1
|
Gasier HG, Kovach J, Porter K. Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice. J Appl Physiol (1985) 2025; 138:415-425. [PMID: 39726281 DOI: 10.1152/japplphysiol.00723.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impaired aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO2) for 4 h on three consecutive days or remained in room air. Postfinal exposure, fatigue was determined by grip strength and run-to-exhaustion tests. Other measurements included indices of oxidant stress and antioxidant defenses, mitochondrial bioenergetics, caffeine-induced sarcoplasmic reticulum-calcium release, and S-nitrosylation of ryanodine receptor 1 (RyR1). Despite grip strength being unaffected by repeated HBO2 exposure, mean running time was reduced by 50%. In skeletal muscle from HBO2 exposed mice, superoxide production was significantly increased, resulting in elevated lipid and DNA (nuclear and mitochondrial) oxidation. Accompanying increased oxidant stress was a reduction in glutathione content and increased Sod1 and Hmox1 gene expression; Ucp3 mRNA was reduced. Mitochondrial respiration, mitochondrial membrane potential, and NAD+/NADH were not influenced by HBO2. In contrast, caffeine-induced sarcoplasmic reticulum (SR)-calcium release was reduced by 66% and S-nitrosylation of RyR1 was increased by 45%. Exposing mice to repeated HBO2 increases oxidant stress that activates some antioxidant defenses. Mitochondrial function is not altered and could be related to decreased production of UCP3 that serves to maintain the electrochemical proton gradient. S-nitrosylation of RyR1 may promote SR-calcium leak and reduce content, a potential mechanism for repeated HBO2-induced fatigue.NEW & NOTEWORTHY Breathing hyperoxic gas during prolonged and repeated dives causes fatigue but the mechanisms are unknown. Here, we show in mice exposed to repeated hyperbaric oxygen that running fatigue is accelerated and accompanied by increased skeletal muscle oxidant stress and reduced caffeine-induced sarcoplasmic reticulum (SR)-calcium release. The latter may be due to increased S-nitrosylation of ryanodine receptor 1 (RyR1) and be a mechanism for impaired physical performance after repeated oxygen diving.
Collapse
Affiliation(s)
- Heath G Gasier
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Jack Kovach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Kris Porter
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
2
|
Montserrat-Mesquida M, Ferrer MD, Pons A, Sureda A, Capó X. Effects of chronic hydrogen peroxide exposure on mitochondrial oxidative stress genes, ROS production and lipid peroxidation in HL60 cells. Mitochondrion 2024; 76:101869. [PMID: 38467292 DOI: 10.1016/j.mito.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Hydrogen peroxide (H2O2) is a reactive species that is also involved in the redox regulation of cells because of it is relative stability. In numerous pathological situations, a chronic increase in the production of reactive species is observed, which is related to oxidative stress and cellular damage. This study aimed to evaluate the effects of long-term exposure to different H2O2 concentrations on oxidative stress biomarkers and mitochondrial dynamics in HL60 cells. HL60 cells were treated with a sustained production (0.1, 1.0 and 10.0 nM/s) of H2O2 for one hour. H2O2 production and malondialdehyde (MDA) levels, as a lipid peroxidation marker, increased progressively in HL60 cells in accordance with higher H2O2 exposure, with significant differences between the 10 nM/s H2O2 group and the control and 0.1 nM/s groups. Similarly, progressive increased expression in genes related to the mitochondrial antioxidant defences and mitochondrial dynamics were also observed. Significantly increased gene expression in the 10 nM/s H2O2 with respect to the control group was observed for manganese superoxide dismutase (MnSOD), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG1α), nuclear respiratory factor 2 (Nrf2), mitochondrial transcription factor A (Tfam), mitofusins 1 and 2 (Mfn1 and Mfn2) and uncoupling protein 3 (UCP3), whereas no significant changes were observed in the cytochrome c oxidase subunit IV (COXIV) gene expression. In conclusion, exposure to different sustained production of H2O2 is related to a progressive increase in the gene expression of mitochondrial dynamics and redox processes in HL60 cells, but also to oxidative damage at higher H2O2 production levels.
Collapse
Affiliation(s)
- M Montserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - M D Ferrer
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
| | - A Pons
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - X Capó
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain; Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
3
|
CONSIDINE ELIZABETHG, FLORIAN JOHNP, KLEMP ALEXO. Endurance Exercise Performance Is Reduced after 6-h Dives at 1.35 ATA When Breathing 100% Oxygen Compared with Air. Med Sci Sports Exerc 2024; 56:257-265. [PMID: 37793156 PMCID: PMC11882198 DOI: 10.1249/mss.0000000000003310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Long-duration dives on consecutive days reduces muscular performance, potentially affecting military personnel. However, a paucity of data exists on how breathing gases affect endurance performance. This study examined the influence of long-duration diving with different breathing gases on aerobic endurance and handgrip performance. METHODS Twenty-three military divers completed a single 6-h dive (single dive [SD]) and five 6-h dives over consecutive days (dive week [DW]) with 30-min cycling intervals using air (AIR, n = 13) or 100% oxygen (OXY, n = 10). Before and after SD and DW, subjects completed a maximum handgrip strength test, a handgrip endurance test at 40% maximal strength, and a time to exhaustion run. RESULTS Handgrip endurance decreased after DW in OXY (SD, 1.9 ± 0.0 vs 1.4 ± 0.3 min) compared with AIR (1.8 ± 0.0 vs 1.8 ± 0.2 min) ( P < 0.001). Run time decreased after SD (Pre, 20.7 ± 10.4 min; Post, 16.6 ± 7.6 min; P = 0.039) and DW (Pre, 21.6 ± 9.0 min; Post, 11.2 ± 4.0 min; P < 0.001) in OXY and after overall diving in AIR (Pre, 26.5 ± 10.2 min; Post, 22.3 ± 7.5 min; P = 0.025). V̇O 2 decreased after diving only in AIR (Pre, 42.6 ± 3.4 mL·kg -1 ⋅min -1 ; Post, 40.4 ± 3.7 mL·kg -1 ⋅min -1 ; P = 0.010). There were no other significant effects. CONCLUSIONS Breathing 100% oxygen during long-duration dives on consecutive days may exacerbate decreases in aerobic endurance and impairs handgrip endurance compared with air. Additional research is needed to elucidate mechanisms of action and possible mitigation strategies.
Collapse
Affiliation(s)
| | - JOHN P. FLORIAN
- Department of Biomedical Research, Navy Experimental Diving Unit, Panama City, FL
| | - ALEX O. KLEMP
- Department of Biomedical Research, Navy Experimental Diving Unit, Panama City, FL
| |
Collapse
|
4
|
Jia B, Hasse A, Shi F, Collins S. Exercise performance is not improved in mice with skeletal muscle deletion of natriuretic peptide clearance receptor. PLoS One 2023; 18:e0293636. [PMID: 37917630 PMCID: PMC10621814 DOI: 10.1371/journal.pone.0293636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Natriuretic peptides (NP), including atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), play essential roles in regulating blood pressure, cardiovascular homeostasis, and systemic metabolism. One of the major metabolic effects of NP is manifested by their capacity to stimulate lipolysis and the thermogenesis gene program in adipocytes, however, in skeletal muscle their effects on metabolism and muscle function are not as well understood. There are three NP receptors (NPR): NPRA, NPRB, and NPRC, and all three NPR genes are expressed in skeletal muscle and C2C12 myocytes. In C2C12 myocytes treatment with either ANP, BNP, or CNP evokes the cGMP signaling pathway. Since NPRC functions as a clearance receptor and the amount of NPRC in a cell type determines the signaling strength of NPs, we generated a genetic model with Nprc gene deletion in skeletal muscle and tested whether enhancing NP signaling by preventing its clearance in skeletal muscle would improve exercise performance in mice. Under sedentary conditions, Nprc skeletal muscle knockout (MKO) mice showed comparable exercise performance to their floxed littermates in terms of maximal running velocity and total endurance running time. Eight weeks of voluntary running-wheel training in a young cohort significantly increased exercise performance, but no significant differences were observed in MKO compared with floxed control mice. Furthermore, 6-weeks of treadmill training in a relatively aged cohort also increased exercise performance compared with their baseline values, but again there were no differences between genotypes. In summary, our study suggests that NP signaling is potentially important in skeletal myocytes but its function in skeletal muscle in vivo needs to be further studied in additional physiological conditions or with new genetic mouse models.
Collapse
Affiliation(s)
- Brigitte Jia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alexander Hasse
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States of America
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN, United States of America
| |
Collapse
|
5
|
Li F, Yin C, Ma Z, Yang K, Sun L, Duan C, Wang T, Hussein A, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Shu G, Wang S, Jiang Q. PHD3 mediates denervation skeletal muscle atrophy through Nf-κB signal pathway. FASEB J 2021; 35:e21444. [PMID: 33749901 DOI: 10.1096/fj.202002049r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kelin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lijuan Sun
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chen Duan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Abdelaziz Hussein
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Norouzirad R, Gholami H, Ghanbari M, Hedayati M, González-Muniesa P, Jeddi S, Ghasemi A. Dietary inorganic nitrate attenuates hyperoxia-induced oxidative stress in obese type 2 diabetic male rats. Life Sci 2019; 230:188-196. [PMID: 31150686 DOI: 10.1016/j.lfs.2019.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS Hyperoxia has beneficial metabolic effects in type 2 diabetes. However, hyperoxia exacerbates already existing oxidative stress in type 2 diabetes. Nitrate, a nitric oxide donor, is an effective new treatment in type 2 diabetes and also has antioxidant properties. The aim of this study was to determine whether nitrate administration can attenuate hyperoxia-induced oxidative stress in obese type 2 diabetic rats. MAIN METHODS Fifty-six male Wistar rats (190-210 g) were divided into 8 groups: Controls (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated) and diabetes (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated). Diabetes was induced using high-fat diet and low-dose of streptozotocin (30 mg/kg). Rats in intervention groups, were exposed to 95% oxygen and consumed sodium nitrate (100 mg/L) in drinking water. Serum fasting glucose, oxidized (GSSG) and reduced (GSH) glutathiones, total oxidant status (TOS), catalase and superoxide dismutase (SOD) activities, and total antioxidant capacity (TAC) were measured after intervention. Oxidative stress index (OSI) was calculated as TOS/TAC ratio. KEY FINDINGS Diabetic rats had increased oxidative stress and hyperoxia exacerbated it. In O2-diabetic rats, nitrate decreased GSSG (102.7 ± 2.1 vs. 236.0 ± 20.1 μM, P < 0.001), TOS (67.7 ± 7.3 vs. 104 ± 3.8 μM, P < 0.001), and OSI (0.44 ± 0.04 vs. 0.91 ± 0.07, P < 0.001) and increased catalase (2.8 ± 0.13 vs. 1.8 ± 0.21 KU/L, P = 0.014), SOD (53.4 ± 1.5 vs. 38.4 ± 1.2 U/mL, P < 0.001), GSH (43.7 ± 1.4 vs. 17.8 ± 0.5 mM, P = 0.003), TAC (152.5 ± 1.9 vs. 116.7 ± 5.0 mM, P < 0.001), and GSH/GSSG ratio (0.43 ± 0.01 vs. 0.08 ± 0.01, P = 0.005). Nitrate also potentiated effects of hyperoxia on decreasing fasting glucose. SIGNIFICANCE Our results showed that dietary nitrate attenuates hyperoxia-induced oxidative stress in type 2 diabetic rats.
Collapse
Affiliation(s)
- Reza Norouzirad
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dezful University of Medical Sciences, Dezful, Iran.
| | - Hanieh Gholami
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Ghanbari
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pedro González-Muniesa
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, Pamplona, Spain; IdiSNA Navarra's Health Research Institute, Pamplona, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
van den Berg M, Hooijman PE, Beishuizen A, de Waard MC, Paul MA, Hartemink KJ, van Hees HWH, Lawlor MW, Brocca L, Bottinelli R, Pellegrino MA, Stienen GJM, Heunks LMA, Wüst RCI, Ottenheijm CAC. Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill. Am J Respir Crit Care Med 2017; 196:1544-1558. [PMID: 28787181 DOI: 10.1164/rccm.201703-0501oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress. OBJECTIVES We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress. METHODS To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of 36 mechanically ventilated critically ill patients and compared with those isolated from biopsies of 27 patients with suspected early-stage lung malignancy (control subjects). MEASUREMENTS AND MAIN RESULTS Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins. CONCLUSIONS Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients.
Collapse
Affiliation(s)
| | | | - Albertus Beishuizen
- 2 Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands
| | | | - Marinus A Paul
- 4 Department of Cardiothoracic Surgery, Vrije Universiteit (VU) University Medical Center, Amsterdam, the Netherlands
| | - Koen J Hartemink
- 5 Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Michael W Lawlor
- 7 Division of Pediatric Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Roberto Bottinelli
- 8 Department of Molecular Medicine.,10 Interdepartmental Center for Biology and Sport Medicine, and.,9 Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Maria A Pellegrino
- 8 Department of Molecular Medicine.,10 Interdepartmental Center for Biology and Sport Medicine, and.,11 Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Ger J M Stienen
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,12 Faculty of Science, Department of Physics and Astronomy, VU Amsterdam, Amsterdam, the Netherlands
| | | | - Rob C I Wüst
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,13 Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands; and
| | - Coen A C Ottenheijm
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,14 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Busquets-Cortés C, Capó X, Martorell M, Tur JA, Sureda A, Pons A. Training and acute exercise modulates mitochondrial dynamics in football players' blood mononuclear cells. Eur J Appl Physiol 2017; 117:1977-1987. [PMID: 28748372 DOI: 10.1007/s00421-017-3684-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Regular physical activity induces oxidative stress but also causes adaptations in antioxidant defences including the nuclear factor κB (NF-κB) pathway, which activates target genes related to antioxidant defences such as uncoupling proteins (UCPs), and mitochondrial biogenesis mediated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The aim of the study was to determine the effect of long-term training and acute exercise on oxidant/antioxidant status and the expression of mitochondrial biogenesis genes in peripheral blood mononuclear cells (PBMCs). METHODS Twelve professional football players performed an 8-week exercise programme comprising a daily 2-h football training session. Blood samples were taken before and after the training season. RESULTS The results reported a significant increase in antioxidant protein levels and in mitochondrial proteins in resting conditions after the 8-week training period. PGC1α, UCP-2 and mitofusin 2 protein levels also increased after acute exercise compared to pre-exercise levels. After the training, the expression of PGC1α, cytochrome c oxidase subunit IV and mitochondrial NADH dehydrogenase subunit 5 messenger RNA (mRNA) significantly augmented after the acute physical activity compared to pre-exercise levels; while no changes occurred in these mRNA in basal conditions. NF-κB activation and ROS production reported a significant increase after acute exercise. CONCLUSIONS Training increases the levels of proteins related to mitochondrial biogenesis and improves the antioxidant capabilities of mitochondria in PBMCs among well-trained football players. Acute exercise may act as an inducer of mitochondrial biogenesis through NF-κB activation and PGC1α gene expression.
Collapse
Affiliation(s)
- Carla Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Miquel Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Chile, 4070386, Concepción, Chile
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain.,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain.,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain. .,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain.
| |
Collapse
|
9
|
Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol 2016; 173:2305-18. [PMID: 27189175 DOI: 10.1111/bph.13518] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
10
|
Li Y, Tan B, Wang J, Duan Y, Guo Q, Liu Y, Kong X, Li T, Tang Y, Yin Y. Alteration of inflammatory cytokines, energy metabolic regulators, and muscle fiber type in the skeletal muscle of postweaning piglets1. J Anim Sci 2016; 94:1064-72. [DOI: 10.2527/jas.2015-9646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Y. Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - B. Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - J. Wang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Y. Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Q. Guo
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Y. Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - X. Kong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - T. Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - Y. Tang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - Y. Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| |
Collapse
|
11
|
Weaver J, Liu KJ. Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke? A critical review of the literature. Med Gas Res 2015; 5:11. [PMID: 26306184 PMCID: PMC4547432 DOI: 10.1186/s13618-015-0032-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022] Open
Abstract
Stroke, one of the most debilitating cerebrovascular and nuerological diseases, is a serious life-threatening condition and a leading cause of long-term adult disability and brain damage, either directly or by secondary complications. Most effective treatments for stroke are time dependent such as the only FDA-approved therapy, reperfusion with tissue-type plasminogen activator; thus, improving tissue oxygenation with normobaric hyperoxia (NBO) has been considered a logical and potential important therapy. NBO is considered a good approach because of its potential clinical advantages, and many studies suggest that NBO is neuroprotective, reducing ischemic brain injury and infarct volume in addition to improving pathologic and neurobehavorial outcomes. However, increased reactive oxygen species (ROS) generation may occur when tissue oxygen level is too high or too low. Therefore, a major concern with NBO therapy in acute ischemic stroke is the potential increase of ROS, which could exacerbate brain injury. The purpose of this review is to critically review the current literature reports on the effect of NBO treatment on ROS and oxidative stress with respect to acute ischemic stroke. Considering the available data from relevant animal models, NBO does not increase ROS or oxidative stress if applied for a short duration; therefore, the potential that NBO is a viable neuroprotective strategy for acute ischemic stroke is compelling. The benefits of NBO may significantly outweigh the risks of potential increase in ROS generation for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
12
|
Pathi B, Kinsey ST, Locke BR. Oxygen control of intracellular distribution of mitochondria in muscle fibers. Biotechnol Bioeng 2013; 110:2513-24. [PMID: 23568454 DOI: 10.1002/bit.24918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/10/2022]
Abstract
Mitochondrial density in skeletal muscle fibers is governed by the demand for aerobic ATP production, but the heterogeneous distribution of these mitochondria appears to be governed by constraints associated with oxygen diffusion. We propose that each muscle fiber has an optimal mitochondrial distribution at which it attains a near maximal rate of ATP consumption (RATPase ) while mitochondria are exposed to a minimal oxygen concentration, thus minimizing reactive oxygen species (ROS) production. We developed a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function and considered four fiber types in mouse extensor digitorum longus (EDL) and soleus (SOL) muscle. The developed mathematical model uses a reaction-diffusion analysis of metabolites including oxygen, ATP, ADP, phosphate, and phosphocreatine (PCr) involved in energy metabolism and mitochondrial function. A CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber was superimposed and coupled to the reaction-diffusion approach. The model results show the sensitivity of important model outputs such as the RATPase , effectiveness factor (η) and average oxygen concentration available at each mitochondrion to local oxygen concentration in the fibers through variation in the CA model parameter θdet , which defines the sensitivity of mitochondrial death to the oxygen concentration. The predicted optimal mitochondrial distributions matched previous experimental findings. Deviations from this optimal distribution corresponding to higher CA model parameter values (a more uniform mitochondrial distribution) lead to lower aerobic rates. In contrast, distributions corresponding to lower CA model parameter values (a more asymmetric distribution) lead to an increased exposure of mitochondria to oxygen, usually without substantial increases in aerobic rates, which would presumably result in increased ROS production and thus increased risks of cytotoxicity.
Collapse
Affiliation(s)
- B Pathi
- Department of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | | | | |
Collapse
|
13
|
Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1095-105. [PMID: 21565164 DOI: 10.1016/j.bbabio.2011.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
The function of uncoupling protein 3 (UCP3) is still not established. Mitochondrial uncoupling, control of ROS production, protection against lipotoxicity and protection against oxidative stress are functions classically discussed. To establish a role for UCP3 in these functions, we have here used UCP3 (-/-) mice, backcrossed for 10 generations on a C57Bl/6 background. In isolated skeletal muscle mitochondria, we examined uncoupled respiration, both unstimulated and in the presence of fatty acids. We did not observe any difference between mitochondria from wildtype and UCP3 (-/-) mice. We measured H(2)O(2) production rate and respiration rate under reactive oxygen species-generating conditions (succinate without rotenone) but found no effect of UCP3. We tested two models of acute lipotoxicity-fatty acid-induced oxidative inhibition and fatty acid-induced swelling-but did not observe any protective effect of UCP3. We examined oxidative stress by quantifying 4-hydroxynonenal protein adducts and protein carbonyls in the mitochondria-but did not observe any protective effect of UCP3. We conclude that under the experimental conditions tested here, we find no evidence for the function of UCP3 being basal or induced uncoupling, regulation of ROS production, protection against acute lipotoxicity or protection against oxidative damage.
Collapse
|
14
|
Abstract
UCP3 (uncoupling protein 3) and its homologues UCP2 and UCP1 are regulators of mitochondrial function. UCP2 is known to have a short half-life of approx. 1 h, owing to its rapid degradation by the cytosolic 26S proteasome, whereas UCP1 is turned over much more slowly by mitochondrial autophagy. In the present study we investigate whether UCP3 also has a short half-life, and whether the proteasome is involved in UCP3 degradation. UCP3 half-life was examined in the mouse C2C12 myoblast cell line by inhibiting protein synthesis with cycloheximide and monitoring UCP3 protein levels by immunoblot analysis. We show that UCP3 has a short half-life of 0.5-4 h. Rapid degradation was prevented by a cocktail of proteasome inhibitors, supporting a proteasomal mechanism for turnover. In addition, this phenotype is recapitulated in vitro: UCP3 was degraded in mitochondria isolated from rat skeletal muscle or brown adipose tissue with a half-life of 0.5-4 h, but only in the presence of a purified 26S proteasomal fraction. This in vitro proteolysis was also sensitive to proteasome inhibition. This phenotype is in direct contrast with the related proteins UCP1 and the adenine nucleotide translocase, which have long half-lives. Therefore UCP3 is turned over rapidly in multiple cell types in a proteasome-dependent manner.
Collapse
|
15
|
Hirata H, Kawamoto K, Kikuno N, Kawakami T, Kawakami K, Saini S, Yamamura S, Dahiya R. Restoring Erectile Function by Antioxidant Therapy in Diabetic Rats. J Urol 2009; 182:2518-25. [DOI: 10.1016/j.juro.2009.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Indexed: 02/07/2023]
Affiliation(s)
- Hiroshi Hirata
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Ken Kawamoto
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Nobuyuki Kikuno
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Toshifumi Kawakami
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Kazumori Kawakami
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| |
Collapse
|
16
|
Pearen MA, Ryall JG, Lynch GS, Muscat GE. Expression profiling of skeletal muscle following acute and chronic beta2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genomics 2009; 10:448. [PMID: 19772666 PMCID: PMC2758907 DOI: 10.1186/1471-2164-10-448] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 09/23/2009] [Indexed: 02/08/2023] Open
Abstract
Background Systemic administration of β-adrenoceptor (β-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic) administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype) were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h) and chronic administration (1-28 days) of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc) was observed following acute and chronic administration of formoterol. Acute (but not chronic) administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol administration also appeared to influence some genes associated with the peripheral regulation of circadian rhythm (including nuclear factor interleukin 3 regulated, D site albumin promoter binding protein, and cryptochrome 2). Conclusion This is the first study to utilize gene expression profiling to examine global gene expression in response to acute β2-AR agonist treatment of skeletal muscle. In summary, systemic administration of a β2-AR agonist had a profound effect on global gene expression in skeletal muscle. In terms of hypertrophy, β2-AR agonist treatment altered the expression of several genes associated with myostatin signaling, a previously unreported effect of β-AR signaling in skeletal muscle. This study also demonstrates a β2-AR agonist regulation of circadian rhythm genes, indicating crosstalk between β-AR signaling and circadian cycling in skeletal muscle. Gene expression alterations discovered in this study provides insight into many of the underlying changes in gene expression that mediate β-AR induced skeletal muscle hypertrophy and altered metabolism.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
17
|
Yamasaki N, Tsuboi H, Hirao M, Nampei A, Yoshikawa H, Hashimoto J. High oxygen tension prolongs the survival of osteoclast precursors via macrophage colony-stimulating factor. Bone 2009; 44:71-9. [PMID: 18973838 DOI: 10.1016/j.bone.2008.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/09/2008] [Accepted: 09/17/2008] [Indexed: 11/30/2022]
Abstract
The oxygen tension affects the function, differentiation, and transformation of various cells, including bone cells. In pathological conditions such as rheumatoid arthritis (RA), rapidly destructive arthropathy, and primary or metastatic tumors, severe bone destruction or osteolysis occurs. Abundant blood vessels are often observed around these destructive lesions. At such sites, we have confirmed the increased production of reactive oxygen species (ROS) induced by a high oxygen tension and/or oxidative stress, as well as numerous osteoclasts detectable by immunohistochemistry. These findings suggest that osteoclasts are influenced by the high oxygen tension in pathological bone lesions because the zone around blood vessels has a relatively high oxygen tension. In this study, we investigated the effects of oxygen tension on osteoclastogenesis by culturing human CD14-positive cells (osteoclast precursors) with or without osteoblast-like supporting cells (Saos-4/3 cells) under a normal oxygen tension (20% O(2)) or a high oxygen tension (40% O(2)). A high oxygen tension markedly prolonged the duration of osteoclast precursor formation in the presence of supporting cells, and also markedly and persistently increased the production of macrophage colony stimulating factor (M-CSF) by supporting cells. Furthermore, we found an increase of cells expressing M-CSF and cells positive for tartrate-resistant acid phosphatase (TRAP) in hypervascular destructive bone lesions of RA patients where ROS were also abundant.
Collapse
Affiliation(s)
- Naomi Yamasaki
- Department of Orthopedics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Barreiro E, Garcia-Martínez C, Mas S, Ametller E, Gea J, Argilés JM, Busquets S, López-Soriano FJ. UCP3 overexpression neutralizes oxidative stress rather than nitrosative stress in mouse myotubes. FEBS Lett 2008; 583:350-6. [PMID: 19101552 DOI: 10.1016/j.febslet.2008.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 12/07/2008] [Accepted: 12/10/2008] [Indexed: 01/11/2023]
Abstract
The deleterious effects of oxidants on proteins may be modified by overexpression of uncoupling protein 3 (UCP3) in skeletal muscle cells exposed to hyperoxia or H(2)O(2). UCP3 overexpression significantly attenuated the increase in protein carbonylation in response to hyperoxia and H(2)O(2) exposures. However, antioxidant enzyme content and activity (superoxide dismutases, peroxiredoxins, glutathione peroxidase-I, and catalase) were reduced or not modified in UCP3-overexpressing myotubes exposed to oxidants. Protein nitration increased in UCP3-overexpressing cells exposed to hyperoxia, but not to H(2)O(2). We conclude that protein oxidation rather than nitration is neutralized by UPC3 overexpression in mouse myotubes exposed to abundant reactive oxygen species.
Collapse
Affiliation(s)
- Esther Barreiro
- Muscle and Respiratory System Research Unit-Pneumology Department, IMIM-Hospital del Mar, Centro de Investigación en Red de Enfermedades Respiratorias (CibeRes), CEXS, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kern B, Ivanina AV, Piontkivska H, Sokolov EP, Sokolova IM. Molecular characterization and expression of a novel homolog of uncoupling protein 5 (UCP5) from the eastern oyster Crassostrea virginica (Bivalvia: Ostreidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 4:121-7. [PMID: 20403746 DOI: 10.1016/j.cbd.2008.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/25/2022]
Abstract
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier gene family which has been implicated in diverse physiological functions ranging from thermoregulation to antioxidant defense. In mammals, the UCP family is well characterized and contains five members (UCP1-5). In contrast, invertebrate homologues of uncoupling proteins are much less studied both from the viewpoints of structure and function. In this study we report nucleotide and predicted protein structure of an important member of UCP family, UCP5 from eastern oysters Crassostrea virginica. UCP5 from oysters appears to be a close homolog of the mammalian brain mitochondrial carrier protein (BMCP1, or UCP5) and is the first full-length UCP described from a Lophotrochozoan invertebrate. Evolutionary analysis of UCP sequences indicates at least three monophyletic UCP branches (UCP1-3, UCP4 and UCP5) that have diverged early in the evolution, prior to the divergence of vertebrates and invertebrates. In oysters, two forms of UCP5 transcript are found (UCP5S and UCP5L) that differ by 152 bp in length due to the presence of an intron in UCP5L. UCP5 was expressed in all studied oyster tissues, unlike mammals, where UCP5 is predominantly expressed in brains and male gonads. Hypoxia-reoxygenation stress, sublethal Cd exposure (50 ?g L(?1) Cd for 56 days) and acclimation to different temperatures (12 and 20 °C) had no significant effect on UCP5 mRNA expression in oysters indicative of its relative unimportance in antioxidant defense and temperature adaptation of oyster mitochondria. These data suggest that despite the relatively high degree of evolutionary conservation of the UCP5 amino acid sequence, its functional significance in mitochondria changed in the course of evolution of mollusks and vertebrates.
Collapse
Affiliation(s)
- Britt Kern
- Department of Natural Science and Mathematics, Johnson C. Smith University, 100 Beatties Ford Rd., Charlotte, NC 28216, USA
| | | | | | | | | |
Collapse
|
20
|
Lu Z, Sack MN. ATF-1 is a hypoxia-responsive transcriptional activator of skeletal muscle mitochondrial-uncoupling protein 3. J Biol Chem 2008; 283:23410-8. [PMID: 18579531 DOI: 10.1074/jbc.m801236200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia induces oxidative damage in skeletal muscle. Uncoupling protein 3 (UCP3) is the skeletal muscle enriched uncoupling protein and has previously been shown to confer resistance against oxidative stress. We show that hypoxia robustly up-regulates skeletal muscle UCP3 and that the absence of UCP3 in primary skeletal myocytes exacerbates hypoxia-induced reactive oxygen species generation. In this context, we reasoned that the investigation of the regulation of UCP3 may identify novel hypoxia-responsive regulatory pathways that modulate intrinsic anti-oxidant defenses. By screening a transcription factor array of 704 full-length cDNAs in murine C2C12 myoblasts following cotransfection of a murine UCP3 promoter-luciferase construct and myoD we identified numerous candidate regulatory factors that up-regulate UCP3. Active transcription factor-1 (ATF-1) was identified, and as this transcription factor is a known component of a multiprotein hypoxia-induced regulatory complex, we explored its role in hypoxia-mediated UCP3 up-regulation. Site-directed mutagenesis and chromatin immunoprecipitation assays identify a 10-bp region required for ATF-1 induction of UCP3 promoter activity. Hypoxia promotes the phosphorylation of ATF-1, and the knockdown of ATF-1 by shRNA prevents hypoxia-mediated up-regulation of UCP3. Pharmacologic inhibition of p38 MAP kinase prevents both hypoxia-mediated ATF-1 phosphorylation and UCP3 up-regulation. PKA signaling does not modulate hypoxia-induced UCP3 up-regulation and neither does HIF-1alpha activation by cobalt chloride. In conclusion, ATF-1, via p38 MAP kinase activation, functions as a novel regulatory pathway driving UCP3 expression. These data reinforce the role of ATF-1 as a hypoxia-responsive trans-activator and identifies a novel regulatory program that may modulate cellular responses to oxygen-deficit.
Collapse
Affiliation(s)
- Zhongping Lu
- Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1454, USA
| | | |
Collapse
|
21
|
Bézaire V, Seifert EL, Harper ME. Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J 2007; 21:312-24. [PMID: 17202247 DOI: 10.1096/fj.06-6966rev] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uncoupling protein (UCP) 3 (UCP3) is a mitochondrial anion carrier protein with highly selective expression in skeletal muscle. Despite a great deal of interest, to date neither its molecular mechanism nor its biochemical and physiological functions are well understood. Based on its high degree of homology to the original UCP (UCP1), early studies examined a role for UCP3 in thermogenesis. However, evidence for such a function is lacking. Recent studies have focused on two distinct, but not mutually exclusive, hypotheses: 1) UCP3 mitigates reactive oxygen species (ROS) production, and 2) UCP3 is somehow involved in fatty acid (FA) translocation. While supportive evidence exists for both hypotheses, the interpretation of the corresponding evidence has created some controversy. Mechanistic studies examining mitigated ROS production have been largely conducted in vitro, and the physiological significance of the findings is questioned. Conversely, while physiological evidence exists for FA translocation hypotheses, the evidence is largely correlative, leaving causal relationships unexplored. This review critically assesses evidence for the hypotheses and attempts to link the outcomes from mechanistic studies to physiological implications. Important directions for future studies, using current and novel approaches, are discussed.
Collapse
Affiliation(s)
- Véronic Bézaire
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|