1
|
Kishida K, Li YG, Ogawa-Kishida N, Khara P, Al Mamun AAM, Bosserman RE, Christie PJ. Chimeric systems composed of swapped Tra subunits between distantly-related F plasmids reveal striking plasticity among type IV secretion machines. PLoS Genet 2024; 20:e1011088. [PMID: 38437248 PMCID: PMC10939261 DOI: 10.1371/journal.pgen.1011088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/14/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Rachel E. Bosserman
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| |
Collapse
|
2
|
Kishida K, Li YG, Ogawa-Kishida N, Khara P, Al Mamun AAM, Bosserman RE, Christie PJ. Chimeric systems composed of swapped Tra subunits between distantly-related F plasmids reveal striking plasticity among type IV secretion machines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570194. [PMID: 38106057 PMCID: PMC10723329 DOI: 10.1101/2023.12.05.570194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate - TraD and TraD - T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Rachel E. Bosserman
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| |
Collapse
|
3
|
Álvarez-Rodríguez I, Arana L, Ugarte-Uribe B, Gómez-Rubio E, Martín-Santamaría S, Garbisu C, Alkorta I. Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. Front Mol Biosci 2020; 7:201. [PMID: 32903459 PMCID: PMC7434980 DOI: 10.3389/fmolb.2020.00201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics. One of the major mechanisms responsible for the horizontal acquisition of new genes (e.g., antibiotic resistance genes) is bacterial conjugation, a process mediated by mobile genetic elements such as conjugative plasmids and integrative conjugative elements. Conjugative plasmids harboring antibiotic resistance genes can be transferred from a donor to a recipient bacterium in a process that requires physical contact. After conjugation, the recipient bacterium not only harbors the antibiotic resistance genes but it can also transfer the acquired plasmid to other bacteria, thus contributing to the spread of antibiotic resistance. Conjugative plasmids have genes that encode all the proteins necessary for the conjugation to take place, such as the type IV coupling proteins (T4CPs) present in all conjugative plasmids. Type VI coupling proteins constitute a heterogeneous family of hexameric ATPases that use energy from the ATP hydrolysis for plasmid transfer. Taking into account their essential role in bacterial conjugation, T4CPs are attractive targets for the inhibition of bacterial conjugation and, concomitantly, the limitation of antibiotic resistance dissemination. This review aims to compile present knowledge on T4CPs as a starting point for delving into their molecular structure and functioning in future studies. Likewise, the scientific literature on bacterial conjugation inhibitors has been reviewed here, in an attempt to elucidate the possibility of designing T4CP-inhibitors as a potential solution to the dissemination of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Itxaso Álvarez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Lide Arana
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Elena Gómez-Rubio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Cient fico y Tecnológico de Bizkaia, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
4
|
Álvarez-Rodríguez I, Ugarte-Uribe B, de la Arada I, Arrondo JLR, Garbisu C, Alkorta I. Conjugative Coupling Proteins and the Role of Their Domains in Conjugation, Secondary Structure and in vivo Subcellular Location. Front Mol Biosci 2020; 7:185. [PMID: 32850972 PMCID: PMC7431656 DOI: 10.3389/fmolb.2020.00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Type IV Coupling Proteins (T4CPs) are essential elements in many type IV secretion systems (T4SSs). The members of this family display sequence, length, and domain architecture heterogeneity, being the conserved Nucleotide-Binding Domain the motif that defines them. In addition, most T4CPs contain a Transmembrane Domain (TMD) in the amino end and an All-Alpha Domain facing the cytoplasm. Additionally, a few T4CPs present a variable domain at the carboxyl end. The structural paradigm of this family is TrwBR388, the T4CP of conjugative plasmid R388. This protein has been widely studied, in particular the role of the TMD on the different characteristics of TrwBR388. To gain knowledge about T4CPs and their TMD, in this work a chimeric protein containing the TMD of TraJpKM101 and the cytosolic domain of TrwBR388 has been constructed. Additionally, one of the few T4CPs of mobilizable plasmids, MobBCloDF13 of mobilizable plasmid CloDF13, together with its TMD-less mutant MobBΔTMD have been studied. Mating studies showed that the chimeric protein is functional in vivo and that it exerted negative dominance against the native proteins TrwBR388 and TraJpKM101. Also, it was observed that the TMD of MobBCloDF13 is essential for the mobilization of CloDF13 plasmid. Analysis of the secondary structure components showed that the presence of a heterologous TMD alters the structure of the cytosolic domain in the chimeric protein. On the contrary, the absence of the TMD in MobBCloDF13 does not affect the secondary structure of its cytosolic domain. Subcellular localization studies showed that T4CPs have a unipolar or bipolar location, which is enhanced by the presence of the remaining proteins of the conjugative system. Unlike what has been described for TrwBR388, the TMD is not an essential element for the polar location of MobBCloDF13. The main conclusion is that the characteristics described for the paradigmatic TrwBR388 T4CP should not be ascribed to the whole T4CP family. Specifically, it has been proven that the mobilizable plasmid-related MobBCloDF13 presents different characteristics regarding the role of its TMD. This work will contribute to better understand the T4CP family, a key element in bacterial conjugation, the main mechanism responsible for antibiotic resistance spread.
Collapse
Affiliation(s)
- Itxaso Álvarez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - José Luis R Arrondo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - Carlos Garbisu
- NEIKER, Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| |
Collapse
|
5
|
ICEKp2: description of an integrative and conjugative element in Klebsiella pneumoniae, co-occurring and interacting with ICEKp1. Sci Rep 2019; 9:13892. [PMID: 31554924 PMCID: PMC6761156 DOI: 10.1038/s41598-019-50456-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Klebsiella pneumoniae is a human pathogen, prominent in antimicrobial-resistant and nosocomial infection. The integrative and conjugative element ICEKp1 is present in a third of clinical isolates and more prevalent in invasive disease; it provides genetic diversity and enables the spread of virulence-associated genes. We report a second integrative conjugative element that can co-occur with ICEKp1 in K. pneumoniae. This element, ICEKp2, is similar to the Pseudomonas aeruginosa pathogenicity island PAPI. We identified ICEKp2 in K. pneumoniae sequence types ST11, ST258 and ST512, which are associated with carbapenem-resistant outbreaks in China and the US, including isolates with and without ICEKp1. ICEKp2 was competent for excision, but self-mobilisation to recipient Escherichia coli was not detected. In an isolate with both elements, ICEKp2 positively influenced the efficiency of plasmid mobilisation driven by ICEKp1. We propose a putative mechanism, in which a Mob2 ATPase of ICEKp2 may contribute to the ICEKp1 conjugation machinery. Supporting this mechanism, mob2, but not a variant with mutations in the ATPase motif, restored transfer efficiency to an ICEKp2 knockout. This is the first demonstration of the interaction between integrative and conjugative genetic elements in a single Gram-negative bacterium with implications for understanding evolution by horizontal gene transfer.
Collapse
|
6
|
Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: Mechanism and Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems. Curr Top Microbiol Immunol 2018; 418:233-260. [PMID: 29808338 DOI: 10.1007/82_2018_94] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Substrate translocation involves specific lysine residues of the central channel of the conjugative coupling protein TrwB. Mol Genet Genomics 2017; 292:1037-1049. [PMID: 28597316 DOI: 10.1007/s00438-017-1331-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Conjugative transfer of plasmid R388 requires the coupling protein TrwB for protein and DNA transport, but their molecular role in transport has not been deciphered. We investigated the role of residues protruding into the central channel of the TrwB hexamer by a mutational analysis. Mutations affecting lysine residues K275, K398, and K421, and residue S441, all facing the internal channel, affected transport of both DNA and the relaxase protein in vivo. The ATPase activity of the purified soluble variants was affected significantly in the presence of accessory protein TrwA or DNA, correlating with their behaviour in vivo. Alteration of residues located at the cytoplasmic or the inner membrane interface resulted in lower activity in vivo and in vitro, while variants affecting residues in the central region of the channel showed increased DNA and protein transfer efficiency and higher ATPase activity, especially in the absence of TrwA. In fact, these variants could catalyze DNA transfer in the absence of TrwA under conditions in which the wild-type system was transfer deficient. Our results suggest that protein and DNA molecules have the same molecular requirements for translocation by Type IV secretion systems, with residues at both ends of the TrwB channel controlling the opening-closing mechanism, while residues embedded in the channel would set the pace for substrate translocation (both protein and DNA) in concert with TrwA.
Collapse
|
8
|
Abstract
Type IV coupling proteins (T4CPs) are essential constituents of most type IV secretion systems (T4SSs), and probably the most intriguing component in terms of their evolutionary origin and functional role. Coupling proteins have coevolved with their cognate secretion system and translocated substrates. They are present in all conjugative systems, leading to the suggestion that they play a specific role in DNA transfer. However, they are also part of many T4SSs involved in bacterial virulence, where they are required for protein translocation, with no apparent involvement in DNA secretion. Their name reflects genetic and biochemical evidence of a connecting role between the substrate and the T4SS, thus probably playing a major role in substrate recruitment. Increasing evidence supports also a role in signal transmission leading to activation of secretion. Most studies have addressed conjugative coupling proteins of the VirD4-like protein family. Their conserved features include a nucleotide-binding domain, essential for substrate translocation, a C-terminal domain involved in substrate interactions, and a transmembrane domain anchoring them to the inner membrane, which is an important regulator of protein function. Purified soluble deletion mutants display ATP hydrolysis activity and unspecific DNA binding. Elucidation of the 3D structure of the soluble deletion mutant of the conjugative coupling protein TrwB, TrwBΔN70, provided the basis for further mutagenesis studies rendering interesting insights into the structure-function of these proteins. Their key role as couplers between substrate and transporter provides biotechnological potential as targets for anti-virulence strategies, as well as for customization of substrate delivery through heterologous secretion systems.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria (UC), and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-CSIC-SODERCAN, C/Albert Einstein 22, 39011, Santander, Spain.
| | - Itziar Alkorta
- Departamento de Bioquímica y Biología Molecular (UPV/EHU), Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940, Leioa, Spain
| |
Collapse
|
9
|
The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates. J Bacteriol 2015; 197:2335-49. [PMID: 25939830 DOI: 10.1128/jb.00189-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are largely undefined. Here, we supply genetic and biochemical evidence that a helical bundle, designated the all-alpha domain (AAD), of T4SS receptors functions as a substrate specificity determinant. We show that AADs from two substrate receptors, Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC, bind DNA without sequence or strand preference but specifically bind the cognate relaxases responsible for nicking and piloting the transferred strand through the T4SS. We propose that interactions of receptor AADs with DNA-processing factors constitute a basis for selective coupling of mobile DNA elements with type IV secretion channels.
Collapse
|
10
|
Segura RL, Aguila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I. Subcellular location of the coupling protein TrwB and the role of its transmembrane domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:223-30. [PMID: 24016550 DOI: 10.1016/j.bbamem.2013.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/01/2022]
Abstract
Conjugation is the most important mechanism for horizontal gene transfer and it is the main responsible for the successful adaptation of bacteria to the environment. Conjugative plasmids are the DNA molecules transferred and a multiprotein system encoded by the conjugative plasmid itself is necessary. The high number of proteins involved in the process suggests that they should have a defined location in the cell and therefore, they should be recruited to that specific point. One of these proteins is the coupling protein that plays an essential role in bacterial conjugation. TrwB is the coupling protein of R388 plasmid that is divided in two domains: i) The N-terminal domain referred as transmembrane domain and ii) a large cytosolic domain that contains a nucleotide-binding motif similar to other ATPases. To investigate the role of these domains in the subcellular location of TrwB, we constructed two mutant proteins that comprised the transmembrane (TrwBTM) or the cytoplasmic (TrwBΔN70) domain of TrwB. By immunofluorescence and GFP-fusion proteins we demonstrate that TrwB and TrwBTM mutant protein were localized to the cell pole independently of the remaining R388 proteins. On the contrary, a soluble mutant protein (TrwBΔN70) was localized to the cytoplasm in the absence of R388 proteins. However, in the presence of other R388-encoded proteins, TrwBΔN70 localizes uniformly to the cell membrane, suggesting that interactions between the cytosolic domain of TrwB and other membrane proteins of R388 plasmid may happen. Our results suggest that the transmembrane domain of TrwB leads the protein to the cell pole.
Collapse
Affiliation(s)
- Rosa L Segura
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Segura RL, Águila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I. The transmembrane domain of the T4SS coupling protein TrwB and its role in protein–protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2015-25. [DOI: 10.1016/j.bbamem.2013.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
|
12
|
Senthil Kumar B, Ralte Z, Passari AK, Mishra VK, Chutia BM, Singh BP, Guruswami G, Nachimuthu SK. Characterization of Bacillus thuringiensis Cry1 class proteins in relation to their insecticidal action. Interdiscip Sci 2013; 5:127-35. [PMID: 23740394 DOI: 10.1007/s12539-013-0160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/27/2012] [Accepted: 11/01/2012] [Indexed: 11/26/2022]
Abstract
Thirty nine Bt Cry1 subgroup protein sequences were retrieved from NCBI and analyzed for physicochemical properties, active site and relationship in relation to their variations in toxicity. Cry1 proteins were found to be hydrophilic and stable. SOSUI server predicted presence of two transmembrane regions in Ag and a single transmembrane region from Aa to Ae. EMBOSS PepWheel tool analysis of the transmembrane regions showed that there were 23 highly conserved residues towards the N terminal which are hydrophobic and more than half of the residues were neutrally charged. No signal peptide was detected which classifies the Cry1 group proteins as non-secretory proteins. Cry1 proteins have very high composition of neutral amino acids and might transform into negative charge after solubilization in alkaline environment (insect midgut). The negatively charged protein might misfold causing difficultly to digest and thereby be toxic to lepidopteran. Active sites of Cry1 proteins with more than 50% neutral amino acids showed wide insecticidal spectrum and further positive correlation (r = 0.7731) was observed between neutral amino acids and insect species affected (Y = -138.21 + 2.907X). Similarity of sequences was found between Cry1 proteins based on their high or low spectrum of insecticidal activity.
Collapse
|
13
|
Abstract
Bacteria have evolved several secretion machineries to bring about transport of various virulence factors, nutrients, nucleic acids and cell-surface appendages that are essential for their pathogenesis. T4S (Type IV secretion) systems are versatile secretion systems found in various Gram-negative and Gram-positive bacteria and in few archaea. They are large multisubunit translocons secreting a diverse array of substrates varying in size and nature from monomeric proteins to nucleoprotein complexes. T4S systems have evolved from conjugation machineries and are implicated in antibiotic resistance gene transfer and transport of virulence factors in Legionella pneumophila causing Legionnaires’ disease, Brucella suis causing brucellosis and Helicobacter pylori causing gastroduodenal diseases. The best-studied are the Agrobacterium tumefaciens VirB/D4 and the Escherichia coli plasmid pKM101 T4S systems. Recent structural advances revealing the cryo-EM (electron microscopy) structure of the core translocation assembly and high-resolution structure of the outer-membrane pore of T4S systems have made paradigm shifts in the understanding of T4S systems. The present paper reviews the advances made in biochemical and structural studies and summarizes our current understanding of the molecular architecture of this mega-assembly.
Collapse
|
14
|
Vecino AJ, Segura RDL, de la Arada I, de la Cruz F, Goñi FM, Arrondo JL, Alkorta I. Deletion of a single helix from the transmembrane domain causes large changes in membrane insertion properties and secondary structure of the bacterial conjugation protein TrwB. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3158-66. [DOI: 10.1016/j.bbamem.2012.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
15
|
Vecino AJ, de la Arada I, Segura RL, Goñi FM, de la Cruz F, Arrondo JLR, Alkorta I. Membrane insertion stabilizes the structure of TrwB, the R388 conjugative plasmid coupling protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1032-9. [PMID: 21211515 DOI: 10.1016/j.bbamem.2010.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/23/2010] [Accepted: 12/25/2010] [Indexed: 11/30/2022]
Abstract
TrwB is an integral membrane protein that plays a crucial role in the conjugative process of plasmid R388. We have recently shown [Vecino et al., Biochim. Biophys. Acta 1798(11), 2160-2169 (2010)] that TrwB can be reconstituted into liposomes, and that bilayer incorporation increases its affinity for nucleotides and its specificity for ATP. In the present contribution we examine the structural effects of membrane insertion on TrwB, by comparing the protein in reconstituted form and in the form of protein/lipid/detergent mixed micelles. TrwB was reconstituted in PE:PG:CL (76.3:19.6:4.1mol ratio) with a final 99:1 lipid:protein mol ratio. This lipid mixture is intended to mimic the bacterial inner membrane composition, and allows a more efficient reconstitution than other lipid mixtures tested. The studies have been carried out mainly using infrared spectroscopy, because this technique provides simultaneously information on both the lipid and protein membrane components. Membrane reconstitution of TrwB is accompanied by a decrease in β-sheet contents and an increase in β-strand structures, probably related to protein-protein contacts in the bilayer. The predominant α-helical component remains unchanged. The bilayer-embedded protein becomes thermally more stable, and also more resistant to trypsin digestion. The properties of the bilayer lipids are also modified in the presence of TrwB, the phospholipid acyl chains are slightly ordered, and the phosphate groups at the interface become more accessible to water. In addition, we observe that the protein thermal denaturation affects the lipid thermal transition profile.
Collapse
Affiliation(s)
- Ana J Vecino
- Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Segura RDL, Vecino AJ, Ugarte-Uribe B, Águila S, de la Cruz F, Goñi FM, Alkorta I. Reconstitution into liposomes enhances nucleotide binding affinity of TrwB conjugative coupling protein. Chem Phys Lipids 2010. [DOI: 10.1016/j.chemphyslip.2010.05.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2160-9. [PMID: 20647001 DOI: 10.1016/j.bbamem.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
Abstract
Bacterial conjugative systems code for an essential membrane protein that couples the relaxosome to the DNA transport apparatus, called type IV coupling protein (T4CP). TrwB is the T4CP of the conjugative plasmid R388. In earlier work we found that this protein, purified in the presence of detergents, binds preferentially purine nucleotides trisphosphate. In contrast a soluble truncated mutant TrwBΔN70 binds uniformly all nucleotides tested. In this work, TrwB has been successfully reconstituted into liposomes. The non-membranous portion of the protein is almost exclusively oriented towards the outside of the vesicles. Functional analysis of TrwB proteoliposomes demonstrates that when the protein is inserted into the lipid bilayer the affinity for adenine and guanine nucleotides is enhanced as compared to that of the protein purified in detergent or to the soluble deletion mutant, TrwBΔN70. The protein specificity for adenine nucleotides is also increased. No ATPase activity has been found in TrwB reconstituted in proteoliposomes. This result suggests that the N-terminal transmembrane segment of this T4CP interferes with its ATPase activity and can be taken to imply that the TrwB transmembrane domain plays a regulatory role in its biological activity.
Collapse
|
18
|
Abstract
The conjugative coupling protein TrwB is responsible for connecting the relaxosome to the type IV secretion system during conjugative DNA transfer of plasmid R388. It is directly involved in transport of the relaxase TrwC, and it displays an ATPase activity probably involved in DNA pumping. We designed a conjugation assay in which the frequency of DNA transfer is directly proportional to the amount of TrwB. A collection of point mutants was constructed in the TrwB cytoplasmic domain on the basis of the crystal structure of TrwB Delta N70, targeting the nucleotide triphosphate (NTP)-binding region, the cytoplasmic surface, or the internal channel in the hexamer. An additional set of transfer-deficient mutants was obtained by random mutagenesis. Most mutants were impaired in both DNA and protein transport. We found that the integrity of the nucleotide binding domain is absolutely required for TrwB function, which is also involved in monomer-monomer interactions. Polar residues surrounding the entrance and inside the internal channel were important for TrwB function and may be involved in interactions with the relaxosomal components. Finally, the N-terminal transmembrane domain of TrwB was subjected to random mutagenesis followed by a two-hybrid screen for mutants showing enhanced protein-protein interactions with the related TrwE protein of Bartonella tribocorum. Several point mutants were obtained with mutations in the transmembranal helices: specifically, one proline from each protein may be the key residue involved in the interaction of the coupling protein with the type IV secretion apparatus.
Collapse
|
19
|
Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J 2010; 425:475-88. [PMID: 20070257 DOI: 10.1042/bj20091518] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gram-negative bacteria have evolved diverse secretion systems/machineries to translocate substrates across the cell envelope. These various machineries fulfil a wide variety of functions but are also essential for pathogenic bacteria to infect human or plant cells. Secretion systems, of which there are seven, utilize one of two secretion mechanisms: (i) the one-step mechanism, whereby substrates are translocated directly from the bacterial cytoplasm to the extracellular medium or into the eukaryotic target cell; (ii) the two-step mechanism, whereby substrates are first translocated across the bacterial inner membrane; once in the periplasm, substrates are targeted to one of the secretion systems that mediate transport across the outer membrane and released outside the bacterial cell. The present review provides an example for each of these two classes of secretion systems and contrasts the various solutions evolved to secrete substrates.
Collapse
|
20
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 533] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
21
|
Plasmid r1 conjugative DNA processing is regulated at the coupling protein interface. J Bacteriol 2009; 191:6877-87. [PMID: 19767437 DOI: 10.1128/jb.00918-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selective substrate uptake controls initiation of macromolecular secretion by type IV secretion systems in gram-negative bacteria. Type IV coupling proteins (T4CPs) are essential, but the molecular mechanisms governing substrate entry to the translocation pathway remain obscure. We report a biochemical approach to reconstitute a regulatory interface between the plasmid R1 T4CP and the nucleoprotein relaxosome dedicated to the initiation stage of plasmid DNA processing and substrate presentation. The predicted cytosolic domain of T4CP TraD was purified in a predominantly monomeric form, and potential regulatory effects of this protein on catalytic activities exhibited by the relaxosome during transfer initiation were analyzed in vitro. TraDDeltaN130 stimulated the TraI DNA transesterase activity apparently via interactions on both the protein and the DNA levels. TraM, a protein interaction partner of TraD, also increased DNA transesterase activity in vitro. The mechanism may involve altered DNA conformation as TraM induced underwinding of oriT plasmid DNA in vivo (DeltaL(k) = -4). Permanganate mapping of the positions of duplex melting due to relaxosome assembly with TraDDeltaN130 on supercoiled DNA in vitro confirmed localized unwinding at nic but ruled out formation of an open complex compatible with initiation of the TraI helicase activity. These data link relaxosome regulation to the T4CP and support the model that a committed step in the initiation of DNA export requires activation of TraI helicase loading or catalysis.
Collapse
|
22
|
Hazes B, Frost L. Towards a systems biology approach to study type II/IV secretion systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1839-50. [PMID: 18406342 DOI: 10.1016/j.bbamem.2008.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 02/22/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
Many gram-negative bacteria produce thin protein filaments, named pili, which extend beyond the confines of the outer membrane. The importance of these pili is illustrated by the fact that highly complex, multi-protein pilus-assembly machines have evolved, not once, but several times. Their many functions include motility, adhesion, secretion, and DNA transfer, all of which can contribute to the virulence of bacterial pathogens or to the spread of virulence factors by horizontal gene transfer. The medical importance has stimulated extensive biochemical and genetic studies but the assembly and function of pili remains an enigma. It is clear that progress in this field requires a more holistic approach where the entire molecular apparatus that forms the pilus is studied as a system. In recent years systems biology approaches have started to complement classical studies of pili and their assembly. Moreover, continued progress in structural biology is building a picture of the components that make up the assembly machine. However, the complexity and multiple-membrane spanning nature of these secretion systems pose formidable technical challenges, and it will require a concerted effort before we can create comprehensive and predictive models of these remarkable molecular machines.
Collapse
Affiliation(s)
- Bart Hazes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
23
|
Haft RJF, Gachelet EG, Nguyen T, Toussaint L, Chivian D, Traxler B. In vivo oligomerization of the F conjugative coupling protein TraD. J Bacteriol 2007; 189:6626-34. [PMID: 17631633 PMCID: PMC2045173 DOI: 10.1128/jb.00513-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/05/2007] [Indexed: 11/20/2022] Open
Abstract
Type IV secretory systems are a group of bacterial transporters responsible for the transport of proteins and nucleic acids directly into recipient cells. Such systems play key roles in the virulence of some pathogenic organisms and in conjugation-mediated horizontal gene transfer. Many type IV systems require conserved "coupling proteins," transmembrane polypeptides that are critical for transporting secreted substrates across the cytoplasmic membrane of the bacterium. In vitro evidence suggests that the functional form of coupling proteins is a homohexameric, ring-shaped complex. Using a library of tagged mutants, we investigated the structural and functional organization of the F plasmid conjugative coupling protein TraD by coimmunoprecipitation, cross-linking, and genetic means. We present direct evidence that coupling proteins form stable oligomeric complexes in the membranes of bacteria and that the formation of some of these complexes requires other F-encoded functions. Our data also show that different regions of TraD play distinct roles in the oligomerization process. We postulate a model for in vivo oligomerization and discuss the probable participation of individual domains of TraD in each step.
Collapse
Affiliation(s)
- Rembrandt J F Haft
- Department of Microbiology, University of Washington, Box 357242, Seattle, WA 98195- 7242, USA
| | | | | | | | | | | |
Collapse
|