1
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023; 18:1472-1477. [PMID: 36571344 PMCID: PMC10075114 DOI: 10.4103/1673-5374.360289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea; Neurology 3 Ward, Clinical Emergency Hospital, Oradea, Romania
| | | |
Collapse
|
2
|
Hart M, Diener C, Lunkes L, Rheinheimer S, Krammes L, Keller A, Meese E. miR-34a-5p as molecular hub of pathomechanisms in Huntington's disease. Mol Med 2023; 29:43. [PMID: 37013480 PMCID: PMC10295337 DOI: 10.1186/s10020-023-00640-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Although a pivotal role of microRNA (miRNA, miR) in the pathogenesis of Huntington's disease (HD) is increasingly recognized, the molecular functions of miRNAs in the pathomechanisms of HD await further elucidation. One of the miRNAs that have been associated with HD is miR-34a-5p, which was deregulated in the mouse R6/2 model and in human HD brain tissues. METHODS The aim of our study was to demonstrate interactions between miR-34a-5p and HD associated genes. By computational means we predicted 12 801 potential target genes of miR-34a-5p. An in-silico pathway analysis revealed 22 potential miR-34a-5p target genes in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway "Huntington's disease". RESULTS Using our high-throughput miRNA interaction reporter assay (HiTmIR) we identified NDUFA9, TAF4B, NRF1, POLR2J2, DNALI1, HIP1, TGM2 and POLR2G as direct miR-34a-5p target genes. Direct binding of miR-34a-5p to target sites in the 3'UTRs of TAF4B, NDUFA9, HIP1 and NRF1 was verified by a mutagenesis HiTmIR assay and by determining endogenous protein levels for HIP1 and NDUFA9. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis identified protein-protein interaction networks associated with HD like "Glutamine Receptor Signaling Pathway" and "Calcium Ion Transmembrane Import Into Cytosol". CONCLUSION Our study demonstrates multiple interactions between miR-34a-5p and HD associated target genes and thereby lays the ground for future therapeutic interventions using this miRNA.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany.
| | - Caroline Diener
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Laetitia Lunkes
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Stefanie Rheinheimer
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Lena Krammes
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| |
Collapse
|
3
|
Santiago JA, Quinn JP, Potashkin JA. Physical Activity Rewires the Human Brain against Neurodegeneration. Int J Mol Sci 2022; 23:6223. [PMID: 35682902 PMCID: PMC9181322 DOI: 10.3390/ijms23116223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Physical activity may offset cognitive decline and dementia, but the molecular mechanisms by which it promotes neuroprotection remain elusive. In the absence of disease-modifying therapies, understanding the molecular effects of physical activity in the brain may be useful for identifying novel targets for disease management. Here we employed several bioinformatic methods to dissect the molecular underpinnings of physical activity in brain health. Network analysis identified 'switch genes' associated with drastic hippocampal transcriptional changes in aged cognitively intact individuals. Switch genes are key genes associated with dramatic transcriptional changes and thus may play a fundamental role in disease pathogenesis. Switch genes are associated with protein processing pathways and the metabolic control of glucose, lipids, and fatty acids. Correlation analysis showed that transcriptional patterns associated with physical activity significantly overlapped and negatively correlated with those of neurodegenerative diseases. Functional analysis revealed that physical activity might confer neuroprotection in Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases via the upregulation of synaptic signaling pathways. In contrast, in frontotemporal dementia (FTD) its effects are mediated by restoring mitochondrial function and energy precursors. Additionally, physical activity is associated with the downregulation of genes involved in inflammation in AD, neurogenesis in FTD, regulation of growth and transcriptional repression in PD, and glial cell differentiation in HD. Collectively, these findings suggest that physical activity directs transcriptional changes in the brain through different pathways across the broad spectrum of neurodegenerative diseases. These results provide new evidence on the unique and shared mechanisms between physical activity and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
4
|
Murakami T, Matsuura R, Chutiwitoonchai N, Takei M, Aida Y. Huntingtin-Interacting Protein 1 Promotes Vpr-Induced G2 Arrest and HIV-1 Infection in Macrophages. Viruses 2021; 13:v13112308. [PMID: 34835114 PMCID: PMC8624357 DOI: 10.3390/v13112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) modulates the host cell cycle. The HIV-1 accessory protein Vpr arrests the cell cycle at the G2 phase in dividing cells, and the ability of Vpr to induce G2 arrest is well conserved among primate lentiviruses. Additionally, Vpr-mediated G2 arrest likely correlates with enhanced HIV-1 infection in monocyte-derived macrophages. Here, we screened small-interfering RNA to reveal candidates that suppress Vpr-induced G2 arrest and identified Huntingtin-interacting protein 1 (HIP1) required for efficient G2 arrest. Interestingly, HIP1 was not essential for Vpr-induced DNA double-strand breaks, which are required for activation of the DNA-damage checkpoint and G2 arrest. Furthermore, HIP1 knockdown suppressed HIV-1 infection in monocyte-derived macrophages. This study identifies HIP1 as a factor promoting Vpr-induced G2 arrest and HIV-1 infection in macrophages.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nopporn Chutiwitoonchai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi, Tokyo 173-8610, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence:
| |
Collapse
|
5
|
Myhre O, Zimmer KE, Hudecova AM, Hansen KEA, Khezri A, Berntsen HF, Berg V, Lyche JL, Mandal S, Duale N, Ropstad E. Maternal exposure to a human based mixture of persistent organic pollutants (POPs) affect gene expression related to brain function in mice offspring hippocampus. CHEMOSPHERE 2021; 276:130123. [PMID: 33714876 DOI: 10.1016/j.chemosphere.2021.130123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Male and female mice pups were exposed to a low and high dose of a human relevant mixture of persistent organic pollutants (POPs) during pregnancy and lactation. Most compounds detected in the dams were found in offspring brains. The mice offspring exhibited changed expression of hippocampal genes involved in cognitive function (Adora2a, Auts2, Crlf1, Chrnb2, Gdnf, Gnal, Kcnh3), neuroinflammation (Cd47, Il1a), circadian rhythm (Per1, Clock), redox signalling (Hmox2) and aryl hydrocarbon receptor activation (Cyp1b1). A few genes were differentially expressed in males versus females. Mostly, similar patterns of gene expression changes were observed between the low and high dose groups. Effects on learning and memory function measured in the Barnes maze (not moving, escape latency) were found in the high dose group when combined with moderate stress exposure (air flow from a fan). Mediation analysis indicated adaptation to the effects of exposure since gene expression compensated for learning disabilities (escape latency, walking distance and time spent not moving in the maze). Additionally, random forest analysis indicated that Kcnh3, Gnal, and Crlf1 were the most important genes for escape latency, while Hip1, Gnal and the low exposure level were the most important explanatory factors for passive behaviour (not moving). Altogether, this study showed transfer of POPs to the offspring brains after maternal exposure, modulating the expression level of genes involved in brain function.
Collapse
Affiliation(s)
- Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Alexandra M Hudecova
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Kristine E A Hansen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Abdolrahman Khezri
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway; National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033, Oslo, Norway.
| | - Vidar Berg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Jan L Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | | | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| |
Collapse
|
6
|
Li K, van Delft MF, Dewson G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J 2021; 40:e107341. [PMID: 34037273 DOI: 10.15252/embj.2020107341] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell death is implicated in both physiological and pathological processes. Since many types of cancerous cells intrinsically evade apoptotic elimination, induction of apoptosis has become an attractive and often necessary cancer therapeutic approach. Conversely, some cells are extremely sensitive to apoptotic stimuli leading to neurodegenerative disease and immune pathologies. However, due to several challenges, pharmacological inhibition of apoptosis is still only a recently emerging strategy to combat pathological cell loss. Here, we describe several key steps in the intrinsic (mitochondrial) apoptosis pathway that represent potential targets for inhibitors in disease contexts. We also discuss the mechanisms of action, advantages and limitations of small-molecule and peptide-based inhibitors that have been developed to date. These inhibitors serve as important research tools to dissect apoptotic signalling and may foster new treatments to reduce unwanted cell loss.
Collapse
Affiliation(s)
- Kaiming Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Hentschel A, Czech A, Münchberg U, Freier E, Schara-Schmidt U, Sickmann A, Reimann J, Roos A. Protein signature of human skin fibroblasts allows the study of the molecular etiology of rare neurological diseases. Orphanet J Rare Dis 2021; 16:73. [PMID: 33563298 PMCID: PMC7874489 DOI: 10.1186/s13023-020-01669-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these "discovery studies" are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material. METHODS Human skin fibroblasts were used to generate a spectral library using pH8-fractionation of followed by nano LC-MS/MS. Afterwards, Allgrove-patient derived fibroblasts were subjected to a data independent acquisition approach. In addition, proteomic signature of an enriched nuclear protein fraction was studied. Proteomic findings were confirmed by immunofluorescence in a muscle biopsy derived from the same patient and cellular lipid homeostasis in the cause of Allgrove syndrome was analysed by fluorescence (BODIPY-staining) and coherent anti-Stokes Raman scattering (CARS) microscopy. RESULTS To systematically address the question if human skin fibroblasts might serve as valuable biomaterial for (molecular) studies of NMD, we generated a protein library cataloguing 8280 proteins including a variety of such linked to genetic forms of motoneuron diseases, congenital myasthenic syndromes, neuropathies and muscle disorders. In silico-based pathway analyses revealed expression of a diversity of proteins involved in muscle contraction and such decisive for neuronal function and maintenance suggesting the suitability of human skin fibroblasts to study the etiology of NMD. Based on these findings, next we aimed to further demonstrate the suitability of this in vitro model to study NMD by a use case: the proteomic signature of fibroblasts derived from an Allgrove-patient was studied. Dysregulation of paradigmatic proteins could be confirmed in muscle biopsy of the patient and protein-functions could be linked to neurological symptoms known for this disease. Moreover, proteomic investigation of nuclear protein composition allowed the identification of protein-dysregulations according with structural perturbations observed in the muscle biopsy. BODIPY-staining on fibroblasts and CARS microscopy on muscle biopsy suggest altered lipid storage as part of the underlying disease etiology. CONCLUSIONS Our combined data reveal that human fibroblasts may serve as an in vitro system to study the molecular etiology of rare neurological diseases exemplified on Allgrove syndrome in an unbiased fashion.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ute Münchberg
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Jens Reimann
- Muscle Laboratory, Department of Neurology, University of Bonn, Medical Centre, Bonn, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Berntsen HF, Duale N, Bjørklund CG, Rangel-Huerta OD, Dyrberg K, Hofer T, Rakkestad KE, Østby G, Halsne R, Boge G, Paulsen RE, Myhre O, Ropstad E. Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. ENVIRONMENT INTERNATIONAL 2021; 146:106240. [PMID: 33186814 DOI: 10.1016/j.envint.2020.106240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, 0304 Oslo, Norway.
| | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | | | - Kine Dyrberg
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Kirsten Eline Rakkestad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Gunn Østby
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ruth Halsne
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Gudrun Boge
- Department of Companion Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| |
Collapse
|
9
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
10
|
Tellone E, Galtieri A, Ficarra S. Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease. Curr Med Chem 2019; 27:5137-5158. [PMID: 31223078 DOI: 10.2174/0929867326666190621101909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Huntingtin (Htt) is a multi-function protein of the brain. Normal Htt shows a common alpha-helical structure but conformational changes in the form with beta strands are the principal cause of Huntington's disease. Huntington's disease is a genetic neurological disorder caused by a repeated expansion of the CAG trinucleotide, causing instability in the N-terminal of the gene coding for the Huntingtin protein. The mutation leads to the abnormal expansion of the production of the polyglutamine tract (polyQ) resulting in the form of an unstable Huntingtin protein commonly referred to as mutant Huntingtin. Mutant Huntingtin is the cause of the complex neurological metabolic alteration of Huntington's disease, resulting in both the loss of all the functions of normal Huntingtin and the genesis of abnormal interactions due to the presence of this mutation. One of the problems arising from the misfolded Huntingtin is the increase in oxidative stress, which is common in many neurological diseases such as Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis and Creutzfeldt-Jakob disease. In the last few years, the use of antioxidants had a strong incentive to find valid therapies for defence against neurodegenerations. Although further studies are needed, the use of antioxidant mixtures to counteract neuronal damages seems promising.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
11
|
You L, Liu X, Fang Z, Xu Q, Zhang Q. Synthesis of multifunctional Fe 3O 4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:291-302. [PMID: 30423711 DOI: 10.1016/j.msec.2018.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/25/2018] [Accepted: 09/15/2018] [Indexed: 11/27/2022]
Abstract
A new folic acid (FA)-conjugated poly (lactic-co-glycolicacid) (PLGA)-polyethylene glycol (PEG) nano-noisome was prepared. The noisome was employed as a drug delivery system to load curcumin (Cur) as a model drug and fluorescent probe for cervical cancer therapy and cell imaging. The Fe3O4@PLGA-PEG@FA noisomes were prepared through facile emulsion solvent evaporation and conjugation chemistry method, possessing the properties of high rapid magnetic separation and targeting character. X-ray photoelectron spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) were adopted to characterize the chemical structure and properties of these niosomes. MTT assay revealed that the blank noisomes exhibited excellent biocompatibility. The in vitro drug loading and release behavior studier showed the as prepared nano-noisome presented ultrahigh performance as drug carrier. The confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) experiments demonstrated that Cur-loaded Fe3O4@PLGA-PEG@FA niosomes achieved significantly high targeting efficiency for cervical cancer. Additionally, the FA-targeted niosomes exhibited higher antitumor efficiency than free Cur. Cell morphology, the mitochondrial membrane potential and cell cycle changes indicated that Cur-loaded niosomes induced HeLa229 cells to apoptosis by destroying mitochondrion of cervical tumor cells, simultaneously changing nuclear morphology and blocking tumor cell proliferation. These results demonstrate that Fe3O4@PLGA-PEG@FA noisomes have promising applications as targeted drug delivery system for sustained drug release in cancer treatment.
Collapse
Affiliation(s)
- Lijun You
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China.
| | - Xiaocui Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China
| | - Zhexiang Fang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China
| | - Qianhui Xu
- College of Oral Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350001, China.
| |
Collapse
|
12
|
Noguchi H, Kimura A, Murao N, Matsuda T, Namihira M, Nakashima K. Expression of DNMT1 in neural stem/precursor cells is critical for survival of newly generated neurons in the adult hippocampus. Neurosci Res 2015; 95:1-11. [PMID: 25659757 DOI: 10.1016/j.neures.2015.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/17/2023]
Abstract
Adult neurogenesis persists throughout life in the dentate gyrus (DG) of the hippocampus, and its importance has been highlighted in hippocampus-dependent learning and memory. Adult neurogenesis consists of multiple processes: maintenance and neuronal differentiation of neural stem/precursor cells (NS/PCs), followed by survival and maturation of newborn neurons and their integration into existing neuronal circuitry. However, the mechanisms that govern these processes remain largely unclear. Here we show that DNA methyltransferase 1 (DNMT1), an enzyme responsible for the maintenance of DNA methylation, is highly expressed in proliferative cells in the adult DG and plays an important role in the survival of newly generated neurons. Deletion of Dnmt1 in adult NS/PCs (aNS/PCs) did not affect the proliferation and differentiation of aNS/PCs per se. However, it resulted in a decrease of newly generated mature neurons, probably due to gradual cell death after aNS/PCs differentiated into neurons in the hippocampus. Interestingly, loss of DNMT1 in post-mitotic neurons did not influence their survival. Taken together, these findings suggest that the presence of DNMT1 in aNS/PCs is crucial for the survival of newly generated neurons, but is dispensable once they accomplish neuronal differentiation in the adult hippocampus.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Ayaka Kimura
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Murao
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Taito Matsuda
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Group, Biomedical Research Institute, AIST, Ibaraki, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Schapira AHV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet 2014; 384:545-55. [PMID: 24954676 DOI: 10.1016/s0140-6736(14)61010-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease and Huntington's disease. These advances have been informed by both direct analysis of the post-mortem brain and by study of the biological consequences of the genetic causes of these diseases. Some of the pathways that have been implicated so far include mitochondrial dysfunction, oxidative stress, kinase pathways, calcium dysregulation, inflammation, protein handling, and prion-like processes. Intriguingly, these pathways seem to be important in the pathogenesis of both diseases and have led to the identification of molecular targets for candidate interventions designed to slow or reverse their course. We review some recent advances that underlie putative therapies for neuroprotection in Parkinson's disease and Huntington's disease, and potential targets that might be exploited in the future. Although we will need to overcome important hurdles, especially in terms of clinical trial design, we propose several target pathways that merit further study. In Parkinson's disease, these targets include agents that might improve mitochondrial function or increase degradation of defective mitochondria, kinase inhibitors, calcium channel blockers, and approaches that interfere with the misfolding, templating, and transmission of α-synuclein. In Huntington's disease, strategies might also be directed at mitochondrial bioenergetics and turnover, the prevention of protein dysregulation, disruption of the interaction between huntingtin and p53 or huntingtin-interacting protein 1 to reduce apoptosis, and interference with expression of mutant huntingtin at both the nucleic acid and protein levels.
Collapse
Affiliation(s)
| | - C Warren Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| |
Collapse
|
14
|
Sancho M, Herrera AE, Orzáez M, Pérez-Payá E. Inactivation of Apaf1 reduces the formation of mutant huntingtin-dependent aggregates and cell death. Neuroscience 2014; 262:83-91. [PMID: 24412373 DOI: 10.1016/j.neuroscience.2013.12.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
Abstract
Polyglutamine expansions in some proteins associated with neurodegenerative diseases, such as Huntington's disease or several ataxias, lead to insoluble aggregates in the cell. These aggregates accumulate through a mechanism that is not yet fully understood, but it activates cell death pathways and contributes to kill the cell. Here, we show that apoptotic protease activating factor 1 (Apaf1) down-regulation, or treatment with pharmacological Apaf1 inhibitor SVT016426, decreases both polyglutamine-induced aggregation and polyglutamine-induced apoptotic cell death in different cellular models. We demonstrate that Apaf1 binds to both Htt and to heat shock protein chaperone Hsp70, and that this interaction is altered in the presence of the pharmacological inhibitor of Apaf1. Based on our findings, we hypothesize that Apaf1 enhances polyglutamine aggregation by reducing the cellular protein levels of available functional Hsp70.
Collapse
Affiliation(s)
- M Sancho
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - A E Herrera
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - M Orzáez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain.
| | - E Pérez-Payá
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain; Instituto de Biomedicina de Valencia, IBV-CSIC, E-46010 Valencia, Spain
| |
Collapse
|
15
|
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2013; 112:24-49. [PMID: 24211851 DOI: 10.1016/j.pneurobio.2013.10.004] [Citation(s) in RCA: 777] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Yeganeh
- Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; Hospital for Sick Children Research Institute, Department of Physiology and Experimental Medicine, University of Toronto, Canada
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Jaganmohan R Jangamreddy
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Maryam Mehrpour
- INSERM U845, Research Center "Growth & Signaling" Paris Descartes University Medical School, France
| | - Jonas Christoffersson
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Wiem Chaabane
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden; Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia
| | | | - Hessam H Kashani
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Biology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali A Owji
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marek J Łos
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden.
| |
Collapse
|
16
|
Kaplan A, Stockwell BR. Therapeutic approaches to preventing cell death in Huntington disease. Prog Neurobiol 2012; 99:262-80. [PMID: 22967354 PMCID: PMC3505265 DOI: 10.1016/j.pneurobio.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 12/01/2022]
Abstract
Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Kaplan
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| | - Brent R. Stockwell
- Howard Hughes Medical Institute, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Chemistry, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| |
Collapse
|
17
|
Fontaine SN, Bauer SP, Lin X, Poorfarahani S, Ybe JA. Replacement of charged and polar residues in the coiled-coiled interface of huntingtin-interacting protein 1 (HIP1) causes aggregation and cell death. FEBS Lett 2012; 586:3030-6. [PMID: 22835334 DOI: 10.1016/j.febslet.2012.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/22/2012] [Accepted: 07/03/2012] [Indexed: 11/17/2022]
Abstract
HIP1 crystal structures solved in our laboratory revealed abnormalities in the coiled-coil region, suggesting intrinsic plasticity. To test this, specific amino acids in the coiled-coil were mutated. The apparent thermal stability of HIP1 was altered when Thr528 and Glu531 were replaced by leucine, and was enhanced when Lys510 was also mutated. In cells, HIP1 mutant expression produced aggregation. MTS and flow cytometry indicate a correlation between aggregated HIP1 and enhanced cell death. These data support the idea that flexibility of the HIP1 coiled-coil domain is important for normal function and may lead to new insights into Huntington's disease.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN 47405, United States
| | | | | | | | | |
Collapse
|
18
|
Guo T, Liu XF, Ding XB, Yang FF, Nie YW, An YJ, Guo H. Fat-1 transgenic cattle as a model to study the function of ω-3 fatty acids. Lipids Health Dis 2011; 10:244. [PMID: 22206437 PMCID: PMC3267699 DOI: 10.1186/1476-511x-10-244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/21/2023] Open
Abstract
ω-3 polyunsaturated fatty acids have been shown to play an important role in health. Enriched with ω-3 polyunsaturated fatty acids modulate expression of a number of genes with such broad functions as cell proliferation, growth and apoptosis and cell signaling and transduction, these effects, seem to regulate coronary artery disease, hypertension, atherosclerosis, psychiatric disorders and various cancer. In this context, fat-1 transgenic cattle was designed to convert ω-6 to ω-3 fatty acids could form an ideal model to study the effect of ω-3 fatty acids on the above functions. This study focuses on the total genomic difference of gene expression between fat-1 transgenic cattle and wild-type using cDNA microarrays, several genes were found to be overexpressed or suppressed in transgenic cattle relative to wild-type, these discrepancy genes related with lipid metabolism, immunity, inflammation nervous development and fertility.
Collapse
Affiliation(s)
- Tao Guo
- Department of Animal Science, Tianjin Agriculture University, Tianjin 300384, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen Z, Li J, Song X, Wang Z, Yue W. Use of a novel sonosensitizer in sonodynamic therapy of U251 glioma cells in vitro. Exp Ther Med 2011; 3:273-278. [PMID: 22969881 DOI: 10.3892/etm.2011.390] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 11/18/2011] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to investigate the effect of ZnPcS(2)P(2)-meditated sonodynamic therapy (SDT) on U251 human glioma cells and to identify its underlying biological mechanism. The growth inhibition rate was determined by MTT assay. The apoptotic rate was examined by flow cytometry. Fine structures were observed with transmission electron microscopy (TEM). Generation of reactive oxygen species (ROS) was detected spectrophotometrically. Caspase-3, -8 and -9 expression was detected by Western blot analysis. The growth inhibition rate of U251 human glioma cells indicated that ZnPcS(2)P(2)-meditated SDT had a better growth inhibition rate of tumor cells at a concentration of 5.0 μg/ml ZnPcS(2)P(2), at a 4-h incubation time with ZnPcS(2)P(2), and at 6 h re-incubation following SDT. At 6 h after SDT, the growth inhibition rate of cells was significantly higher compared to other groups, apoptosis could be detected in SDT by flow cytometry. TEM examination revealed morphological features of apoptosis or necrosis. Furthermore, caspase-3, -8 and -9 expression following SDT was found to be increased by Western blot analysis. Finally, generation of ROS in cells was also elevated. In conclusion, ZnPcS(2)P(2)-SDT is capable of inducing U251 cell apoptosis or necrosis and has satisfying antitumor effects. The mechanism of ZnPcS(2)P(2)-meditated SDT involves ROS generation in U251 cells, which initiates subsequent apoptosis through the mitochondrial and death receptor pathways.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Neurosurgery, The Fourth College Hospital of Harbin Medical University
| | | | | | | | | |
Collapse
|
20
|
Gene expression in response to ionizing radiation and family history of gastric cancer. Fam Cancer 2010; 10:107-18. [PMID: 21061175 DOI: 10.1007/s10689-010-9396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genes and molecular pathways involved in familial clustering of gastric cancer have not yet been identified. The purpose of the present study was to investigate gene expression changes in response to a cellular stress, and its link with a positive family history for this neoplasia. To this aim leukocytes of healthy first-degree relatives of gastric cancer patients and controls were challenged in vitro with ionizing radiation and gene expression evaluated 4 h later on microarrays with 1,800 cancer-related genes. Eight genes, mainly involved in signal transduction and cell cycle regulation, were differentially expressed in healthy relatives of gastric cancer cases. Functional class scoring by Gene Ontology classification highlighted two G-protein related pathways, implicated in the proliferation of neoplastic tissue, which were differentially expressed in healthy subjects with positive family history of gastric cancer. The relative expression of 84 genes related to these pathways was examined using the SYBR green-based quantitative real-time PCR. The results confirmed the indication of an involvement of G-protein coupled receptor pathways in GC familiarity provided by microarray analysis. This study indicates a possible association between familiarity for gastric cancer and altered transcriptional response to ionizing radiation.
Collapse
|
21
|
Abstract
Cell division and cell death are the two predominant physiological processes that regulate tissue homeostasis in the adult organism. The importance of dysregulation of these processes in the pathogenesis of major diseases, such as cancer, myocardial infarction, stroke, atherosclerosis, infection, inflammation and neurodegenerative disorders, is becoming increasingly evident. Hence, attempts to find modulators of the cell cycle and cell death programmes are being made with the hope of creating novel therapeutic approaches to the treatment of these diseases. It is clear that improved understanding of how cells balance life-and-death processes is crucial for this development. In view of this, a Nobel Symposium entitled 'The Cell Cycle and Apoptosis in Disease' was organized in conjunction with the celebration of the 200-year anniversary of the Karolinska Institute in 2010. The symposium focused on the importance of dysregulation of cell cycle/cell death programmes in the pathogenesis of human disease. Three comprehensive reviews based on presentations at this symposium are presented in this issue of the Journal of Internal Medicine. They include a discussion of autophagy in anticancer therapy, the description of a role for type 2 transglutaminase in Huntington's disease and the proposal that 'redox-sensing' mechanisms might act as an orthogonal control in cell cycle and apoptosis signalling.
Collapse
Affiliation(s)
- B Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
22
|
Zhivotovsky B, Orrenius S. Cell death mechanisms: Cross-talk and role in disease. Exp Cell Res 2010; 316:1374-83. [DOI: 10.1016/j.yexcr.2010.02.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/28/2010] [Indexed: 02/08/2023]
|
23
|
Inoue T, Hirabayashi Y. Hematopoietic neoplastic diseases develop in C3H/He and C57BL/6 mice after benzene exposure: strain differences in bone marrow tissue responses observed using microarrays. Chem Biol Interact 2009; 184:240-5. [PMID: 20018183 DOI: 10.1016/j.cbi.2009.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 01/06/2023]
Abstract
In this study, Trp53-deficient and wild-type mice of both C57BL/6 and C3H/He strains were exposed to benzene (33, 100, and 300 ppm; 6h/day, 5 days/week for 26 weeks) and then observed for lifetime. As results, first, the incidence of nonthymic lymphomas in C57BL/6 mice and acute myeloid leukemias (AMLs) in C3H/He mice showed linear responses at the lower exposure level in Trp53-deficient mice; second, the incidence of thymic lymphomas in C57BL/6 mice and nonthymic lymphomas in C3H/He mice increased without a plateau-like ceiling; thus, the former equivocal induction of hematopoietic neoplasms (HPNs) in the case of low-dose benzene exposure was assumed to be based on the DNA repair potential in wild-type mice, and the latter limited increase in HPNs in the case of high-dose benzene exposure was considered to be due to excessive apoptosis in wild-type mice. Concerning the incidence of AMLs, though a dose of 300 ppm benzene inhalation induced 9% AMLs in wild-type C3H/He mice-AML-prone, it induced AMLs in 38% of Trp53-deficient C3H/He mice. Because AMLs were also observed in Trp53-deficient mice, including in the C57BL/6 mice, benzene exposure may also be a potent inducer of AMLs in mice with some strain differences. In the present study, to elucidate the hematopoietic stem cell-specific, aryl hydrocarbon-receptor-related low-dose adverse effect, global gene expression in the bone marrow was analyzed at 28 days after 2-week-intermittent exposure to 150 mg/kg b.w. benzene, by gavage, i.e., equivalent to the above inhalation protocol with 300 ppm. We observed two conceptually different gene expression profiles; "common gene profiles" (CGPs) shared among mice in each group, and "stochastic gene profiles" (SGPs), i.e., unique union genes from one individual mouse to another. The CGPs of the experimental group and the SGPs of each individual mouse were separately characterized by individual assay. Concerning the CGPs, reciprocal strain differences between C3H/He and C57BL/6 mice in expression gene profiles, both plausible for leukemogenesis, were identified; namely, dominant downmodulations of Sltm and Cryl1, related to suppression of apoptosis and genomic instability in C3H/He mice, respectively, and dominant downmodulations of Atrx/rad54 and Kdm2a, related to a decrease in DNA repair and genomic instability, respectively, in C57BL/6 mice. These findings imply that these reciprocal gene expression differences induced by benzene exposure may lead each strain to undergo different hematopoietic neoplastic pathways. In contrast, each individual mouse often shows a unique SGP. SGPs often include transcription factors, which regulate reciprocal signaling pathways including further SGPs. Among them, apoptosis-related genes expressed in C57BL/6 mice and those in C3H/He mice were attributable to different combinations of SGPs. Such stochastic case-by-case gene expression may be in good agreement with the individual and strain differences observed following benzene exposure. Because gene chip microarray techniques can elucidate stochastic changes in gene expression profiles, possible stochastic toxicology and its future role are discussed.
Collapse
Affiliation(s)
- Tohru Inoue
- Center for Biological Safety and Research, National Institute of Health Sciences, Tokyo 158-8501, Japan.
| | | |
Collapse
|
24
|
Yamamoto T, Kinoshita M, Shinomiya N, Hiroi S, Sugasawa H, Matsushita Y, Majima T, Saitoh D, Seki S. Pretreatment with ascorbic acid prevents lethal gastrointestinal syndrome in mice receiving a massive amount of radiation. JOURNAL OF RADIATION RESEARCH 2009; 51:145-156. [PMID: 19959877 DOI: 10.1269/jrr.09078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
While bone marrow or stem cell transplantation can rescue bone marrow aplasia in patients accidentally exposed to a lethal radiation dose, radiation-induced irreversible gastrointestinal damage (GI syndrome) is fatal. We investigated the effects of ascorbic acid on radiation-induced GI syndrome in mice. Ascorbic acid (150 mg/kg/day) was orally administered to mice for 3 days, and then the mice underwent whole body irradiation (WBI). Bone marrow transplantation (BMT) 24 h after irradiation rescued mice receiving a WBI dose of less than 12 Gy. No mice receiving 14 Gy-WBI survived, because of radiation-induced GI syndrome, even if they received BMT. However, pretreatment with ascorbic acid significantly suppressed radiation-induced DNA damage in the crypt cells and prevented denudation of intestinal mucosa; therefore, ascorbic acid in combination with BMT rescued mice after 14 Gy-WBI. DNA microarray analysis demonstrated that irradiation up-regulated expressions of apoptosis-related genes in the small intestine, including those related to the caspase-9-mediated intrinsic pathway as well as the caspase-8-mediated extrinsic pathway, and down-regulated expressions of these genes in ascorbic acid-pretreated mice. Thus, pretreatment with ascorbic acid may effectively prevent radiation-induced GI syndrome.
Collapse
Affiliation(s)
- Tetsuo Yamamoto
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Banerjee M, Datta M, Majumder P, Mukhopadhyay D, Bhattacharyya NP. Transcription regulation of caspase-1 by R393 of HIPPI and its molecular partner HIP-1. Nucleic Acids Res 2009; 38:878-92. [PMID: 19934260 PMCID: PMC2817453 DOI: 10.1093/nar/gkp1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Earlier we have shown that exogenous expression of HIPPI, a molecular partner of Huntingtin interacting protein HIP-1, induces apoptosis and increases expression of caspases-1, -8 and -10 in HeLa and Neuro2A cells. The C-terminal pseudo death effector domain of HIPPI (pDED-HIPPI) specifically interacts with the putative promoter sequences of these genes. In the present manuscript, we predict from structural modeling of pDED-HIPPI that R393 of HIPPI is important for such interaction. R393E mutation in pDED-HIPPI decreases the interaction with the putative promoter of caspase-1 in cells. Expression of caspase-1 is decreased in cells expressing mutant pDED-HIPPI in comparison to that observed in cells expressing wild type pDED-HIPPI. Using HIP-1 knocked down cells as well as over expressing HIP-1 with mutation at its nuclear localization signal and other deletion mutations, we demonstrate that translocation of HIPPI to the nucleus is mediated by HIP-1 for the increased expression of caspase-1. HIPPI-HIP-1 heterodimer is detected in cytoplasm as well as in the nucleus and is associated with transcription complex in cells. Taking together, we are able to show the importance of R393 of HIPPI and the role of HIPPI-HIP-1 heterodimer in the transcription regulation of caspase-1.
Collapse
Affiliation(s)
- M Banerjee
- Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Bhattacharyya NP, Banerjee M, Majumder P. Huntington’s disease: roles of huntingtin-interacting protein 1 (HIP-1) and its molecular partner HIPPI in the regulation of apoptosis and transcription. FEBS J 2008; 275:4271-9. [DOI: 10.1111/j.1742-4658.2008.06563.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|