, which are generally expressed under hypoxia, were markedly upregulated by high pressure and low temperature, suggesting the overlapping regulatory networks of transcription. In support of the role of mannoproteins in cell wall integrity, cells acquired resistance against treatment with SDS, Zymolyase and lethal levels of high pressure when preincubated under high pressure and low temperature.
Collapse
Affiliation(s)
- Fumiyoshi Abe
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
| |
Collapse
|
31
|
Picard A, Daniel I, Montagnac G, Oger P. In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles 2006; 11:445-52. [PMID: 17186315 DOI: 10.1007/s00792-006-0054-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/24/2006] [Indexed: 05/13/2023]
Abstract
We monitored alcoholic fermentation in Saccharomyces cerevisiae as a function of high hydrostatic pressure. Ethanol production from 0.15 M glucose was measured by Raman spectroscopy in situ in a diamond-anvil cell. At 10 MPa, fermentation proceeds three times faster than at ambient pressure and the fermentation yield is enhanced by 5% after 24 h. Above 20 MPa, the reaction kinetics slows down with increasing pressure. The pressure above which no more ethanol is produced is calculated to be 87 +/- 7 MPa. These results indicate that the activity of one or several enzymes of the glycolytic pathway is enhanced at low pressure up to 10 MPa. At higher pressures, they become progressively repressed, and they are completely inhibited above 87 MPa. Although fermentation was predicted to stop at ca. 50 MPa, due to the loss of activity of phosphofructokinase, the present study demonstrates that there is still an activity of ca. 30% of that measured at ambient pressure at 65 MPa. This study also validates the use of Raman spectroscopy for monitoring the metabolism of living microorganisms.
Collapse
Affiliation(s)
- A Picard
- Laboratoire de Sciences de la Terre, UMR 5570 CNRS-ENSL-UCBL, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, France.
| | | | | | | |
Collapse
|
32
|
Domitrovic T, Fernandes CM, Boy-Marcotte E, Kurtenbach E. High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition inSaccharomyces cerevisiae. FEBS Lett 2006; 580:6033-8. [PMID: 17055490 DOI: 10.1016/j.febslet.2006.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
Msn2 and Msn4 transcription factors activate expression of stress-responsive element (STRE) controlled genes in response to various stresses triggering the environmental stress response in Saccharomyces cerevisiae. Although high hydrostatic pressure is known to induce gene expression modification in yeast, the transcription factors involved in this response are currently uncharacterized. In this work, we show that elevated pressure activates STRE dependent transcription through Msn2/4, which are also required for cell resistance and cell adaptation to high pressure. Moreover, it was demonstrated that HSP12 induction after a 50 MPa treatment is largely dependent on Msn2/4, while other transcription factors are involved in HSP12 over-expression after a 100 MPa treatment.
Collapse
Affiliation(s)
- Tatiana Domitrovic
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Bloco D subsolo sala 05, Universidade Federal do Rio de Janeiro, Cidade Universitária, CEP 21941-590, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
33
|
Simonato F, Campanaro S, Lauro FM, Vezzi A, D'Angelo M, Vitulo N, Valle G, Bartlett DH. Piezophilic adaptation: a genomic point of view. J Biotechnol 2006; 126:11-25. [PMID: 16780980 DOI: 10.1016/j.jbiotec.2006.03.038] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 02/09/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Two-thirds of Earth's surface is covered by oceans, yet the study of this massive integrated living system is still in its infancy. Various environmental variables, such as high salinity, low and changeable nutrient availability and depth-correlated gradients of light, temperature, nutrients and pressure shape the diversity, physiology and ecology of marine species. As oceans present an average depth of 3800 m, deep-sea ecosystems represent the most common marine ecological niche. One of the key environment variables that influences the life and evolution of deep-sea organisms is high pressure. This extreme widespread condition requires specific adaptations, the nature of which remains largely unknown. Recent advances in genomic approaches, such as in sequencing technologies and global expression profiling, are rapidly increasing the data available to understand microbial evolution, biochemistry, physiology and diversity. This review summarises the analysis of the results published so far about microbial high pressure adaptation from a genomic point of view. Understanding high pressure adaptation mechanisms is not just a scientific exercise but has important biotechnological implications. For example, hydrostatic pressure is a reality for food science and technology, both for food preparation and preservation. An understanding of the effects of pressure on biomolecules will expand its use in the medical, industrial and biotechnological fields.
Collapse
Affiliation(s)
- Francesca Simonato
- Department of Biology, Università di Padova, via Ugo Bassi 58/B, 35131 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Iwahashi Y, Hosoda H, Park JH, Lee JH, Suzuki Y, Kitagawa E, Murata SM, Jwa NS, Gu MB, Iwahashi H. Mechanisms of patulin toxicity under conditions that inhibit yeast growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1936-42. [PMID: 16506856 DOI: 10.1021/jf052264g] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Patulin, 4-hydroxy-4H-furo[3,2c]pyran-2(6H)-one, is one of the best characterized and most widely disseminated mycotoxins found in agricultural products. Nonetheless, the mechanisms by which patulin causes toxicity are not well understood. Thus, the cytotoxicity of patulin was characterized by analysis of the yeast transcriptome upon challenge with patulin. Interestingly, patulin-induced yeast gene expression profiles were found to be similar to gene expression patterns obtained after treatment with the antifungal agricultural chemicals thiuram, maneb, and zineb. Moreover, patulin treatment was found to activate protein degradation, especially proteasome activities, sulfur amino acid metabolism, and the defense system for oxidative stress. Damage to DNA by alkylation was also suggested, and this seemed to be repaired by recombinational and excision repair mechanisms. Furthermore, the results provide potential biomarker genes for the detection of patulin in agricultural products. The results suggest the possibility of applying the yeast transcriptome system for the evaluation of chemicals, especially for natural chemicals that are difficult to get by organic synthesis.
Collapse
Affiliation(s)
- Yumiko Iwahashi
- National Food Research Institute (NFRI), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Miura T, Minegishi H, Usami R, Abe F. Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae. Extremophiles 2006; 10:279-84. [PMID: 16489413 DOI: 10.1007/s00792-005-0496-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 11/17/2005] [Indexed: 11/28/2022]
Abstract
We systematically investigated the role of HSP genes in the growth and survival of Saccharomyces cerevisiae under high hydrostatic pressure together with analysis of pressure-regulated gene expression. Cells of strain BY4742 were capable of growth at moderate pressure of 25 MPa. When pressure of 25 MPa was applied to the cells, the expression of HSP78, HSP104, and HSP10 was upregulated by about 3- to 4-fold, and that of HSP32, HSP42, and HSP82 was upregulated by about 2- to 2.6-fold. However, the loss of one of the six genes did not markedly affect growth at 25 MPa, while the loss of HSP31 impaired high-pressure growth. These results suggest that Hsp31 plays a role in high-pressure growth but that the six upregulated genes do not. Extremely high pressure of 125 MPa decreased the viability of the wild-type cells to 1% of the control level. Notably, the loss of HSP genes other than HSP31 enhanced the survival rate by about fivefold at 125 MPa, suggesting that the cellular defensive system against high pressure could be strengthened upon the loss of the HSP genes. In this paper, we describe the requirement for and significance of a subset of HSP genes in yeast cell growth at moderate pressure and survival at extremely high pressure.
Collapse
Affiliation(s)
- Takeshi Miura
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | | | | | | |
Collapse
|
36
|
|