1
|
Elucidation of the Landscape of Alternatively Spliced Genes and Features in the Dorsal Striatum of Aggressive/Aggression-Deprived Mice in the Model of Chronic Social Conflicts. Genes (Basel) 2023; 14:genes14030599. [PMID: 36980872 PMCID: PMC10048575 DOI: 10.3390/genes14030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) individuals represent pathological cases extensively studied in psychiatry and substance abuse disciplines. We employed the animal model of chronic social conflicts curated in our laboratory for over 30 years. In the study, we pursued the task of evaluation of the key events in the dorsal striatum transcriptomes of aggression-experienced mice and AD species, as compared with the controls, using RNA-seq profiling. We evaluated the alternative splicing-mediated transcriptome dynamics based on the RNA-seq data. We confined our attention to the exon skipping (ES) events as the major AS type for animals. We report the concurrent posttranscriptional and posttranslational regulation of the ES events observed in the phosphorylation cycles (in phosphoproteins and their targets) in the neuron-specific genes of the striatum. Strikingly, we found that major neurospecific splicing factors (Nova1, Ptbp1, 2, Mbnl1, 2, and Sam68) related to the alternative splicing regulation of cAMP genes (Darpp-32, Grin1, Ptpn5, Ppp3ca, Pde10a, Prkaca, Psd95, and Adora1) are upregulated specifically in aggressive individuals as compared with the controls and specifically AD animals, assuming intense switching between isoforms in the cAMP-mediated (de)phosphorylation signaling cascade. We found that the coding alternative splicing events were mostly attributed to synaptic plasticity and neural development-related proteins, while the nonsense-mediated decay-associated splicing events are mostly attributed to the mRNA processing of genes, including the spliceosome and splicing factors. In addition, considering the gene families, the transporter (Slc) gene family manifested most of the ES events. We found out that the major molecular systems employing AS for their plasticity are the ‘spliceosome’, ‘chromatin rearrangement complex’, ‘synapse’, and ‘neural development/axonogenesis’ GO categories. Finally, we state that approximately 35% of the exon skipping variants in gene coding regions manifest the noncoding variants subject to nonsense-mediated decay, employed as a homeostasis-mediated expression regulation layer and often associated with the corresponding gene expression alteration.
Collapse
|
2
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
3
|
Accessory Subunits of the Matrix Arm of Mitochondrial Complex I with a Focus on Subunit NDUFS4 and Its Role in Complex I Function and Assembly. Life (Basel) 2021; 11:life11050455. [PMID: 34069703 PMCID: PMC8161149 DOI: 10.3390/life11050455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.
Collapse
|
4
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
5
|
Dang QCL, Phan DH, Johnson AN, Pasapuleti M, Alkhaldi HA, Zhang F, Vik SB. Analysis of Human Mutations in the Supernumerary Subunits of Complex I. Life (Basel) 2020; 10:life10110296. [PMID: 33233646 PMCID: PMC7699753 DOI: 10.3390/life10110296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
Complex I is the largest member of the electron transport chain in human mitochondria. It comprises 45 subunits and requires at least 15 assembly factors. The subunits can be divided into 14 "core" subunits that carry out oxidation-reduction reactions and proton translocation, as well as 31 additional supernumerary (or accessory) subunits whose functions are less well known. Diminished levels of complex I activity are seen in many mitochondrial disease states. This review seeks to tabulate mutations in the supernumerary subunits of humans that appear to cause disease. Mutations in 20 of the supernumerary subunits have been identified. The mutations were analyzed in light of the tertiary and quaternary structure of human complex I (PDB id = 5xtd). Mutations were found that might disrupt the folding of that subunit or that would weaken binding to another subunit. In some cases, it appeared that no protein was made or, at least, could not be detected. A very common outcome is the lack of assembly of complex I when supernumerary subunits are mutated or missing. We suggest that poor assembly is the result of disrupting the large network of subunit interactions that the supernumerary subunits typically engage in.
Collapse
|
6
|
Bianciardi L, Imperatore V, Fernandez-Vizarra E, Lopomo A, Falabella M, Furini S, Galluzzi P, Grosso S, Zeviani M, Renieri A, Mari F, Frullanti E. Exome sequencing coupled with mRNA analysis identifies NDUFAF6 as a Leigh gene. Mol Genet Metab 2016; 119:214-222. [PMID: 27623250 DOI: 10.1016/j.ymgme.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/30/2023]
Abstract
We report here the case of a young male who started to show verbal fluency disturbance, clumsiness and gait anomalies at the age of 3.5years and presented bilateral striatal necrosis. Clinically, the diagnosis was compatible with Leigh syndrome but the underlying molecular defect remained elusive even after exome analysis using autosomal/X-linked recessive or de novo models. Dosage of respiratory chain activity on fibroblasts, but not in muscle, underlined a deficit in complex I. Re-analysis of heterozygous probably pathogenic variants, inherited from one healthy parent, identified the p.Ala178Pro in NDUFAF6, a complex I assembly factor. RNA analysis showed an almost mono-allelic expression of the mutated allele in blood and fibroblasts and puromycin treatment on cultured fibroblasts did not lead to the rescue of the maternal allele expression, not supporting the involvement of nonsense-mediated RNA decay mechanism. Complementation assay underlined a recovery of complex I activity after transduction of the wild-type gene. Since the second mutation was not detected and promoter methylation analysis resulted normal, we hypothesized a non-exonic event in the maternal allele affecting a regulatory element that, in conjunction with the paternal mutation, leads to the autosomal recessive disorder and the different allele expression in various tissues. This paper confirms NDUFAF6 as a genuine morbid gene and proposes the coupling of exome sequencing with mRNA analysis as a method useful for enhancing the exome sequencing detection rate when the simple application of classical inheritance models fails.
Collapse
Affiliation(s)
| | | | | | - Angela Lopomo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Micol Falabella
- Mitochondrial Biology Unit, Medical Research Council Cambridge, Cambridge, UK; Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paolo Galluzzi
- Unit of Diagnostic and Therapeutic Neuroradiology, Department of Neurosciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council Cambridge, Cambridge, UK
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| | | |
Collapse
|
7
|
Ortigoza-Escobar JD, Oyarzabal A, Montero R, Artuch R, Jou C, Jiménez C, Gort L, Briones P, Muchart J, López-Gallardo E, Emperador S, Pesini ER, Montoya J, Pérez B, Rodríguez-Pombo P, Pérez-Dueñas B. Ndufs4 related Leigh syndrome: A case report and review of the literature. Mitochondrion 2016; 28:73-8. [DOI: 10.1016/j.mito.2016.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/30/2022]
|
8
|
Nonsense-mediated decay in genetic disease: friend or foe? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:52-64. [PMID: 25485595 DOI: 10.1016/j.mrrev.2014.05.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target.
Collapse
|
9
|
Pagniez-Mammeri H, Loublier S, Legrand A, Bénit P, Rustin P, Slama A. Mitochondrial complex I deficiency of nuclear origin I. Structural genes. Mol Genet Metab 2012; 105:163-72. [PMID: 22142868 DOI: 10.1016/j.ymgme.2011.11.188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Complex I (or NADH-ubiquinone oxidoreductase), is by far the largest respiratory chain complex with 38 subunits nuclearly encoded and 7 subunits encoded by the mitochondrial genome. Its deficiency is the most frequently encountered in mitochondrial disorders. Here, we summarize recent data obtained on architecture of complex I, and review the pathogenic mutations identified to date in nuclear structural complex I genes. The structural NDUFS1, NDUFS2, NDUFV1, and NDUFS4 genes are mutational hot spot genes for isolated complex I deficiency. The majority of the pathogenic mutations are private and the genotype-phenotype correlation is inconsistent in the rare recurrent mutations.
Collapse
Affiliation(s)
- Hélène Pagniez-Mammeri
- Laboratoire de Biochimie, APHP Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin Bicêtre cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Petruzzella V, Sardanelli AM, Scacco S, Panelli D, Papa F, Trentadue R, Papa S. Dysfunction of mitochondrial respiratory chain complex I in neurological disorders: genetics and pathogenetic mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:371-84. [PMID: 22399432 DOI: 10.1007/978-94-007-2869-1_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers genetic and biochemical aspects of mitochondrial bioenergetics dysfunction in neurological disorders associated with complex I defects. Complex I formation and functionality in mammalian cells depends on coordinated expression of nuclear and mitochondrial genes, post-translational subunit modifications, mitochondrial import/maturation of nuclear encoded subunits, subunits interaction and stepwise assembly, and on proteolytic processing. Examples of complex I dysfunction are herein presented: homozygous mutations in the nuclear NDUFS1 and NDUFS4 genes for structural components of complex I; an autosomic recessive form of encephalopathy associated with enhanced proteolytic degradation of complex I; familial cases of Parkinson associated to mutations in the PINK1 and Parkin genes, in particular, homoplasmic mutations in the ND5 and ND6 mitochondrial genes of the complex I, coexistent with mutation in the PINK1 gene. This knowledge, besides clarifying molecular aspects of the pathogenesis of hereditary diseases, can also provide hints for understanding the involvement of complex I in neurological disorders, as well as for developing therapeutical strategies.
Collapse
Affiliation(s)
- Vittoria Petruzzella
- Department of Basic Medical Sciences, University of Bari, Policlinico, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Papa S, Rasmo DD, Technikova-Dobrova Z, Panelli D, Signorile A, Scacco S, Petruzzella V, Papa F, Palmisano G, Gnoni A, Micelli L, Sardanelli AM. Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Lett 2011; 586:568-77. [PMID: 21945319 DOI: 10.1016/j.febslet.2011.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022]
Abstract
In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, Section of Medical Biochemistry, University of Bari Aldo Moro, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Koene S, Willems PHGM, Roestenberg P, Koopman WJH, Smeitink JAM. Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. J Inherit Metab Dis 2011; 34:293-307. [PMID: 20107904 DOI: 10.1007/s10545-009-9005-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/17/2009] [Accepted: 10/08/2009] [Indexed: 02/08/2023]
Abstract
Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.
Collapse
Affiliation(s)
- Saskia Koene
- Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Pathogenetic mechanisms in hereditary dysfunctions of complex I of the respiratory chain in neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:502-17. [DOI: 10.1016/j.bbabio.2008.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/23/2008] [Accepted: 12/30/2008] [Indexed: 12/21/2022]
|
14
|
The regulation of PTC containing transcripts of the human NDUFS4 gene of complex I of respiratory chain and the impact of pathological mutations. Biochimie 2008; 90:1452-60. [DOI: 10.1016/j.biochi.2008.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/25/2008] [Indexed: 11/18/2022]
|
15
|
The coupling of alternative splicing and nonsense-mediated mRNA decay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:190-211. [PMID: 18380348 DOI: 10.1007/978-0-387-77374-2_12] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call "Regulated Unproductive Splicing and Translation" (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression.
Collapse
|
16
|
Abstract
The central nervous system (CNS) is, after the peripheral nervous system, the second most frequently affected organ in mitochondrial disorders (MCDs). CNS involvement in MCDs is clinically heterogeneous, manifesting as epilepsy, stroke-like episodes, migraine, ataxia, spasticity, extrapyramidal abnormalities, bulbar dysfunction, psychiatric abnormalities, neuropsychological deficits, or hypophysial abnormalities. CNS involvement is found in syndromic and non-syndromic MCDs. Syndromic MCDs with CNS involvement include mitochondrial encephalomyopathy, lactacidosis, stroke-like episodes syndrome, myoclonic epilepsy and ragged red fibers syndrome, mitochondrial neuro-gastrointestinal encephalomyopathy syndrome, neurogenic muscle weakness, ataxia, and retinitis pigmentosa syndrome, mitochondrial depletion syndrome, Kearns-Sayre syndrome, and Leigh syndrome, Leber's hereditary optic neuropathy, Friedreich's ataxia, and multiple systemic lipomatosis. As CNS involvement is often subclinical, the CNS including the spinal cord should be investigated even in the absence of overt clinical CNS manifestations. CNS investigations comprise the history, clinical neurological examination, neuropsychological tests, electroencephalogram, cerebral computed tomography scan, and magnetic resonance imaging. A spinal tap is indicated if there is episodic or permanent impaired consciousness or in case of cognitive decline. More sophisticated methods are required if the CNS is solely affected. Treatment of CNS manifestations in MCDs is symptomatic and focused on epilepsy, headache, lactacidosis, impaired consciousness, confusion, spasticity, extrapyramidal abnormalities, or depression. Valproate, carbamazepine, corticosteroids, acetyl salicylic acid, local and volatile anesthetics should be applied with caution. Avoiding certain drugs is often more beneficial than application of established, apparently indicated drugs.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| |
Collapse
|
17
|
Khajavi M, Inoue K, Lupski JR. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 2006; 14:1074-81. [PMID: 16757948 DOI: 10.1038/sj.ejhg.5201649] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nonsense-mediated decay (NMD) pathway is an mRNA surveillance system that typically degrades transcripts containing premature termination codons (PTCs) in order to prevent translation of unnecessary or aberrant transcripts. Failure to eliminate these mRNAs with PTCs may result in the synthesis of abnormal proteins that can be toxic to cells through dominant-negative or gain-of-function effects. Recent studies have expanded our understanding of the mechanism by which nonsense transcripts are recognized and targeted for decay. Here, we review the physiological role of this surveillance pathway, its implications for human diseases, and why knowledge of NMD is important to an understanding of genotype-phenotype correlations in various genetic disorders.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
18
|
Iuso A, Scacco S, Piccoli C, Bellomo F, Petruzzella V, Trentadue R, Minuto M, Ripoli M, Capitanio N, Zeviani M, Papa S. Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J Biol Chem 2006; 281:10374-80. [PMID: 16478720 DOI: 10.1074/jbc.m513387200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathogenic mechanism of a G44A nonsense mutation in the NDUFS4 gene and a C1564A mutation in the NDUFS1 gene of respiratory chain complex I was investigated in fibroblasts from human patients. As previously observed the NDUFS4 mutation prevented complete assembly of the complex and caused full suppression of the activity. The mutation (Q522K replacement) in NDUFS1 gene, coding for the 75-kDa Fe-S subunit of the complex, was associated with (a) reduced level of the mature complex, (b) marked, albeit not complete, inhibition of the activity, (c) accumulation of H(2)O(2) and O(2)(.-) in mitochondria, (d) decreased cellular content of glutathione, (e) enhanced expression and activity of glutathione peroxidase, and (f) decrease of the mitochondrial potential and enhanced mitochondrial susceptibility to reactive oxygen species (ROS) damage. No ROS increase was observed in the NDUFS4 mutation. Exposure of the NDUFS1 mutant fibroblasts to dibutyryl-cAMP stimulated the residual NADH-ubiquinone oxidoreductase activity, induced disappearance of ROS, and restored the mitochondrial potential. These are relevant observations for a possible therapeutical strategy in NDUFS1 mutant patients.
Collapse
Affiliation(s)
- Arcangela Iuso
- Department of Medical Biochemistry, Biology, and Physics, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|