1
|
Qafary M, Rashno F, Khajeh K, Khaledi M, Moosavi-Movahedi AA. Insulin fibrillation: Strategies for inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:49-62. [DOI: 10.1016/j.pbiomolbio.2022.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 04/07/2023]
|
2
|
Ali F, Manzoor U, Khan FI, Lai D, Khan MKA, Chandrashekharaiah KS, Singh LR, Dar TA. Effect of polyol osmolytes on the structure-function integrity and aggregation propensity of catalase: A comprehensive study based on spectroscopic and molecular dynamic simulation measurements. Int J Biol Macromol 2022; 209:198-210. [PMID: 35395280 DOI: 10.1016/j.ijbiomac.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
Abstract
Owing to the ability of catalase to function under oxidative stress vis-à-vis its industrial importance, the structure-function integrity of the enzyme is of prime concern. In the present study, polyols (glycerol, sorbitol, sucrose, xylitol), were evaluated for their ability to modulate structure, activity and aggregation of catalase using in vitro and in silico approaches. All polyols increased catalase activity by decreasing Km and increasing Vmax resulting in enhanced catalytic efficiency (kcat/Km) of the enzyme, with glycerol being the most efficient with a kcat/Km increase from 4.38 × 104 mM-1 S-1 (control) to 5.8 × 105 mM-1 S-1. Correlatively with this, enhanced secondary structure with reduced hydrophobic exposure was observed in all polyols. Furthermore, increased stability, with an increase in melting temperature by 15.2 °C, and almost no aggregation was observed in glycerol. Overall, ability to regulate structure-function integrity and aggregation propensity was highest for glycerol and lowest for xylitol. Simulation studies were performed involving structural dynamics measurements, principal component analysis and free energy landscape analysis. Altogether, all polyols were stabilizing in nature and glycerol, in particular, has potential to efficiently prevent not only the antioxidant defense system but also might serve as a stability aid during industrial processing of catalase.
Collapse
Affiliation(s)
- Fasil Ali
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | - Usma Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600 048, Tamil Nadu, India
| | - K S Chandrashekharaiah
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | | | - Tanveer Ali Dar
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
4
|
Ishrat M, Hassan MI, Ahmad F, Islam A. Sugar osmolytes-induced stabilization of RNase A in macromolecular crowded cellular environment. Int J Biol Macromol 2018; 115:349-357. [PMID: 29665392 DOI: 10.1016/j.ijbiomac.2018.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Organisms synthesize sugar osmolytes during environmental stresses to protect proteins against denaturation. These studies were carried out in dilute buffer whereas intracellular milieu within cells has cytoplasmic concentration of macromolecules in the range of 80-400 mg ml-1. Is the stabilizing effect of sugar osmolytes on the protein in dilute buffer different from that when protein is in cellular environment? To answer this question, we have measured and analysed the effect of sugar osmolytes on the structural and thermodynamic stability of ribonuclease A in the presence of dextran 70 at multiple concentrations of six sugars at different pH values. It was found that (i) each sugar osmolyte in the crowded environment provides stability to the protein in terms of Tm (midpoint of denaturation) and ∆GD° (Gibbs energy change) and this stabilizing effect is under entropic control, (ii) the extent of osmolyte-induced stabilization of RNase A is pH dependent, and (iii) effect of sugars on the stability of protein in presence of the crowding agent remains unchanged. This study concludes that crowding does not affect the efficacy of osmolytes and vice versa; and emphasizes on understanding of internal architecture of the cellular environment with respect to molecular and macromolecular crowding.
Collapse
Affiliation(s)
- Moin Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Beg I, Minton AP, Islam A, Hassan MI, Ahmad F. Comparison of the thermal stabilization of proteins by oligosaccharides and monosaccharide mixtures: Measurement and analysis in the context of excluded volume theory. Biophys Chem 2018; 237:31-37. [PMID: 29635149 DOI: 10.1016/j.bpc.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 11/25/2022]
Abstract
The thermal stability of apo α-lactalbumin (α-LA) and lysozyme was measured in the presence of mixtures of glucose, fructose, and galactose. Mixtures of these monosaccharides in the appropriate stoichiometric ratio were found to have a greater stabilizing effect on each of the two proteins than equal weight/volume concentrations of di- tri- and tetrasaccharides with identical subunit composition (sucrose, trehalose, raffinose, and stachyose). The excluded volume model for the effect of a single saccharide on the stability of a protein previously proposed by Beg et al. [Biochemistry 54 (2015) 3594] was extended to treat the case of saccharide mixtures. The extended model predicts quantitatively the stabilizing effect of all monosaccharide mixtures on α-LA and lysozyme reported here, as well as previously published results obtained for ribonuclease A [Biophys. Chem. 138 (2008) 120] to within experimental uncertainty.
Collapse
Affiliation(s)
- Ilyas Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
6
|
Henson CA, Duke SH. Maltose Effects on Barley Malt Diastatic Power Enzyme Activity and Thermostability at High Isothermal Mashing Temperatures: I. β-Amylase. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-2734-01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Cynthia A. Henson
- United States Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, Madison, WI
- Department of Agronomy, University of Wisconsin, Madison, WI
| | - Stanley H. Duke
- United States Department of Agriculture-Agricultural Research Service Cereal Crops Research Unit, Madison, WI
| |
Collapse
|
7
|
Dar MA, Wahiduzzaman, Islam A, Hassan MI, Ahmad F. Counteraction of the deleterious effects of urea on structure and stability of mammalian kidney proteins by osmolytes. Int J Biol Macromol 2018; 107:1659-1667. [DOI: 10.1016/j.ijbiomac.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022]
|
8
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
9
|
Silva C, Martins M, Jing S, Fu J, Cavaco-Paulo A. Practical insights on enzyme stabilization. Crit Rev Biotechnol 2017; 38:335-350. [PMID: 28764566 DOI: 10.1080/07388551.2017.1355294] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enzymes are efficient catalysts designed by nature to work in physiological environments of living systems. The best operational conditions to access and convert substrates at the industrial level are different from nature and normally extreme. Strategies to isolate enzymes from extremophiles can redefine new operational conditions, however not always solving all industrial requirements. The stability of enzymes is therefore a key issue on the implementation of the catalysts in industrial processes which require the use of extreme environments that can undergo enzyme instability. Strategies for enzyme stabilization have been exhaustively reviewed, however they lack a practical approach. This review intends to compile and describe the most used approaches for enzyme stabilization highlighting case studies in a practical point of view.
Collapse
Affiliation(s)
- Carla Silva
- a Centre of Biological Engineering (CEB) , University of Minho , Braga , Portugal
| | - Madalena Martins
- a Centre of Biological Engineering (CEB) , University of Minho , Braga , Portugal
| | - Su Jing
- b International Joint Research Laboratory for Textile and Fiber Bioprocesses , Jiangnan University , Wuxi , China
| | - Jiajia Fu
- c Key Laboratory of Science and Technology of Eco-Textiles , Ministry of Education, Jiangnan University , Wuxi , Jiangsu , China
| | - Artur Cavaco-Paulo
- a Centre of Biological Engineering (CEB) , University of Minho , Braga , Portugal.,b International Joint Research Laboratory for Textile and Fiber Bioprocesses , Jiangnan University , Wuxi , China
| |
Collapse
|
10
|
Sharma GS, Singh LR. Polyols Have Unique Ability to Refold Protein as Compared to Other Osmolyte Types. BIOCHEMISTRY (MOSCOW) 2017; 82:465-473. [PMID: 28371604 DOI: 10.1134/s0006297917040083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of solvent environments on protein refolding have gained significant attention due to their biotechnological and pharmaceutical applications. Recent advances have shown that a number of organic osmolytes have the unique ability to induce proper folding of several misfolded proteins and simultaneously inhibit aggregation during the process. In the present study, we investigated the effects of polyol osmolytes on the refolding of guanidinium chloride-denatured ribonuclease-A (RNase-A) and compared it with that of other osmolyte types. Measurements of enzymatic activity parameters (Km and kcat) clearly indicate that polyol-induced RNase-A folding enhanced its catalytic efficiency as compared to folding in the absence of osmolytes or in the presence of osmolytes of other types. Furthermore, structural characterization revealed that the increase in catalytic efficiency stems from conformational alterations of the polyol-induced folded protein molecules as compared to other types of osmolytes.
Collapse
Affiliation(s)
- G S Sharma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | | |
Collapse
|
11
|
Khan P, Parkash A, Islam A, Ahmad F, Hassan MI. Molecular basis of the structural stability of hemochromatosis factor E: A combined molecular dynamic simulation and GdmCl-induced denaturation study. Biopolymers 2016; 105:133-42. [PMID: 26537310 DOI: 10.1002/bip.22760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 11/11/2022]
Abstract
Hemochromatosis factor E (HFE) is a member of class I MHC family and plays a significant role in the iron homeostasis. Denaturation of HFE induced by guanidinium chloride (GdmCl) was measured by monitoring changes in [θ]222 (mean residue ellipticity at 222 nm), intrinsic fluorescence emission intensity at 346 nm (F346 ) and the difference absorption coefficient at 287 nm (Δε287) at pH 8.0 and 25°C. Coincidence of denaturation curves of these optical properties suggests that GdmCl-induced denaturation (native (N) state ↔ denatured (D) state) is a two-state process. The GdmCl-induced denaturation was found reversible in the entire concentration range of the denaturant. All denaturation curves were analyzed for ΔGD0, Gibbs free energy change associated with the denaturation equilibrium (N state ↔ D state) in the absence of GdmCl, which is a measure of HFE stability. We further performed molecular dynamics simulation for 40 ns to see the effect of GdmCl on the structural stability of HFE. A well defined correlation was established between in vitro and in silico studies.
Collapse
Affiliation(s)
- Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amresh Parkash
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
12
|
Rahman S, Ali SA, Islam A, Hassan MI, Ahmad F. Testing the dependence of stabilizing effect of osmolytes on the fractional increase in the accessible surface area on thermal and chemical denaturations of proteins. Arch Biochem Biophys 2016; 591:7-17. [DOI: 10.1016/j.abb.2015.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/04/2015] [Accepted: 11/21/2015] [Indexed: 11/28/2022]
|
13
|
Balcão VM, Vila MMDC. Structural and functional stabilization of protein entities: state-of-the-art. Adv Drug Deliv Rev 2015; 93:25-41. [PMID: 25312675 DOI: 10.1016/j.addr.2014.10.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 08/03/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Within the context of biomedicine and pharmaceutical sciences, the issue of (therapeutic) protein stabilization assumes particular relevance. Stabilization of protein and protein-like molecules translates into preservation of both structure and functionality during storage and/or targeting, and such stabilization is mostly attained through establishment of a thermodynamic equilibrium with the (micro)environment. The basic thermodynamic principles that govern protein structural transitions and the interactions of the protein molecule with its (micro)environment are, therefore, tackled in a systematic fashion. Highlights are given to the major classes of (bio)therapeutic molecules, viz. enzymes, recombinant proteins, (macro)peptides, (monoclonal) antibodies and bacteriophages. Modification of the microenvironment of the biomolecule via multipoint covalent attachment onto a solid surface followed by hydrophilic polymer co-immobilization, or physical containment within nanocarriers, are some of the (latest) strategies discussed aiming at full structural and functional stabilization of said biomolecules.
Collapse
Affiliation(s)
- Victor M Balcão
- LaBNUS - Biomaterials and Nanotechnology Laboratory, i(bs)(2) - intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, SP, Brazil; CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta M D C Vila
- LaBNUS - Biomaterials and Nanotechnology Laboratory, i(bs)(2) - intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, SP, Brazil
| |
Collapse
|
14
|
Rahman S, Warepam M, Singh LR, Dar TA. A current perspective on the compensatory effects of urea and methylamine on protein stability and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:129-36. [PMID: 26095775 DOI: 10.1016/j.pbiomolbio.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
Urea is a strong denaturant and inhibits many enzymes but is accumulated intracellularly at very high concentrations (up to 3-4 M) in mammalian kidney and in many marine fishes. It is known that the harmful effects of urea on the macromolecular structure and function is offset by the accumulation of an osmolytic agent called methylamine. Intracellular concentration of urea to methylamines falls in the ratio of 2:1 to 3:2 (molar ratio). At this ratio, the thermodynamic effects of urea and methylamines on protein stability and function are believed to be algebraically additive. The mechanism of urea-methylamine counteraction has been widely investigated on various approaches including, thermodynamic, structural and functional aspects. Recent advances have also revealed atomic level insights of counteraction and various molecular dynamic simulation studies have yielded significant molecular level informations on the interaction between urea and methylamines with proteins. It is worthwhile that urea-methylamine system not only plays pivotal role for the survival and functioning of the renal medullary cells but also is a key osmoregulatory component of the marine elasmobranchs, holocephalans and coelacanths. Therefore, it is important to combine all discoveries and discuss the developments in context to physiology of the mammalian kidney and adaptation of the marine organisms. In this article we have for the first time reviewed all major developments on urea-counteraction systems to date. We have also discussed about other additional urea-counteraction systems discovered so far including urea-NaCl, urea-myoinsoitol and urea-molecular chaperone systems. Insights for the possible future research have also been highlighted.
Collapse
Affiliation(s)
- Safikur Rahman
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India.
| |
Collapse
|
15
|
Beg I, Minton AP, Hassan I, Islam A, Ahmad F. Thermal Stabilization of Proteins by Mono- and Oligosaccharides: Measurement and Analysis in the Context of an Excluded Volume Model. Biochemistry 2015; 54:3594-603. [PMID: 26000826 DOI: 10.1021/acs.biochem.5b00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible thermal denaturation of apo α-lactalbumin and lysozyme was monitored via measurement of changes in absorbance and ellipticity in the presence of varying concentrations of seven mono- and oligosaccharides: glucose, galactose, fructose, sucrose, trehalose, raffinose, and stachyose. The temperature dependence of the unfolding curves was quantitatively accounted for by a two-state model, according to which the free energy of unfolding is increased by an amount that is independent of temperature and depends linearly upon the concentration of added saccharide. The increment of added unfolding free energy per mole of added saccharide was found to depend approximately linearly upon the extent of oligomerization of the saccharide. The relative strength of stabilization of different saccharide oligomers could be accounted for by a simplified statistical-thermodynamic model attributing the stabilization effect to volume exclusion deriving from steric repulsion between protein and saccharide molecules.
Collapse
Affiliation(s)
- Ilyas Beg
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Allen P Minton
- ‡National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Imtaiyaz Hassan
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
16
|
Warepam M, Singh LR. Osmolyte mixtures have different effects than individual osmolytes on protein folding and functional activity. Arch Biochem Biophys 2015; 573:77-83. [PMID: 25817170 DOI: 10.1016/j.abb.2015.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Osmolytes are small organic molecules accumulated by organisms under stress conditions to protect macromolecular structure and function. In the present study, we have investigated the effect of several binary osmolyte mixtures on the protein folding/stability and function of RNase-A. For this, we have measured ΔGD(o) (Gibbs free energy change at 25°C) and specific activity of RNase-A mediated hydrolysis of cytidine 2'-3' cyclic monophosphate in the presence and absence of individual and osmolyte mixtures. It was found that the osmolyte mixtures have different effect on protein stability and function than that of individual osmolytes. Refolding studies of RNase-A in the presence of osmolyte mixtures and individual osmolytes also revealed that osmolyte mixtures have a poor refolding efficiency relative to the individual osmolytes.
Collapse
Affiliation(s)
- Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
17
|
Rahman S, Rehman MT, Singh LR, Warepam M, Ahmad F, Dar TA. Salt potentiates methylamine counteraction system to offset the deleterious effects of urea on protein stability and function. PLoS One 2015; 10:e0119597. [PMID: 25793733 PMCID: PMC4368626 DOI: 10.1371/journal.pone.0119597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/14/2015] [Indexed: 11/21/2022] Open
Abstract
Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.
Collapse
Affiliation(s)
- Safikur Rahman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Tabish Rehman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Laishram R. Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, India
- * E-mail:
| |
Collapse
|
18
|
Structural characteristic of the initial unfolded state on refolding determines catalytic efficiency of the folded protein in presence of osmolytes. PLoS One 2014; 9:e109408. [PMID: 25313668 PMCID: PMC4196897 DOI: 10.1371/journal.pone.0109408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (Km and kcat), thermodynamic stability (Tm and ΔHm) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes.
Collapse
|
19
|
Tehrani HS, Moosavi-Movahedi A, Ghourchian H. Correlation between biological activity and electron transferring of bovine liver catalase: Osmolytes effects. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.09.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Sepasi Tehrani H, Moosavi-Movahedi A, Ghourchian H, Ahmad F, Kiany A, Atri M, Ariaeenejad S, Kavousi K, Saboury A. Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase. J Biomol Struct Dyn 2013; 31:1440-54. [DOI: 10.1080/07391102.2012.742460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Khan S, Bano Z, Singh LR, Hassan MI, Islam A, Ahmad F. Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins. PLoS One 2013; 8:e72533. [PMID: 24039776 PMCID: PMC3767660 DOI: 10.1371/journal.pone.0072533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D (o)) and functional activity parameters (K m and k cat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively.
Collapse
Affiliation(s)
- Sheeza Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Zehra Bano
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Laishram R. Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail:
| |
Collapse
|
22
|
Protein and DNA destabilization by osmolytes: The other side of the coin. Life Sci 2011; 88:117-25. [DOI: 10.1016/j.lfs.2010.10.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/26/2010] [Accepted: 10/19/2010] [Indexed: 01/23/2023]
|
23
|
Jamal S, Poddar NK, Singh LR, Dar TA, Rishi V, Ahmad F. Relationship between functional activity and protein stability in the presence of all classes of stabilizing osmolytes. FEBS J 2009; 276:6024-32. [PMID: 19765077 DOI: 10.1111/j.1742-4658.2009.07317.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the effects of stabilizing osmolytes (low molecular mass organic compounds that raise the midpoint of thermal denaturation) on the stability and function of RNase-A under physiological conditions (pH 6.0 and 25 degrees C). Measurements of Gibbs free energy change at 25 degrees C (DeltaG(D) degrees ) and kinetic parameters, Michaelis constant (K(m)) and catalytic constant (k(cat)) of the enzyme mediated hydrolysis of cytidine monophosphate, enabled us to classify stabilizing osmolytes into three different classes based on their effects on kinetic parameters and protein stability. (a) Polyhydric alcohols and amino acids and their derivatives do not have significant effects on DeltaG(D) degrees and functional activity (K(m) and k(cat)). (b) Methylamines increase DeltaG(D) degrees and k(cat), but decrease K(m). (c) Sugars increase DeltaG(D) degrees , but decrease both K(m) and k(cat). These findings suggest that, among the stabilizing osmolytes, (a) polyols, amino acids and amino acid derivatives are compatible solutes in terms of both stability and function, (b) methylamines are the best refolders (stabilizers), and (c) sugar osmolytes stabilize the protein, but they apparently do not yield functionally active folded molecules.
Collapse
Affiliation(s)
- Shazia Jamal
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | | | | | | | | |
Collapse
|
24
|
Singh LR, Dar TA, Rahman S, Jamal S, Ahmad F. Glycine betaine may have opposite effects on protein stability at high and low pH values. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:929-35. [DOI: 10.1016/j.bbapap.2009.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 02/14/2009] [Accepted: 02/17/2009] [Indexed: 11/26/2022]
|
25
|
|
26
|
Mukaiyama A, Koga Y, Takano K, Kanaya S. Osmolyte effect on the stability and folding of a hyperthermophilic protein. Proteins 2008; 71:110-8. [DOI: 10.1002/prot.21660] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Singh LR, Ali Dar T, Haque I, Anjum F, Moosavi-Movahedi AA, Ahmad F. Testing the paradigm that the denaturing effect of urea on protein stability is offset by methylamines at the physiological concentration ratio of 2:1 (urea:methylamines). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1555-62. [DOI: 10.1016/j.bbapap.2007.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 11/27/2022]
|
28
|
Haque I, Islam A, Singh R, Moosavi-Movahedi AA, Ahmad F. Stability of proteins in the presence of polyols estimated from their guanidinium chloride-induced transition curves at different pH values and 25 °C. Biophys Chem 2006; 119:224-33. [PMID: 16226834 DOI: 10.1016/j.bpc.2005.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/20/2022]
Abstract
We have recently concluded from the heat-induced denaturation studies that polyols do not affect deltaG(D) degrees (the Gibbs free energy change (deltaG(D)) at 25 degrees C) of ribonuclease-A and lysozyme at physiological pH and temperature, and their stabilizing effect increases with decrease in pH. Since the estimation of deltaG(D) degrees of proteins from heat-induced denaturation curves requires a large extrapolation, the reliability of this procedure for the estimation of deltaG(D) degrees is always questionable, and so are conclusions drawn from such studies. This led us to measure deltaG(D) degrees of ribonuclease-A and lysozyme using a more accurate method, i.e., from their isothermal (25 degrees C) guanidinium chloride (GdmCl)-induced denaturations. We show that our earlier conclusions drawn from heat-induced denaturation studies are correct. Since the extent of unfolding of heat- and GdmCl-induced denatured states of these proteins is not identical, the extent of stabilization of the proteins by polyols against heat and GdmCl denaturations may also differ. We report that in spite of the differences in the structural nature of the heat- and GdmCl-denatured states of each protein, the extent of stabilization by a polyol is same. We also report that the functional dependence of deltaG(D) of proteins in the presence of polyols on denaturant concentration is linear through the full denaturant concentration range. Furthermore, polyols do not affect the secondary and tertiary structures of the native and GdmCl-denatured states.
Collapse
Affiliation(s)
- Inamul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110 025, India
| | | | | | | | | |
Collapse
|