1
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
2
|
Madreiter‐Sokolowski CT, Ramadani‐Muja J, Ziomek G, Burgstaller S, Bischof H, Koshenov Z, Gottschalk B, Malli R, Graier WF. Tracking intra- and inter-organelle signaling of mitochondria. FEBS J 2019; 286:4378-4401. [PMID: 31661602 PMCID: PMC6899612 DOI: 10.1111/febs.15103] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria are as highly specialized organelles and masters of the cellular energy metabolism in a constant and dynamic interplay with their cellular environment, providing adenosine triphosphate, buffering Ca2+ and fundamentally contributing to various signaling pathways. Hence, such broad field of action within eukaryotic cells requires a high level of structural and functional adaptation. Therefore, mitochondria are constantly moving and undergoing fusion and fission processes, changing their shape and their interaction with other organelles. Moreover, mitochondrial activity gets fine-tuned by intra- and interorganelle H+ , K+ , Na+ , and Ca2+ signaling. In this review, we provide an up-to-date overview on mitochondrial strategies to adapt and respond to, as well as affect, their cellular environment. We also present cutting-edge technologies used to track and investigate subcellular signaling, essential to the understanding of various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Corina T. Madreiter‐Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- Department of Health Sciences and TechnologyETH ZurichSchwerzenbachSwitzerland
| | - Jeta Ramadani‐Muja
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Gabriela Ziomek
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- BioTechMedGrazAustria
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- BioTechMedGrazAustria
| |
Collapse
|
3
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
4
|
Rodgers MA, Bowman JW, Liang Q, Jung JU. Regulation where autophagy intersects the inflammasome. Antioxid Redox Signal 2014; 20:495-506. [PMID: 23642014 PMCID: PMC3894701 DOI: 10.1089/ars.2013.5347] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE The autophagy and inflammasome pathways are ancient innate immune mechanisms for controlling invading pathogens that are linked by mutual regulation. In addition to controlling the metabolic homeostasis of the cell through nutrient recycling, the "self-eating" process of autophagy is also responsible for the degradation of damaged organelles, cells, and pathogens to protect the integrity of the organism. As a cytosolic pathogen recognition receptor (PRR) complex, the inflammasome both induces and is induced by autophagy through direct interactions with autophagy proteins or through the effects of secondary molecules, such as mitochondrial reactive oxygen species and mitochondrial DNA. RECENT ADVANCES While the molecular mechanisms of inflammasome activation and regulation are largely unknown, much of the current knowledge has been established through investigation of the role of autophagy in innate immunity. Likewise, regulatory proteins in the NOD-like receptor family, which includes inflammasome PRRs, are able to stimulate autophagy in response to the presence of a pathogen. CRITICAL ISSUES Many of the newly uncovered links between autophagy and inflammasomes have raised new questions about the mechanisms controlling inflammasome function, which are highlighted in this review. FUTURE DIRECTIONS Our basic understanding of the mutual regulation of inflammasomes and autophagy will be essential for designing therapeutics for chronic inflammatory diseases, especially those for which autophagy and inflammasome genes have already been linked.
Collapse
Affiliation(s)
- Mary A Rodgers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| | | | | | | |
Collapse
|
5
|
Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 2013; 14:454-60. [DOI: 10.1038/ni.2550] [Citation(s) in RCA: 646] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/18/2013] [Indexed: 12/12/2022]
|
6
|
P2X7 receptor activation induces reactive oxygen species formation in erythroid cells. Purinergic Signal 2012; 9:101-12. [PMID: 23014887 DOI: 10.1007/s11302-012-9335-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022] Open
Abstract
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2'(3')-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-L-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca(2+) and Mg(2+) and almost completely in cells in N-methyl-D-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-L-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells.
Collapse
|
7
|
Di Garbo A, Alloisio S, Nobile M. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach. Phys Biol 2012; 9:026001. [PMID: 22473129 DOI: 10.1088/1478-3975/9/2/026001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The P2X7 receptor (P2X7R) induces ionotropic Ca²⁺ signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca²⁺ variations evoked by 3'-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca²⁺ dynamics in HEK293. Our model gives an account of the ionotropic Ca²⁺ influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca²⁺ responses evoked by BzATP, the model predicted that an impairment in Ca²⁺ extrusion flux through the plasma membrane is a key factor for Ca²⁺ homeostasis in HEK293 cells.
Collapse
Affiliation(s)
- A Di Garbo
- CNR-Institute of Biophysics, via G Moruzzi 1, 56124 Pisa, Italy.
| | | | | |
Collapse
|
8
|
Novak I. Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol (Oxf) 2011; 202:501-22. [PMID: 21073662 DOI: 10.1111/j.1748-1716.2010.02225.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular ATP, the energy source for many reactions, is crucial for the activity of plasma membrane pumps and, thus, for the maintenance of transmembrane ion gradients. Nevertheless, ATP and other nucleotides/nucleosides are also extracellular molecules that regulate diverse cellular functions, including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems. This multitude of system components may enable differentiated regulation of diverse epithelial functions. As epithelia probably face the widest variety of potential ATP-releasing stimuli, a special attention will be given to stimuli and mechanisms of ATP release with a focus on exocytosis. Subsequently, I will consider membrane transport of major ions (Cl(-) , HCO(3)(-) , K(+) and Na(+) ) and integrate possible regulatory functions of P2Y2, P2Y4, P2Y6, P2Y11, P2X4, P2X7 and adenosine receptors in some selected epithelia at the cellular level. Some purinergic receptors have noteworthy roles. For example, many studies to date indicate that the P2Y2 receptor is one common denominator in regulating ion channels on both the luminal and basolateral membranes of both secretory and absorptive epithelia. In exocrine glands though, P2X4 and P2X7 receptors act as cation channels and, possibly, as co-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging.
Collapse
Affiliation(s)
- I Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AMK. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12:222-30. [PMID: 21151103 PMCID: PMC3079381 DOI: 10.1038/ni.1980] [Citation(s) in RCA: 2385] [Impact Index Per Article: 170.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/06/2010] [Indexed: 12/19/2022]
Abstract
Autophagy, a cellular process for organelle and protein turnover, regulates innate immune responses. Here we demonstrate that depletion of the autophagic proteins LC3B and beclin 1 enhanced the activation of caspase-1 and secretion of interleukin 1β (IL-1β) and IL-18. Depletion of autophagic proteins promoted the accumulation of dysfunctional mitochondria and cytosolic translocation of mitochondrial DNA (mtDNA) in response to lipopolysaccharide (LPS) and ATP in macrophages. Release of mtDNA into the cytosol depended on the NALP3 inflammasome and mitochondrial reactive oxygen species (ROS). Cytosolic mtDNA contributed to the secretion of IL-1β and IL-18 in response to LPS and ATP. LC3B-deficient mice produced more caspase-1-dependent cytokines in two sepsis models and were susceptible to LPS-induced mortality. Our study suggests that autophagic proteins regulate NALP3-dependent inflammation by preserving mitochondrial integrity.
Collapse
Affiliation(s)
- Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Jeffrey Adam Haspel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Vijay AK Rathinam
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Seon-Jin Lee
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Tamas Dolinay
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hilaire C Lam
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Joshua A Englert
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Marlene Rabinovitch
- The Wall Center for Pulmonary Vascular Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Manuela Cernadas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hong Pyo Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Augustine MK Choi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
10
|
Novak I, Jans IM, Wohlfahrt L. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J Physiol 2010; 588:3615-27. [PMID: 20643770 DOI: 10.1113/jphysiol.2010.190017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purinergic P2X(7) receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X(7) receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether the P2X(7) receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X(7)(-/-) (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release and intracellular Ca(2+) activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X(7)(-/-) mice, and in contrast, tear secretion was increased in P2X(7)(-/-) mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more dependent on the P2X(7) receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X(7) receptor expression. ATP and carbachol increased intracellular Ca(2+) activity, but responses depended on the gland type, presence of the P2X(7) receptor and the sex of the animal. Together, these results demonstrate that cholinergic stimulation leads to release of ATP that can via P2X(7) receptors up-regulate pancreatic and salivary secretion but down-regulate tear secretion. Our data also indicate that there is an interaction between purinergic and cholinergic receptor signalling and that function of the P2X(7) receptor is suppressed in females. We conclude that the P2X(7) receptors are important in short-term physiological regulation of exocrine gland secretion.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, August Krogh Building, Universitetsparken 13, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
11
|
Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I, Kanellopoulos JM. Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 2009; 109:846-57. [PMID: 19250337 DOI: 10.1111/j.1471-4159.2009.06008.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.
Collapse
Affiliation(s)
- Cécile Delarasse
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, CNRS, UMR 8619, Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Qu Y, Dubyak GR. P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways. Purinergic Signal 2009; 5:163-73. [PMID: 19189228 DOI: 10.1007/s11302-009-9132-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Indexed: 02/04/2023] Open
Abstract
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.
Collapse
Affiliation(s)
- Yan Qu
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, USA
| | | |
Collapse
|
13
|
Gabel CA. P2 purinergic receptor modulation of cytokine production. Purinergic Signal 2007; 3:27-38. [PMID: 18404416 PMCID: PMC2096759 DOI: 10.1007/s11302-006-9034-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/10/2006] [Indexed: 11/24/2022] Open
Abstract
Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, mis-regulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y₆ receptor mediated impact on interleukin (IL)-8 production, (2) P2Y₁₁ receptor-mediated affects on IL-12/23 output, and (3) P2X₇ receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases.
Collapse
Affiliation(s)
- Christopher A Gabel
- Department of Inflammation, Amgen, Inc., 1201 Amgen Court West, Seattle, WA, 98119, USA,
| |
Collapse
|