1
|
Löwe J, Dietz K, Gröger H. From a Biosynthetic Pathway toward a Biocatalytic Process and Chemocatalytic Modifications: Three-Step Enzymatic Cascade to the Plant Metabolite cis-(+)-12-OPDA and Metathesis-Derived Products. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902973. [PMID: 32670743 PMCID: PMC7341106 DOI: 10.1002/advs.201902973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/11/2020] [Indexed: 05/05/2023]
Abstract
A biotechnological approach toward the plant metabolite and regulator cis-(+)-12-oxophytodienoic acid (cis-(+)-12-OPDA) in a one-pot process with >99% conversion, at least 90% selectivity and ≤10% of side products as well as a high diastereoselectivity (leading to d.r. of at least 90:10) is reported. The optimized organic-synthetic enzyme cascade for preparing this bioactive and commercial molecule with pharmaceutical relevance on a gram per L scale is designed based on its biosynthetic pathway starting from cheap and readily accessible linolenic acid. Toward this end, a recombinant biocatalyst system has been prepared for carrying out the most critical two key steps in a tailored manner, thus avoiding sensitive intermediate decomposition. Furthermore, cis-(+)-12-OPDA is successfully modified via a cross-alkene metathesis reaction with conversions of up to >99%, leading to a compound library of new cis-(+)-12-OPDA derivatives with different substitution pattern of the side chain at the 2-position. By means of such a combined biotechnological and chemocatalytic route, a straightforward approach to a structurally unique oxylipin library is realized, which would be highly difficult or not accessible by pure chemical and biotechnological methods, respectively.
Collapse
Affiliation(s)
- Jana Löwe
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
| | - Karl‐Josef Dietz
- Chair of Plant Biochemistry and PhysiologyFaculty of BiologyBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
| |
Collapse
|
2
|
Placido DF, Dong N, Dong C, Cruz VMV, Dierig DA, Cahoon RE, Kang BG, Huynh T, Whalen M, Ponciano G, McMahan C. Downregulation of a CYP74 Rubber Particle Protein Increases Natural Rubber Production in Parthenium argentatum. FRONTIERS IN PLANT SCIENCE 2019; 10:760. [PMID: 31297121 PMCID: PMC6607968 DOI: 10.3389/fpls.2019.00760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/24/2019] [Indexed: 05/31/2023]
Abstract
We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe) lines, when grown in controlled environments both in tissue-culture media and in greenhouse/growth chambers. Rubber particles from AOSi plants consistently had less AOS particle-associated protein, and lower activity (for conversion of 13-HPOT to allene oxide). Yet plants with downregulated AOS showed higher rubber transferase enzyme activity. The increase in biomass in AOSi lines was associated with not only increases in the rate of photosynthesis and non-photochemical quenching (NPQ), in the cold, but also in the content of the phytohormone SA, along with a decrease in JA, GAs, and ABA. The increase in biosynthetic activity and rubber content could further result from the negative regulation of AOS expression by high levels of salicylic acid in AOSi lines and when introduced exogenously. It is apparent that AOS in guayule plays a pivotal role in rubber production and plant growth.
Collapse
Affiliation(s)
- Dante F. Placido
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Niu Dong
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Chen Dong
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Von Mark V. Cruz
- Guayule Research Farm, Section Manager Agricultural Operations, Bridgestone Americas, Inc., Eloy, AZ, United States
| | - David A. Dierig
- Guayule Research Farm, Section Manager Agricultural Operations, Bridgestone Americas, Inc., Eloy, AZ, United States
| | - Rebecca E. Cahoon
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States
| | | | - Trinh Huynh
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Maureen Whalen
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Grisel Ponciano
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Colleen McMahan
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
3
|
Chang Z, Wang X, Wei R, Liu Z, Shan H, Fan G, Hu H. Functional expression and purification of CYP93C20, a plant membrane-associated cytochrome P450 from Medicago truncatula. Protein Expr Purif 2018; 150:44-52. [DOI: 10.1016/j.pep.2018.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS One 2018; 13:e0190884. [PMID: 29304107 PMCID: PMC5755929 DOI: 10.1371/journal.pone.0190884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Jasmonic acid (JA), its derivatives and its precursor cis-12-oxo phytodienoic acid (OPDA) form a group of phytohormones, the jasmonates, representing signal molecules involved in plant stress responses, in the defense against pathogens as well as in development. Elevated levels of JA have been shown to play a role in arbuscular mycorrhiza and in the induction of nitrogen-fixing root nodules. In this study, the gene families of two committed enzymes of the JA biosynthetic pathway, allene oxide synthase (AOS) and allene oxide cyclase (AOC), were characterized in the determinate nodule-forming model legume Lotus japonicus JA levels were to be analysed in the course of nodulation. Since in all L. japonicus organs examined, JA levels increased upon mechanical disturbance and wounding, an aeroponic culture system was established to allow for a quick harvest, followed by the analysis of JA levels in whole root and shoot systems. Nodulated plants were compared with non-nodulated plants grown on nitrate or ammonium as N source, respectively, over a five week-period. JA levels turned out to be more or less stable independently of the growth conditions. However, L. japonicus nodules formed on aeroponically grown plants often showed patches of cells with reduced bacteroid density, presumably a stress symptom. Immunolocalization using a heterologous antibody showed that the vascular systems of these nodules also seemed to contain less AOC protein than those of nodules of plants grown in perlite/vermiculite. Hence, aeroponically grown L. japonicus plants are likely to be habituated to stress which could have affected JA levels.
Collapse
|
5
|
Maynard D, Müller SM, Hahmeier M, Löwe J, Feussner I, Gröger H, Viehhauser A, Dietz KJ. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid. Bioorg Med Chem 2017; 26:1356-1364. [PMID: 28818464 DOI: 10.1016/j.bmc.2017.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta.
Collapse
Affiliation(s)
- Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Sara Mareike Müller
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Monika Hahmeier
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Jana Löwe
- Department of Organic Chemistry, Faculty of Chemistry, University of Bielefeld, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Göttingen, Germany
| | - Harald Gröger
- Department of Organic Chemistry, Faculty of Chemistry, University of Bielefeld, Germany
| | - Andrea Viehhauser
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany.
| |
Collapse
|
6
|
Koeduka T, Ishizaki K, Mwenda CM, Hori K, Sasaki-Sekimoto Y, Ohta H, Kohchi T, Matsui K. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. PLANTA 2015; 242:1175-86. [PMID: 26105654 DOI: 10.1007/s00425-015-2355-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 05/26/2023]
Abstract
Allene oxide synthases (AOSs) were isolated from liverworts and charophytes. These AOSs exhibited enzymatic properties similar to those of angiosperms but formed a distinct phylogenetic clade. Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) mediate the formation of precursors of jasmonates and carbon-six volatiles, respectively. AOS and HPL utilize fatty acid hydroperoxides and belong to the plant cytochrome P450 74 (CYP74) family that mediates plant defense against herbivores, pathogens, or abiotic stresses. Although members of the CYP74 family have been reported in mosses and other species, the evolution and function of multiple CYP74 genes in plants remain elusive. Here, we show that the liverwort Marchantia polymorpha belongs to a basal group in the evolution of land plants; has two closely related proteins (59% identity), MpAOS1 and MpAOS2, that are similar to moss PpAOS1 (49 and 47% identity, respectively); and exhibits AOS activity but not HPL activity. We also found that the green microalgae Klebsormidium flaccidum, consist of multicellular and non-branching filaments, contains an enzyme, KfAOS, that is similar to PpAOS1 (37% identity), and converts 13-hydroperoxide of linolenic acid to 12-oxo-phytodienoic acid in a coupled reaction with allene oxide cyclase. Phylogenetic analysis showed two evolutionarily distinct clusters. One cluster comprised AOS and HPL from charophytic algae, liverworts, and mosses, including MpAOSs and KfAOS. The other cluster was formed by angiosperm CYP74. Our results suggest that plant CYP74 enzymes with AOS, HPL, and divinyl ether synthase activities have arisen multiple times and in the two different clades, which occurred prior to the divergence of the flowering plant lineage.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| | | | - Cynthia Mugo Mwenda
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Koichi Hori
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
7
|
Yoeun S, Sukhanov A, Han O. Binding of Imidazole Stabilizes Low-spin State of Heme Iron in Dual-Substrate-Specific Rice Allene Oxide Synthase-1. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sereyvath Yoeun
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences; Chonnam National University; Gwangju 500-757 Republic of Korea
| | | | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences; Chonnam National University; Gwangju 500-757 Republic of Korea
| |
Collapse
|
8
|
Yoeun S, Kim JI, Han O. Cellular localization and detergent dependent oligomerization of rice allene oxide synthase-1. JOURNAL OF PLANT RESEARCH 2015; 128:201-209. [PMID: 25326901 DOI: 10.1007/s10265-014-0670-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
Allene oxide synthase-1 from Oryza sativa (OsAOS1) localizes to the chloroplast, but lacks a putative chloroplast targeting sequence typically found in dicot AOS. Here, kinetic parameters and the oligomerization state/subunit composition of OsAOS1 were characterized in vitro in the absence or presence of detergent micelles. The catalytic efficiency (k(cat)/K(m)) of OsAOS1 reached a maximum near the critical micelle concentration for polyoxyethylene 10 tridecyl ether. Native gel analysis showed that OsAOS1 exists as a multimer in the absence of detergent micelles. The multimeric form of OsAOS1 was stably cross-linked in the absence of detergents, while only monomeric OsAOS1 was detected in the presence of detergent micelles. Gel filtration analysis indicated that the oligomeric state of OsAOS1 depends strongly on the detergents and that the monomer becomes the predominant form in the presence of detergent micelles. These data suggest that the detergent-dependent oligomeric state of OsAOS1 is an important factor for the regulation of its catalytic efficiency.
Collapse
Affiliation(s)
- Sereyvath Yoeun
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | | | | |
Collapse
|
9
|
Keereetaweep J, Blancaflor EB, Hornung E, Feussner I, Chapman KD. Ethanolamide oxylipins of linolenic acid can negatively regulate Arabidopsis seedling development. THE PLANT CELL 2013; 25:3824-40. [PMID: 24151297 PMCID: PMC3877782 DOI: 10.1105/tpc.113.119024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 09/24/2013] [Accepted: 10/08/2013] [Indexed: 05/20/2023]
Abstract
N-Acylethanolamines (NAEs) are fatty-acid derivatives with potent biological activities in a wide range of eukaryotic organisms. Polyunsaturated NAEs are among the most abundant NAE types in seeds of Arabidopsis thaliana, and they can be metabolized by either fatty acid amide hydrolase (FAAH) or by lipoxygenase (LOX) to low levels during seedling establishment. Here, we identify and quantify endogenous oxylipin metabolites of N-linolenoylethanolamine (NAE 18:3) in Arabidopsis seedlings and show that their levels were higher in faah knockout seedlings. Quantification of oxylipin metabolites in lox mutants demonstrated altered partitioning of NAE 18:3 into 9- or 13-LOX pathways, and this was especially exaggerated when exogenous NAE was added to seedlings. When maintained at micromolar concentrations, NAE 18:3 specifically induced cotyledon bleaching of light-grown seedlings within a restricted stage of development. Comprehensive oxylipin profiling together with genetic and pharmacological interference with LOX activity suggested that both 9-hydroxy and 13-hydroxy linolenoylethanolamides, but not corresponding free fatty-acid metabolites, contributed to the reversible disruption of thylakoid membranes in chloroplasts of seedling cotyledons. We suggest that NAE oxylipins of linolenic acid represent a newly identified, endogenous set of bioactive compounds that may act in opposition to progression of normal seedling development and must be depleted for successful establishment.
Collapse
Affiliation(s)
- Jantana Keereetaweep
- Department of Biological Sciences, University of North Texas, Center for Plant Lipid Research, Denton, Texas 76203
| | - Elison B. Blancaflor
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401
| | - Ellen Hornung
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37077 Gottingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37077 Gottingen, Germany
| | - Kent D. Chapman
- Department of Biological Sciences, University of North Texas, Center for Plant Lipid Research, Denton, Texas 76203
- Address correspondence to
| |
Collapse
|
10
|
Yoeun S, Rakwal R, Han O. Dual positional substrate specificity of rice allene oxide synthase-1: insight into mechanism of inhibition by type II ligand imidazole. BMB Rep 2013; 46:151-6. [PMID: 23527858 PMCID: PMC4133873 DOI: 10.5483/bmbrep.2013.46.3.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Phylogenetic and amino acid sequence analysis indicated that rice allene oxide synthase-1 (OsAOS1) is CYP74, and is clearly distinct from CYP74B, C and D subfamilies. Regio- and
stereo-chemical analysis revealed the dual substrate specificity of OsAOS1 for (cis,trans)-configurational isomers of 13(S)- and 9(S)-hydroperoxyoctadecadienoic acid. GC-MS analysis showed that OsAOS1 converts 13(S)- and 9(S)-hydroperoxyoctadecadi(tri)enoic acid into their corresponding allene oxide. UV-Visible spectral analysis of native OsAOS1 revealed a Soret
maximum at 393 nm, which shifted to 424 nm with several clean isobestic points upon binding of OsAOS1 to imidazole. The spectral shift induced by imidazole correlated with inhibition of OsAOS1 activity, implying that imidazole may coordinate to ferric heme iron, triggering a heme-iron transition from high spin state to low spin state. The implications and significance of a putative type II ligand-induced spin state transition in OsAOS1 are discussed. [BMB Reports 2013; 46(3):151-156]
Collapse
Affiliation(s)
- Sereyvath Yoeun
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | | | | |
Collapse
|
11
|
Scholz J, Brodhun F, Hornung E, Herrfurth C, Stumpe M, Beike AK, Faltin B, Frank W, Reski R, Feussner I. Biosynthesis of allene oxides in Physcomitrella patens. BMC PLANT BIOLOGY 2012; 12:228. [PMID: 23194461 PMCID: PMC3552686 DOI: 10.1186/1471-2229-12-228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/26/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The moss Physcomitrella patens contains C18- as well as C20-polyunsaturated fatty acids that can be metabolized by different enzymes to form oxylipins such as the cyclopentenone cis(+)-12-oxo phytodienoic acid. Mutants defective in the biosynthesis of cyclopentenones showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis. The initial step in this biosynthetic route is the conversion of a fatty acid hydroperoxide to an allene oxide. This reaction is catalyzed by allene oxide synthase (AOS) belonging as hydroperoxide lyase (HPL) to the cytochrome P450 family Cyp74. In this study we characterized two AOS from P. patens, PpAOS1 and PpAOS2. RESULTS Our results show that PpAOS1 is highly active with both C18 and C20-hydroperoxy-fatty acid substrates, whereas PpAOS2 is fully active only with C20-substrates, exhibiting trace activity (~1000-fold lower kcat/KM) with C18 substrates. Analysis of products of PpAOS1 and PpHPL further demonstrated that both enzymes have an inherent side activity mirroring the close inter-connection of AOS and HPL catalysis. By employing site directed mutagenesis we provide evidence that single amino acid residues in the active site are also determining the catalytic activity of a 9-/13-AOS - a finding that previously has only been reported for substrate specific 13-AOS. However, PpHPL cannot be converted into an AOS by exchanging the same determinant. Localization studies using YFP-labeled AOS showed that PpAOS2 is localized in the plastid while PpAOS1 may be found in the cytosol. Analysis of the wound-induced cis(+)-12-oxo phytodienoic acid accumulation in PpAOS1 and PpAOS2 single knock-out mutants showed that disruption of PpAOS1, in contrast to PpAOS2, results in a significantly decreased cis(+)-12-oxo phytodienoic acid formation. However, the knock-out mutants of neither PpAOS1 nor PpAOS2 showed reduced fertility, aberrant sporophyte morphology or interrupted sporogenesis. CONCLUSIONS Our study highlights five findings regarding the oxylipin metabolism in P. patens: (i) Both AOS isoforms are capable of metabolizing C18- and C20-derived substrates with different specificities suggesting that both enzymes might have different functions. (ii) Site directed mutagenesis demonstrated that the catalytic trajectories of 9-/13-PpAOS1 and PpHPL are closely inter-connected and PpAOS1 can be inter-converted by a single amino acid exchange into a HPL. (iii) In contrast to PpAOS1, PpAOS2 is localized in the plastid where oxylipin metabolism takes place. (iv) PpAOS1 is essential for wound-induced accumulation of cis(+)-12-oxo phytodienoic acid while PpAOS2 appears not to be involved in the process. (v) Knock-out mutants of neither AOS showed a deviating morphological phenotype suggesting that there are overlapping functions with other Cyp74 enzymes.
Collapse
Affiliation(s)
- Julia Scholz
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Florian Brodhun
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ellen Hornung
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Michael Stumpe
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Anna K Beike
- University of Freiburg, Faculty of Biology, Deptartment of Plant Biotechnology, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Bernd Faltin
- University of Freiburg, Faculty of Biology, Deptartment of Plant Biotechnology, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Wolfgang Frank
- Ludwig-Maximilians-University Munich, Faculty of Biology, Department Biology I, Plant Molecular Cell Biology, LMU Biocenter, Grosshaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Ralf Reski
- University of Freiburg, Faculty of Biology, Deptartment of Plant Biotechnology, Schaenzlestrasse 1, 79104, Freiburg, Germany
- BIOSS – Centre for Biological Signalling Studies, 79104, Freiburg, Germany
- FRIAS – Freiburg Institute for Advanced Studies, 79104, Freiburg, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht von Haller Institute for Plant Sciences, Deptartment of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Ponciano G, McMahan CM, Xie W, Lazo GR, Coffelt TA, Collins-Silva J, Nural-Taban A, Gollery M, Shintani DK, Whalen MC. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue. PHYTOCHEMISTRY 2012; 79:57-66. [PMID: 22608127 DOI: 10.1016/j.phytochem.2012.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Natural rubber biosynthesis in guayule (Parthenium argentatum Gray) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced, was investigated. A total of 11,748 quality expressed sequence tags (ESTs) were obtained. The vast majority of ESTs encoded proteins that are similar to stress-related proteins, whereas those encoding rubber biosynthesis-related proteins comprised just over one percent of the ESTs. Sequence information derived from the ESTs was used to design primers for quantitative analysis of the expression of genes that encode selected enzymes and proteins with potential impact on rubber biosynthesis in field-grown guayule plants, including 3-hydroxy-3-methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, squalene synthase, small rubber particle protein, allene oxide synthase, and cis-prenyl transferase. Gene expression was studied for field-grown plants during the normal course of seasonal variation in temperature (monthly average maximum 41.7 °C to minimum 0 °C, from November 2005 through March 2007) and rubber transferase enzymatic activity was also evaluated. Levels of gene expression did not correlate with air temperatures nor with rubber transferase activity. Interestingly, a sudden increase in night temperature 10 days before harvest took place in advance of the highest CPT gene expression level.
Collapse
Affiliation(s)
- Grisel Ponciano
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Stotz HU, Jikumaru Y, Shimada Y, Sasaki E, Stingl N, Mueller MJ, Kamiya Y. Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. PLANT & CELL PHYSIOLOGY 2011; 52:1941-56. [PMID: 21937677 DOI: 10.1093/pcp/pcr127] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The jasmonate receptor COI1 is known to facilitate plant defense responses against necrotrophic pathogens, including the ascomycete Sclerotinia sclerotiorum. However, it is not known to what extent jasmonates contribute to defense nor have COI1-independent defense pathways been sufficiently characterized. Here we show that the susceptibility to S. sclerotiorum of the aos mutant, deficient in biosynthesis of jasmonic acid (JA) and its precursor 12-oxophytadienoic acid, was elevated to a level reminiscent of that of hypersusceptible coi1 mutants. In contrast, susceptibility of the JA-deficient opr3 mutant was comparable with that of the wild type. A set of 99 genes responded similarly to infection with S. sclerotiorum in wild-type and coi1 mutant leaves. Expression of this COI1-independent gene set correlated with known differences in gene expression between wild-type plants and a mutant in the transcriptional repressor auxin response factor 2 (arf2). Susceptibility to S. sclerotiorum was reduced in two arf2 mutants early during infection, implicating ARF2 as a negative regulator of defense responses against this pathogen. Hypersusceptibility of an axr1 mutant to S. sclerotiorum confirmed the contribution of auxin action to defense responses against this fungal pathogen.
Collapse
Affiliation(s)
- Henrik U Stotz
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D. Cytochromes p450. THE ARABIDOPSIS BOOK 2011; 9:e0144. [PMID: 22303269 PMCID: PMC3268508 DOI: 10.1199/tab.0144] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization.
Collapse
Affiliation(s)
- Søren Bak
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Fred Beisson
- Department of Plant Biology and Environmental Microbiology, CEA/CNRS/Aix-Marseille Université, UMR 6191 Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Gerard Bishop
- Division of Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
| | - Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - René Höfer
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| | - Suzanne Paquette
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Department of Biological Structure, HSB G-514, Box 357420, University of Washington, Seattle, WA, 98195-9420
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| |
Collapse
|
15
|
Stumpe M, Göbel C, Faltin B, Beike AK, Hause B, Himmelsbach K, Bode J, Kramell R, Wasternack C, Frank W, Reski R, Feussner I. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. THE NEW PHYTOLOGIST 2010; 188:740-9. [PMID: 20704658 DOI: 10.1111/j.1469-8137.2010.03406.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)-12-oxo-phytodienoic acid (cis-(+)-OPDA), were isolated from the moss Physcomitrella patens. • Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13-hydroperoxy linolenic acid (13-HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12-hydroperoxy arachidonic acid (12-HPETE). • In protonema and gametophores the occurrence of cis-(+)-OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis-(+)-OPDA was detected. • Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.
Collapse
Affiliation(s)
- Michael Stumpe
- Georg-August-University, Albrecht-von-Haller-Institute, Plant Biochemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brash AR. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. PHYTOCHEMISTRY 2009; 70:1522-1531. [PMID: 19747698 PMCID: PMC2783490 DOI: 10.1016/j.phytochem.2009.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 05/26/2023]
Abstract
The existence of CYP5, CYP8A, and the CYP74 enzymes specialized for reaction with fatty acid peroxide substrates presents opportunities for a "different look" at the catalytic cycle of the cytochrome P450s. This review considers how the properties of the peroxide-metabolizing enzymes are distinctive, and how they tie in with those of the conventional monooxygenase enzymes. Some unusual reactions of each class have parallels in the other. As enzyme reactions and P450 structures emerge there will be possibilities for finding their special properties and edging this knowledge into the big picture.
Collapse
Affiliation(s)
- Alan R Brash
- Department of Pharmacology, and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| |
Collapse
|
17
|
Hughes RK, De Domenico S, Santino A. Plant cytochrome CYP74 family: biochemical features, endocellular localisation, activation mechanism in plant defence and improvements for industrial applications. Chembiochem 2009; 10:1122-33. [PMID: 19322850 DOI: 10.1002/cbic.200800633] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Not just another P450: Shown here is a model of the overall structure of CYP74C3 with the putative membrane-binding region that is required for enzyme activation. Members of the CYP74 family of cytochrome P450 enzymes are specialised in the metabolism of hydroperoxides and play an important role in oxylipin metabolism, which is one of the main defence mechanisms employed by plants. In order to respond to their rapidly changing environments, plants have evolved complex signalling pathways, which enable tight control over stress responses. Recent work has shed new light on one of these pathways that involves the different classes of plant oxylipins that are produced through the CYP74 pathway. These phytochemicals play an important role in plant defence, and can act as direct antimicrobials or as signalling molecules that inducing the expression of defence genes. The fine-tuning regulation of defence responses, which depends on the precise cross-talk among different signalling pathways, has important consequences for plant fitness and is a new, challenging area of research. In this review we focus on new data relating to the physiological significance of different phyto-oxylipins and related enzymes. Moreover, recent advances in the biotechnological production of oxylipins are also discussed.
Collapse
Affiliation(s)
- Richard K Hughes
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK.
| | | | | |
Collapse
|
18
|
Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci U S A 2008; 105:13883-8. [PMID: 18787124 DOI: 10.1073/pnas.0804099105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex with the substrate analog 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between beta3-2 and beta3-3. Asn-276 in the substrate binding site may interact with the substrate's hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism.
Collapse
|
19
|
Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 2008; 455:363-8. [PMID: 18716621 DOI: 10.1038/nature07307] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 08/01/2008] [Indexed: 11/08/2022]
Abstract
The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic pi-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.
Collapse
|
20
|
Hughes RK, Yousafzai FK, Ashton R, Chechetkin IR, Fairhurst SA, Hamberg M, Casey R. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes. Proteins 2008; 72:1199-211. [DOI: 10.1002/prot.22012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Abstract
The dioxygenation of PUFAs (polyunsaturated fatty acids) in plants is mainly catalysed by members of the LOX (lipoxygenase) enzyme family. LOX products may be further metabolized, and are known as signalling substances in plant development and in responses to wounding and pathogen attack. In contrast with the situation in eukaryotes, information on the relevance of lipid peroxide metabolism in prokaryotic organisms is scarce. Therefore, we aimed to analyse LOXs and oxylipin patterns of cyanobacterial origin. A search of the genomic sequence of the cyanobacterium Nostoc sp. PCC 7120 suggested an open reading frame encoding a putative LOX named NspLOX that harboured an N-terminal extension. Individual analysis of recombinant C-terminal domain revealed enzymatic activity as a linoleate (9R)-LOX. Analysis of the full-length NspLOX protein, however, revealed linoleate diol synthase activity, generating (10E,12E)-9,14-dihydroxy-10,12-octadecadienoic acid as the main product from LA (linoleic acid) and (10E,12E,14E)-9,16-dihydroxy-10,12,14-octadecatrienoic acid as the main product from ALA (α-LA) substrates respectively, with ALA as preferred substrate. The enzyme exhibited a broad pH optimum between pH 7 and pH 10. Soluble extracts of Nostoc sp. contain more 9-LOX-derived hydroperoxides in sonified than in non-sonified cells, but products of full-length NspLOX were not detectable under the conditions used. As no other LOX-like sequence was identified in the genome of Nostoc sp. PCC 7120, the results presented suggest that (9R)-LOX-derived oxylipins may represent the endogenous products of NspLOX. Based on the biochemical results of NspLOX, we suggest that this bifunctional enzyme may represent a more ancient way to control the intracellular amount of oxylipins in this cyanobacterium.
Collapse
|
22
|
Siqueira-Júnior CL, Jardim BC, Urményi TP, Vicente ACP, Hansen E, Otsuki K, da Cunha M, Madureira HC, de Carvalho DR, Jacinto T. Wound response in passion fruit (Passiflora f. edulis flavicarpa) plants: gene characterization of a novel chloroplast-targeted allene oxide synthase up-regulated by mechanical injury and methyl jasmonate. PLANT CELL REPORTS 2008; 27:387-97. [PMID: 17901957 DOI: 10.1007/s00299-007-0451-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 08/09/2007] [Accepted: 09/05/2007] [Indexed: 05/17/2023]
Abstract
The induction of a chloroplast-localized 13-lipoxygenase (13-LOX) in passion fruit leaves in response to methyl jasmonate (MeJa) was previously reported. Since allene oxide synthase (AOS) is a key cytochrome P450 enzyme in the oxylipin pathway leading to AOS-derived jasmonates, the results above led in turn to an investigation of AOS in our model plant. Spectrophotometric assays showed that 24 h exposure of MeJa caused a high increase in 13-hydroperoxy linolenic acid (13-HPOT) metabolizing activity in leaf tissue. Western analysis using polyclonal antibodies against tomato AOS strongly indicate that, at least a part of the 13-HPOT metabolizing capacity can be attributed to AOS activity. We cloned the cDNA from a novel AOS encoding gene from passion fruit, named PfAOS. The 1,512 bp open reading frame of the AOS-cDNA codes a putative protein of 504 amino acid residues containing a chloroplast target sequence. Database comparisons of the deduced amino acid sequence showed highest similarity with dicot AOSs. Immunocytochemistry analysis showed the compartmentalization of AOS in chloroplasts of MeJa treated leaves, corroborating the predicted subcellular localization. Northern analysis showed that AOS gene expression is induced in leaf tissue in response to mechanical wounding and exposure to MeJa. In addition, such treatments caused an increase in papain inhibitor(s) in leaf tissue. Taken together, these results indicate that PfAOS may play an important role in systemic wound response against chewing insect attack. Furthermore, it can be useful as a tool for understanding the regulation of jasmonates biosynthesis in passion fruit.
Collapse
Affiliation(s)
- César L Siqueira-Júnior
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-600 Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hughes RK, Belfield EJ, Casey R. CYP74C3 and CYP74A1, plant cytochrome P450 enzymes whose activity is regulated by detergent micelle association, and proposed new rules for the classification of CYP74 enzymes. Biochem Soc Trans 2007; 34:1223-7. [PMID: 17073790 DOI: 10.1042/bst0341223] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CYP74C3 (cytochrome P450 subfamily 74C3), an HPL (hydroperoxide lyase) from Medicago truncatula (barrel medic), and CYP74A1, an AOS (allene oxide synthase) from Arabidopsis thaliana, are key membrane-associated P450 enzymes in plant oxylipin metabolism. Both recombinant detergent-free enzymes are monomeric proteins with dual specificity and very low enzyme activity that can be massively activated with detergent. This effect is a result of the formation of a complex between the protein monomer and a single detergent micelle and, in the case of CYP74A1, has a major effect on the substrate specificity of the enzyme. Association with a detergent micelle without an effect on protein oligomeric state represents a new mechanism of activation for membrane-associated P450 enzymes. This may represent a second unifying feature of CYP74 enzymes, in addition to their known differences in reaction mechanism, which separates them functionally from more classical P450 enzymes. Highly concentrated and monodispersed samples of detergent-free CYP74C3 and CYP74A1 proteins should be suitable for structural resolution. On the basis of recent evidence for incorrect assignment of CYP74 function, using the current rules for CYP74 classification based on sequence relatedness, we propose an alternative based on substrate and product specificity for debate and discussion.
Collapse
Affiliation(s)
- R K Hughes
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
24
|
Norton G, Pappusamy A, Yusof F, Pujade-Renaud V, Perkins M, Griffiths D, Jones H. Characterisation of recombinant Hevea brasiliensis allene oxide synthase: effects of cycloxygenase inhibitors, lipoxygenase inhibitors and salicylates on enzyme activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:129-38. [PMID: 17344058 DOI: 10.1016/j.plaphy.2007.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 01/05/2007] [Indexed: 05/14/2023]
Abstract
Mechanical wounding and jasmonic acid (JA) treatment have been shown to be important factors in controlling laticifer differentiation in Hevea brasiliensis (rubber tree). With the long-term aim of potentially modifying the endogenous levels of JA in H. brasiliensis by gene transfer, we describe in this paper the molecular cloning of a H. brasiliensis allene oxide synthase (AOS) cDNA and biochemical characterisation of the recombinant AOS (His(6)-HbAOS) enzyme. The AOS cDNA encodes a protein with the expected motifs present in CYP74A sub-group of the cytochrome P450 super-family of enzymes that metabolise 13-hydroperoxylinolenic acid (13-HPOT), the intermediate involved in JA synthesis. The recombinant H. brasiliensis AOS enzyme was estimated to have a high binding affinity for 13-HPOT with a K(m) value of 4.02+/-0.64 microM. Consistent with previous studies, mammalian cycloxygenase (COX) and lipoxygenase (LOX) inhibitors were shown to significantly reduce His(6)-HbAOS enzyme activity. Although JA had no effect on His(6)-HbAOS, salicylic acid (SA) was shown to significantly inhibit the recombinant AOS enzyme activity in a dose dependent manner. Moreover, it was demonstrated that SA, and various analogues of SA, acted as competitive inhibitors of His(6)-HbAOS when 13-HPOT was used as substrate. We speculate that this effect of salicylates on AOS activity may be important in cross-talking between the SA and JA signalling pathways in plants during biotic/abiotic stress.
Collapse
Affiliation(s)
- Gareth Norton
- Division of Biochemistry and Microbiology, School of Life Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | | | | | | | | | | | | |
Collapse
|