1
|
Narang K, Nath A, Hemstrom W, Chu SKS. HaloClass: Salt-Tolerant Protein Classification with Protein Language Models. Protein J 2024; 43:1035-1044. [PMID: 39432175 PMCID: PMC11543744 DOI: 10.1007/s10930-024-10236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Salt-tolerant proteins, also known as halophilic proteins, have unique adaptations to function in high-salinity environments. These proteins have naturally evolved in extremophilic organisms, and more recently, are being increasingly applied as enzymes in industrial processes. Due to an abundance of salt-tolerant sequences and a simultaneous lack of experimental structures, most computational methods to predict stability are sequence-based only. These approaches, however, are hindered by a lack of structural understanding of these proteins. Here, we present HaloClass, an SVM classifier that leverages ESM-2 protein language model embeddings to accurately identify salt-tolerant proteins. On a newer and larger test dataset, HaloClass outperforms existing approaches when predicting the stability of never-before-seen proteins that are distal to its training set. Finally, on a mutation study that evaluated changes in salt tolerance based on single- and multiple-point mutants, HaloClass outperforms existing approaches, suggesting applications in the guided design of salt-tolerant enzymes.
Collapse
Affiliation(s)
- Kush Narang
- College of Biological Sciences, University of California, Davis, USA.
| | - Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - William Hemstrom
- Department of Biological Sciences, Purdue University, West Lafayette, USA
| | - Simon K S Chu
- Biophysics Graduate Program, University of California, Davis, USA
| |
Collapse
|
2
|
Nagaoka S, Sugiyama N, Yatsunami R, Nakamura S. Characterization of 3-isopropylmalate dehydrogenase from extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 2021; 85:1986-1994. [PMID: 34215877 DOI: 10.1093/bbb/zbab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
3-Isopropylmalate dehydrogenase (IPMDH) catalyzes oxidative decarboxylation of (2R, 3S)-3-isopropylmalate to 2-oxoisocaproate in leucine biosynthesis. In this study, recombinant IPMDH (HjIPMDH) from an extremely halophilic archaeon, Haloarcula japonica TR-1, was characterized. Activity of HjIPMDH increased as KCl concentration increased, and the maximum activity was observed at 3.0 m KCl. Analytical ultracentrifugation revealed that HjIPMDH formed a homotetramer at high KCl concentrations, and it dissociated to a monomer at low KCl concentrations. Additionally, HjIPMDH was thermally stabilized by higher KCl concentrations. This is the first report on haloarchaeal IPMDH.
Collapse
Affiliation(s)
- Shintaro Nagaoka
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Noriko Sugiyama
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Rie Yatsunami
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.,National Institute of Technology (KOSEN), Numazu College, Numazu, Shizuoka, Japan
| |
Collapse
|
3
|
Characterization of crystal structure and key residues of Aspergillus fumigatus nucleoside diphosphate kinase. Biochem Biophys Res Commun 2019; 511:148-153. [PMID: 30773256 DOI: 10.1016/j.bbrc.2019.01.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus is a major pathogen of invasive pulmonary aspergillosis with high mortality rate. The nucleoside diphosphate kinase of A. fumigatus, AfNDK (also called SwoH) is essential for its viability, however, its structural characteristic was unknown. In this study, we solved the crystal structure of AfNDK and found that it exists predominantly in form of tetramer in solution. Oligomeric form rather than dimeric form was essential for its kinase activity. The Arg30 and the C terminal amino acids were crucial for dimer-dimer interaction and the viability of A. fumigatus. Mutation V83F might make the secondary structure α5 helix protrude outward so that the whole protein structure became unstable at higher temperature, which might subsequently result to the inviability of A. fumigatus under 44 °C. In conclusion, the crystal structure of AfNDK was for the first time analyzed and the stability of the tetrameric form with dimer-dimer interaction were crucial for its function in A. fumigatus.
Collapse
|
4
|
Bai W, Zhou C, Zhao Y, Wang Q, Ma Y. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation. PLoS One 2015; 10:e0132834. [PMID: 26161643 PMCID: PMC4498622 DOI: 10.1371/journal.pone.0132834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/18/2015] [Indexed: 11/25/2022] Open
Abstract
To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications.
Collapse
Affiliation(s)
- Wenqin Bai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Science, Shanxi Normal University, Linfen, 041004, China
- * E-mail: (YHM); (WQB)
| | - Cheng Zhou
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yueju Zhao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Qinhong Wang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- * E-mail: (YHM); (WQB)
| |
Collapse
|
5
|
Arai S, Yonezawa Y, Okazaki N, Matsumoto F, Shibazaki C, Shimizu R, Yamada M, Adachi M, Tamada T, Kawamoto M, Tokunaga H, Ishibashi M, Blaber M, Tokunaga M, Kuroki R. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs(+)-selective binding site. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:541-54. [PMID: 25760604 PMCID: PMC4356365 DOI: 10.1107/s1399004714027734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
Environmentally friendly absorbents are needed for Sr(2+) and Cs(+), as the removal of the radioactive Sr(2+) and Cs(+) that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs(+) or Sr(2+). The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P31 using X-ray crystallography. Moreover, the locations of bound Sr(2+) and Cs(+) ions were identified by anomalous X-ray diffraction. The location of one Cs(+)-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na(+) (90 mM Na(+)/10 mM Cs(+)). From an activity assay using isothermal titration calorimetry, the bound Sr(2+) and Cs(+) ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs(+)-binding site provides important information that is useful for the design of artificial Cs(+)-binding sites that may be useful in the bioremediation of radioactive isotopes.
Collapse
Affiliation(s)
- Shigeki Arai
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Yasushi Yonezawa
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Nobuo Okazaki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Fumiko Matsumoto
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Chie Shibazaki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Rumi Shimizu
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Mitsugu Yamada
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Motoyasu Adachi
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Taro Tamada
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Masahide Kawamoto
- Saga Prefectural Regional Industry Support Center, Kyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
| | - Hiroko Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Michael Blaber
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
- College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ryota Kuroki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
6
|
Divalent metal ion-induced folding mechanism of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. PLoS One 2014; 9:e109016. [PMID: 25268753 PMCID: PMC4182655 DOI: 10.1371/journal.pone.0109016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/28/2014] [Indexed: 01/23/2023] Open
Abstract
RNase H1 from Halobacterium sp. NRC-1 (Halo-RNase H1) is characterized by the abundance of acidic residues on the surface, including bi/quad-aspartate site residues. Halo-RNase H1 exists in partially folded (I) and native (N) states in low-salt and high-salt conditions respectively. Its folding is also induced by divalent metal ions. To understand this unique folding mechanism of Halo-RNase H1, the active site mutant (2A-RNase H1), the bi/quad-aspartate site mutant (6A-RNase H1), and the mutant at both sites (8A-RNase H1) were constructed. The far-UV CD spectra of these mutants suggest that 2A-RNase H1 mainly exists in the I state, 6A-RNase H1 exists both in the I and N states, and 8A-RNase H1 mainly exists in the N state in a low salt-condition. These results suggest that folding of Halo-RNase H1 is induced by binding of divalent metal ions to the bi/quad-aspartate site. To examine whether metal-induced folding is unique to Halo-RNase H1, RNase H2 from the same organism (Halo-RNase H2) was overproduced and purified. Halo-RNase H2 exists in the I and N states in low-salt and high-salt conditions respectively, as does Halo-RNase H1. However, this protein exists in the I state even in the presence of divalent metal ions. Halo-RNase H2 exhibits junction ribonuclease activity only in a high-salt condition. A tertiary model of this protein suggests that this protein does not have a quad-aspartate site. We propose that folding of Halo-RNase H1 is induced by binding of divalent metal ion to the quad-aspartate site in a low-salt condition.
Collapse
|
7
|
You DJ, Jongruja N, Tannous E, Angkawidjaja C, Koga Y, Kanaya S. Structural basis for salt-dependent folding of ribonuclease H1 from halophilic archaeon Halobacterium sp. NRC-1. J Struct Biol 2014; 187:119-128. [PMID: 24972277 DOI: 10.1016/j.jsb.2014.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/10/2014] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Abstract
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNase H1) requires ⩾2M NaCl, ⩾10mM MnCl2, or ⩾300mM MgCl2 for folding. To understand the structural basis for this salt-dependent folding of Halo-RNase H1, the crystal structure of Halo-RNase H1 was determined in the presence of 10mM MnCl2. The structure of Halo-RNase H1 highly resembles those of metagenome-derived LC11-RNase H1 and Sulfolobus tokodaii RNase H1 (Sto-RNase H1), except that it contains two Mn(2+) ions at the active site and has three bi-aspartate sites on its surface. To examine whether negative charge repulsion at these sites are responsible for low-salt denaturation of Halo-RNase H1, a series of the mutant proteins of Halo-RNase H1 at these sites were constructed. The far-UV CD spectra of these mutant proteins measured in the presence of various concentrations of NaCl suggest that these mutant proteins exist in an equilibrium between a partially folded state and a folded state. However, the fraction of the protein in a folded state is nearly 0% for the active site mutant, 40% for the bi-aspartate site mutant, and 70% for the mutant at both sites in the absence of salt. The active site mutant requires relatively low concentration (∼0.5M) of salt for folding. These results suggest that suppression of negative charge repulsion at both active and bi-aspartate sites by salt is necessary to yield a folded protein.
Collapse
Affiliation(s)
- Dong-Ju You
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Nujarin Jongruja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Elias Tannous
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Clement Angkawidjaja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; International College, Osaka University, 1-30 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Cys139Ser mutation in dimeric nucleoside diphosphate kinase generates catalytically competent monomer. Int J Biol Macromol 2014; 66:66-73. [DOI: 10.1016/j.ijbiomac.2014.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
9
|
Talon R, Coquelle N, Madern D, Girard E. An experimental point of view on hydration/solvation in halophilic proteins. Front Microbiol 2014; 5:66. [PMID: 24600446 PMCID: PMC3930881 DOI: 10.3389/fmicb.2014.00066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/04/2014] [Indexed: 11/23/2022] Open
Abstract
Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution
Collapse
Affiliation(s)
- Romain Talon
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| | - Dominique Madern
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| | - Eric Girard
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| |
Collapse
|
10
|
Ishibashi M, Hayashi T, Yoshida C, Tokunaga M. Increase of salt dependence of halophilic nucleoside diphosphate kinase caused by a single amino acid substitution. Extremophiles 2013; 17:585-91. [PMID: 23609188 DOI: 10.1007/s00792-013-0541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/11/2013] [Indexed: 11/25/2022]
Abstract
Nucleoside diphosphate kinase (HsNDK) from an extremely halophilic archaea, Halobacterium salinarum, is composed of a homo hexamer, assembled as a trimer of basic dimeric units. It requires >2 M NaCl for refolding, although it does not require NaCl for stability or enzymatic activity below 30 °C. A HisN111L mutant with an N-terminal extension sequence containing hexa-His tag, in which Asn111 was replaced with Leu, was designed to be less stable between basic dimeric units. This mutant can lose between 6 and 12 hydrogen bonds between basic dimeric units in the hexamer structure. The HisN111L mutant had enhanced salt requirements for enzymatic activity and refolding even though the secondary structure of the HisN111L mutant was confirmed to be similar to the control, HisNDK, in low and high salt solutions using circular dichroism. We reported previously that G114R and D148C mutants, which had enhanced interactions between basic dimeric units, showed facilitated refolding and stabilization in low salt solution. The results of this study help to elucidate the process for engineering industrial enzymes by controlling subunit-subunit interactions through mutations.
Collapse
Affiliation(s)
- Matsujiro Ishibashi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | | | | | | |
Collapse
|
11
|
Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles 2012. [PMID: 23179592 DOI: 10.1007/s00792-012-0498-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous-organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry.
Collapse
|
12
|
Tannous E, Yokoyama K, You DJ, Koga Y, Kanaya S. A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. FEBS Open Bio 2012; 2:345-52. [PMID: 23772368 PMCID: PMC3678122 DOI: 10.1016/j.fob.2012.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/03/2022] Open
Abstract
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNH1) consists of an N-terminal domain with unknown function and a C-terminal RNase H domain. It is characterized by the high content of acidic residues on the protein surface. The far- and near-UV CD spectra of Halo-RNH1 suggested that Halo-RNH1 assumes a partially folded structure in the absence of salt and divalent metal ions. It requires either salt or divalent metal ions for folding. However, thermal denaturation of Halo-RNH1 analyzed in the presence of salt and/or divalent metal ions by CD spectroscopy suggested that salt and divalent metal ions independently stabilize the protein and thereby facilitate folding. Divalent metal ions stabilize the protein probably by binding mainly to the active site and suppressing negative charge repulsions at this site. Salt stabilizes the protein probably by increasing hydrophobic interactions at the protein core and decreasing negative charge repulsions on the protein surface. Halo-RNH1 exhibited activity in the presence of divalent metal ions regardless of the presence or absence of 3 M NaCl. However, higher concentrations of divalent metal ions are required for activity in the absence of salt to facilitate folding. Thus, divalent metal ions play a dual role in catalysis and folding of Halo-RNH1. Construction of the Halo-RNH1 derivatives lacking an N- or C-terminal domain, followed by biochemical characterizations, indicated that an N-terminal domain is dispensable for stability, activity, folding, and substrate binding of Halo-RNH1.
Collapse
Affiliation(s)
- Elias Tannous
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
13
|
Arakawa T, Tokunaga H, Ishibashi M, Tokunaga M. Halophilic Properties and their Manipulation and Application. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ishibashi M, Uchino M, Arai S, Kuroki R, Arakawa T, Tokunaga M. Reduction of salt-requirement of halophilic nucleoside diphosphate kinase by engineering S–S bond. Arch Biochem Biophys 2012; 525:47-52. [DOI: 10.1016/j.abb.2012.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 11/27/2022]
|
15
|
Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC STRUCTURAL BIOLOGY 2011; 11:50. [PMID: 22192175 PMCID: PMC3293032 DOI: 10.1186/1472-6807-11-50] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022]
Abstract
Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.
Collapse
Affiliation(s)
- Alessandro Siglioccolo
- Dipartimento di Scienze Biochimiche "A, Rossi Fanelli", Università di Roma La Sapienza, 00185 Roma, Italy
| | | | | | | |
Collapse
|
16
|
Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea. Extremophiles 2011; 16:57-66. [DOI: 10.1007/s00792-011-0405-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
17
|
Ishibashi M, Ida K, Tatsuda S, Arakawa T, Tokunaga M. Interaction of hexa-His tag with acidic amino acids results in facilitated refolding of halophilic nucleoside diphosphate kinase. Int J Biol Macromol 2011; 49:778-83. [PMID: 21839770 DOI: 10.1016/j.ijbiomac.2011.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022]
Abstract
We have previously reported that amino-terminal extension sequence containing hexa-His facilitated refolding and assembly of hexameric nucleoside diphosphate kinase from extremely halophilic archaeon Halobacterium salinarum (NDK). In this study, we made various mutations in both the tag sequence and within NDK molecule. SerNDK, in which hexa-His was replaced with hexa-Ser, showed no facilitated folding. In addition, HisD58GD63G, in which both Asp58 and Asp63 in NDK were replaced with Gly, also showed no refolding enhancement. These results suggest that hexa-His in His-tag interact cooperatively with either Asp58 or Asp63 or both. Furthermore, G114D mutant, which formed a dimer in low salt solution, was strongly stabilized by His-tag to form a stable hexamer.
Collapse
|
18
|
Zhao Y, Zhang Y, Cao Y, Qi J, Mao L, Xue Y, Gao F, Peng H, Wang X, Gao GF, Ma Y. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. PLoS One 2011; 6:e14608. [PMID: 21436878 PMCID: PMC3059134 DOI: 10.1371/journal.pone.0014608] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)(8)-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)(8)-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK(a) calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline adaptation mechanism.
Collapse
Affiliation(s)
- Yueju Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yunhua Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Cao
- Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianxun Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Liangwei Mao
- College of Life Science, Hubei University, Wuhan, People's Republic of China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Feng Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hao Peng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaowei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - George F. Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
Dimer–tetramer assembly of nucleoside diphosphate kinase from moderately halophilic bacterium Chromohalobacter salexigens DSM3043: Both residues 134 and 136 are critical for the tetramer assembly. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Toth M, Smith C, Frase H, Mobashery S, Vakulenko S. An antibiotic-resistance enzyme from a deep-sea bacterium. J Am Chem Soc 2010; 132:816-23. [PMID: 20000704 PMCID: PMC2826318 DOI: 10.1021/ja908850p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe herein a highly proficient class A beta-lactamase OIH-1 from the bacterium Oceanobacillus iheyensis, whose habitat is the sediment at a depth of 1050 m in the Pacific Ocean. The OIH-1 structure was solved by molecular replacement and refined at 1.25 A resolution. OIH-1 has evolved to be an extremely halotolerant beta-lactamase capable of hydrolyzing its substrates in the presence of NaCl at saturating concentration. Not only is this the most highly halotolerant bacterial enzyme structure known to date, it is also the highest resolution halophilic protein structure yet determined. Evolution of OIH-1 in the salinity of the ocean has resulted in a molecular surface that is coated with acidic residues, a marked difference from beta-lactamases of terrestrial sources. OIH-1 is the first example of an antibiotic-resistance enzyme that has evolved in the depths of the ocean in isolation from clinical selection and gives us an extraordinary glimpse into protein evolution under extreme conditions. It represents evidence for the existence of a reservoir of antibiotic-resistance enzymes in nature among microbial populations from deep oceanic sources.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Clyde Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025
| | - Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Sergei Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
21
|
Winter JA, Christofi P, Morroll S, Bunting KA. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation. BMC STRUCTURAL BIOLOGY 2009; 9:55. [PMID: 19698123 PMCID: PMC2737543 DOI: 10.1186/1472-6807-9-55] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/22/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA) is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA) to a resolution of 2.0 A. RESULTS The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins). HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. CONCLUSION The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as opposed to simply surviving in extreme halophilic conditions.
Collapse
Affiliation(s)
- Jody A Winter
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Panayiotis Christofi
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Shaun Morroll
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Current address: Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Karen A Bunting
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
22
|
Yamamura A, Ichimura T, Kamekura M, Mizuki T, Usami R, Makino T, Ohtsuka J, Miyazono KI, Okai M, Nagata K, Tanokura M. Molecular mechanism of distinct salt-dependent enzyme activity of two halophilic nucleoside diphosphate kinases. Biophys J 2009; 96:4692-700. [PMID: 19486691 DOI: 10.1016/j.bpj.2009.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022] Open
Abstract
Nucleoside diphosphate kinases from haloarchaea Haloarcula quadrata (NDK-q) and H. sinaiiensis (NDK-s) are identical except for one out of 154 residues, i.e., Arg(31) in NDK-q and Cys(31) in NDK-s. However, the salt-dependent activity profiles of NDK-q and NDK-s are quite different: the optimal NaCl concentrations of NDK-q and NDK-s are 1 M and 2 M, respectively. We analyzed the relationships of the secondary, tertiary, and quaternary structures and NDK activity of these NDKs at various salt concentrations, and revealed that 1), NDK-q is present as a hexamer under a wide range of salt concentrations (0.2-4 M NaCl), whereas NDK-s is present as a hexamer at an NaCl concentration above 2 M and as a dimer at NaCl concentrations below 1 M; 2), dimeric NDK-s has lower activity than hexameric NDK-s; and 3), dimeric NDK-s has higher helicity than hexameric NDK-s. We also determined the crystal structure of hexameric NDK-q, and revealed that Arg(31) plays an important role in stabilizing the hexamer. Thus the substitution of Arg (as in NDK-q) to Cys (as in NDK-s) at position 31 destabilizes the hexameric assembly, and causes dissociation to less active dimers at low salt concentrations.
Collapse
Affiliation(s)
- Akihiro Yamamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Isolation and characterization of culturable halophilic microorganisms of salt ponds in Lianyungang, China. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Dissecting the unique nucleotide specificity of mimivirus nucleoside diphosphate kinase. J Virol 2009; 83:7142-50. [PMID: 19439473 DOI: 10.1128/jvi.00511-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The analysis of the Acanthamoeba polyphaga mimivirus genome revealed the first virus-encoded nucleoside diphosphate kinase (NDK), an enzyme that is central to the synthesis of RNA and DNA, ubiquitous in cellular organisms, and well conserved among the three domains of life. In contrast with the broad specificity of cellular NDKs for all types of ribo- and deoxyribonucleotides, the mimivirus enzyme exhibits a strongly preferential affinity for deoxypyrimidines. In order to elucidate the molecular basis of this unique substrate specificity, we determined the three-dimensional (3D) structure of the Acanthamoeba polyphaga mimivirus NDK alone and in complex with various nucleotides. As predicted from a sequence comparison with cellular NDKs, the 3D structure of the mimivirus enzyme exhibits a shorter Kpn loop, previously recognized as a main feature of the NDK active site. The structure of the viral enzyme in complex with various nucleotides also pinpointed two residue changes, both located near the active site and specific to the viral NDK, which could explain its stronger affinity for deoxynucleotides and pyrimidine nucleotides. The role of these residues was explored by building a set of viral NDK variants, assaying their enzymatic activities, and determining their 3D structures in complex with various nucleotides. A total of 26 crystallographic structures were determined at resolutions ranging from 2.8 A to 1.5 A. Our results suggest that the mimivirus enzyme progressively evolved from an ancestral NDK under the constraints of optimizing its efficiency for the replication of an AT-rich (73%) viral genome in a thymidine-limited host environment.
Collapse
|
25
|
Domenech J, Baker PJ, Sedelnikova SE, Rodgers HF, Rice DW, Ferrer J. Crystallization and preliminary X-ray analysis of D-2-hydroxyacid dehydrogenase from Haloferax mediterranei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:415-8. [PMID: 19342795 PMCID: PMC2664775 DOI: 10.1107/s174430910900863x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 03/09/2009] [Indexed: 11/11/2022]
Abstract
D-2-hydroxyacid dehydrogenase (D2-HDH) from Haloferax mediterranei has been overexpressed in Escherichia coli, solubilized in 8 M urea and refolded by rapid dilution. The protein was purified and crystallized by the hanging-drop vapour-diffusion method using ammonium sulfate or PEG 3350 as precipitant. Two crystal forms representing the free enzyme and the nonproductive ternary complex with alpha-ketohexanoic acid and NAD(+) grew under these conditions. Crystals of form I diffracted to beyond 3.0 A resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 66.0, b = 119.6, c = 86.2 A, beta = 96.3 degrees . Crystals of form II diffracted to beyond 2.0 A resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 66.5, b = 75.2, c = 77.6 A, alpha = 109.1, beta = 107.5, gamma = 95.9 degrees. The calculated values for V(M) and analysis of the self-rotation and self-Patterson functions suggest that the asymmetric unit in both crystal forms contains two dimers related by pseudo-translational symmetry.
Collapse
Affiliation(s)
- J. Domenech
- Departamento de Agroquímica y Bioquímica, División de Bioquímica, Facultad de Ciencias, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - P. J. Baker
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, England
| | - S. E. Sedelnikova
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, England
| | - H. F. Rodgers
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, England
| | - D. W. Rice
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, England
| | - J. Ferrer
- Departamento de Agroquímica y Bioquímica, División de Bioquímica, Facultad de Ciencias, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| |
Collapse
|
26
|
Aivaliotis M, Macek B, Gnad F, Reichelt P, Mann M, Oesterhelt D. Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum--a representative of the third domain of life. PLoS One 2009; 4:e4777. [PMID: 19274099 PMCID: PMC2652253 DOI: 10.1371/journal.pone.0004777] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/02/2009] [Indexed: 11/30/2022] Open
Abstract
In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins.
Collapse
Affiliation(s)
- Michalis Aivaliotis
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| | - Boris Macek
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Gnad
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter Reichelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
27
|
Ishibashi M, Iwasa T, Kumeda K, Arakawa T, Tokunaga M. Effects of mutations at Gly114 on the stability and refolding of Haloarchaeal nucleoside diphosphate kinase in low salt solution. Int J Biol Macromol 2009; 44:361-4. [PMID: 19428467 DOI: 10.1016/j.ijbiomac.2009.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 11/25/2022]
Abstract
We have shown before that mutation of Gly114 to Arg enhances folding of hexameric nucleoside diphosphate kinase (HsNDK) from Halobacterium salinarum. In this study, we constructed three mutant forms, Gly114Lys (G114K), Gly114Ser (G114S) and Gly114Asp (G114D), to further clarify the role residue 114 plays in the stability and folding of HsNDK. While expression of G114D mutant resulted in inactive enzyme, other mutant HsNDKs were successfully expressed in active form. The G114K mutant, similar to Gly114Arg (G114R) mutant, refolded in 1M NaCl after heat-denaturation, under which the wild-type HsNDK and G114S proteins showed no refolding.
Collapse
Affiliation(s)
- Matsujiro Ishibashi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | | | | | | | | |
Collapse
|
28
|
Madern D, Ebel C. Influence of an anion-binding site in the stabilization of halophilic malate dehydrogenase from Haloarcula marismortui. Biochimie 2007; 89:981-7. [PMID: 17451860 DOI: 10.1016/j.biochi.2007.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 03/09/2007] [Indexed: 11/30/2022]
Abstract
Halophilic proteins have evolved to be soluble, stable and active in high salt concentration. Crystallographic studies have shown that surface enrichment by acidic amino acids is a common structural feature of halophilic proteins. In addition, ion-binding sites have also been observed in most of the cases. The role of chloride-binding sites in halophilic adaptation was addressed in a site-directed mutagenesis study of tetrameric malate dehydrogenase from Haloarcula marismortui. The mutation of K 205, which is involved in an inter-subunit chloride-binding site, drastically modified the enzyme stability in the presence of KCl, but not in the presence of KF. The oligomeric state of the [K205A] mutant changes with the nature of the anion. At high salt concentration, the [K205A] mutant is a dimer when the anion is a chloride ion, whereas it is a tetramer when the fluoride ion is used. The results highlight the role of anion-binding sites in protein adaptation to high salt conditions.
Collapse
Affiliation(s)
- Dominique Madern
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, CEA, CNRS, Université Joseph Fourier, 41 rue Jules Horowitz, F-38027 Grenoble, France.
| | | |
Collapse
|
29
|
Ishibashi M, Tatsuda S, Izutsu KI, Kumeda K, Arakawa T, Tokunaga M. A single Gly114Arg mutation stabilizes the hexameric subunit assembly and changes the substrate specificity of halo-archaeal nucleoside diphosphate kinase. FEBS Lett 2007; 581:4073-9. [PMID: 17674972 DOI: 10.1016/j.febslet.2007.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/04/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
Nucleoside diphosphate kinase from extremely halophilic archaeon (HsNDK) requires above 2M NaCl concentration for in vitro refolding. Here an attempt was made to isolate mutations that allow HsNDK to refold in low salt media. Such a screening resulted in isolation of an HsNDK mutant, Gly114Arg, which efficiently refolded in the presence of 1M NaCl. This mutant, unlike the wild type enzyme, was expressed in Escherichia coli as an active form. The residue 114 is in close proximity to Glu155 of the neighboring subunit in the three dimensional hexameric structure of the HsNDK. It is thus possible that the attractive electrostatic interactions occur between Arg114 and Glu155 in the mutant HsNDK, stabilizing the hexameric subunit assembly.
Collapse
Affiliation(s)
- Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Esclapez J, Pire C, Bautista V, Martínez-Espinosa RM, Ferrer J, Bonete MJ. Analysis of acidic surface ofHaloferax mediterraneiglucose dehydrogenase by site-directed mutagenesis. FEBS Lett 2007; 581:837-42. [PMID: 17289028 DOI: 10.1016/j.febslet.2007.01.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 11/13/2022]
Abstract
Generally, halophilic enzymes present a characteristic amino acid composition, showing an increase in the content of acidic residues and a decrease in the content of basic residues, particularly lysines. The latter decrease appears to be responsible for a reduction in the proportion of solvent-exposed hydrophobic surface. This role was investigated by site-directed mutagenesis of glucose dehydrogenase from Haloferax mediterranei, in which surface aspartic residues were changed to lysine residues. From the biochemical analysis of the mutant proteins, it is concluded that the replacement of the aspartic residues by lysines results in slightly less halotolerant proteins, although they retain the same enzymatic activities and kinetic parameters compared to the wild type enzyme.
Collapse
Affiliation(s)
- J Esclapez
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Tehei M, Franzetti B, Wood K, Gabel F, Fabiani E, Jasnin M, Zamponi M, Oesterhelt D, Zaccai G, Ginzburg M, Ginzburg BZ. Neutron scattering reveals extremely slow cell water in a Dead Sea organism. Proc Natl Acad Sci U S A 2007; 104:766-71. [PMID: 17215355 PMCID: PMC1783388 DOI: 10.1073/pnas.0601639104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Indexed: 11/18/2022] Open
Abstract
Intracellular water dynamics in Haloarcula marismortui, an extremely halophilic organism originally isolated from the Dead Sea, was studied by neutron scattering. The water in centrifuged cell pellets was examined by means of two spectrometers, IN6 and IN16, sensitive to motions with time scales of 10 ps and 1 ns, respectively. From IN6 data, a translational diffusion constant of 1.3 x 10(-5) cm(2) s(-1) was determined at 285 K. This value is close to that found previously for other cells and close to that for bulk water, as well as that of the water in the 3.5 M NaCl solution bathing the cells. A very slow water component was discovered from the IN16 data. At 285 K the water-protons of this component displays a residence time of 411 ps (compared with a few ps in bulk water). At 300 K, the residence time dropped to 243 ps and was associated with a translational diffusion of 9.3 x 10(-8) cm(2) s(-1), or 250 times lower than that of bulk water. This slow water accounts for approximately 76% of cell water in H. marismortui. No such water was found in Escherichia coli measured on BSS, a neutron spectrometer with properties similar to those of IN16. It is hypothesized that the slow mobility of a large part of H. marismortui cell water indicates a specific water structure responsible for the large amounts of K(+) bound within these extremophile cells.
Collapse
Affiliation(s)
- Moeava Tehei
- Institut de Biologie Structurale, Commissariat à l'Energie Atomique-Centre National de la Recherche Scientifique-Université Joseph Fourier, Laboratoire de Biophysique Moléculaire, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Manikandan K, Bhardwaj A, Gupta N, Lokanath NK, Ghosh A, Reddy VS, Ramakumar S. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci 2006; 15:1951-60. [PMID: 16823036 PMCID: PMC2242578 DOI: 10.1110/ps.062220206] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Crystal structures are known for several glycosyl hydrolase family 10 (GH10) xylanases. However, none of them is from an alkalophilic organism that can grow in alkaline conditions. We have determined the crystal structures at 2.2 Angstroms of a GH10 extracellular endoxylanase (BSX) from an alkalophilic Bacillus sp. NG-27, for the native and the complex enzyme with xylosaccharides. The industrially important enzyme is optimally active and stable at 343 K and at a pH of 8.4. Comparison of the structure of BSX with those of other thermostable GH10 xylanases optimally active at acidic or close to neutral pH showed that the solvent-exposed acidic amino acids, Asp and Glu, are markedly enhanced in BSX, while solvent-exposed Asn was noticeably depleted. The BSX crystal structure when compared with putative three-dimensional homology models of other extracellular alkalophilic GH10 xylanases from alkalophilic organisms suggests that a protein surface rich in acidic residues may be an important feature common to these alkali thermostable enzymes. A comparison of the surface features of BSX and of halophilic proteins allowed us to predict the activity of BSX at high salt concentrations, which we verified through experiments. This offered us important lessons in the polyextremophilicity of proteins, where understanding the structural features of a protein stable in one set of extreme conditions provided clues about the activity of the protein in other extreme conditions. The work brings to the fore the role of the nature and composition of solvent-exposed residues in the adaptation of enzymes to polyextreme conditions, as in BSX.
Collapse
|