1
|
Solé-Gil A, Sakai Y, Catarino B, Jones VAS, Youngstrom CE, Jordà-Segura J, Cheng CL, Dolan L, Ambrose BA, Ishizaki K, Blázquez MA, Agustí J. Divergent evolution of a thermospermine-dependent regulatory pathway in land plants. Dev Cell 2025; 60:1348-1358.e4. [PMID: 39793581 DOI: 10.1016/j.devcel.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Plants adapted to life on land by developing diverse anatomical features across lineages. The molecular basis of these innovations often involves the emergence of new genes or establishing new connections between conserved elements, though evidence for evolutionary genetic circuit rewiring remains scarce. Here, we show that the thermospermine-dependent pathway regulating vascular cell proliferation in Arabidopsis thaliana operates as two distinct modules with different functions in the bryophyte Marchantia polymorpha. One module controls dichotomous branching at meristems, while the other one modulates gemmae and rhizoid production in the thallus. Heterologous assays and comparative expression analyses reveal that the molecular links between these modules, forming a unified circuit in vascular plants, emerged early in tracheophyte evolution. Our results illustrate how the thermospermine-dependent circuit elements followed two divergent evolutionary trajectories in bryophytes and tracheophytes, eventually influencing distinct developmental processes.
Collapse
Affiliation(s)
- Anna Solé-Gil
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Bruno Catarino
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Victor A S Jones
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | | | - Joan Jordà-Segura
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Chi-Lien Cheng
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK; Gregor Mendel Institute, Vienna 1030, Austria
| | | | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| |
Collapse
|
2
|
Li B, Baniasadi HR, Liang J, Phillips MA, Michael AJ. New routes for spermine biosynthesis. J Biol Chem 2025; 301:108390. [PMID: 40074085 PMCID: PMC11999265 DOI: 10.1016/j.jbc.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The polyamine spermine (Spm) is a flexible linear teraamine found in bacteria and eukaryotes and in all known cases is synthesized from triamine spermidine by addition of an aminopropyl group acquired from decarboxylated S-adenosylmethionine (dcAdoMet). We have now identified in bacteria a second biosynthetic route for Spm based on the formation of carboxyspermine from spermidine, dependent on aspartate β-semialdehyde (ASA). This route also produces thermospermine (Tspm) from spermidine via carboxythermospermine. Two enzymes, carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase, are responsible for ASA-dependent production of spermidine, Spm, and Tspm from diamine putrescine. Production of Spm/Tspm from spermidine is controlled primarily by carboxyspermidine dehydrogenase, not carboxyspermidine decarboxylase. This new ASA-dependent Spm biosynthetic pathway is an example of convergent evolution, employing nonanalogous, nonhomologous enzymes to produce the same biosynthetic products as the dcAdoMet-dependent Spm pathway. We have also identified bacteria that encode hybrid Spm biosynthetic pathways dependent on both dcAdoMet and ASA. In the hybrid pathways, spermidine is produced from agmatine primarily by the ASA-dependent route, and Spm is synthesized from agmatine or spermidine by dcAdoMet-dependent modules. Both parts of the hybrid pathway initiate from agmatine and each produces N1-aminopropylagmatine, so that agmatine, N1-aminopropylagmatine, and spermidine are common, potentially shared metabolites. Bacteria such as Clostridium leptum that encode the hybrid pathway may explain the origin of Spm produced by the gut microbiota. This is the first example of convergent evolution of hybrid dcAdoMet- and ASA-dependent N1-aminopropylagmatine, spermidine, and Spm biosynthesis encoded in the same genomes and suggests additional polyamine biosynthetic diversification remains to be discovered.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
Burke R, Nicotra D, Phelan J, Downey F, McCabe PF, Kacprzyk J. Spermine and spermidine inhibit or induce programmed cell death in Arabidopsis thaliana in vitro and in vivo in a dose-dependent manner. FEBS J 2024; 291:3665-3685. [PMID: 38808914 DOI: 10.1111/febs.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Daniele Nicotra
- School of Biology and Environmental Science, University College Dublin, Ireland
- Department of Agriculture, Food and Environment, University of Catania, Italy
| | - Jim Phelan
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Frances Downey
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
4
|
D'Incà R, Mattioli R, Tomasella M, Tavazza R, Macone A, Incocciati A, Martignago D, Polticelli F, Fraudentali I, Cona A, Angelini R, Tavazza M, Nardini A, Tavladoraki P. A Solanum lycopersicum polyamine oxidase contributes to the control of plant growth, xylem differentiation, and drought stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:960-981. [PMID: 38761363 DOI: 10.1111/tpj.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.
Collapse
Affiliation(s)
- Riccardo D'Incà
- Department of Science, University Roma Tre, 00146, Rome, Italy
| | | | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | | | - Fabio Polticelli
- Department of Science, University Roma Tre, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy
| | | | - Alessandra Cona
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| |
Collapse
|
5
|
Takahashi Y. ACL5 acquired strict thermospermine synthesis activity during the emergence of vascular plants. THE NEW PHYTOLOGIST 2024; 242:2669-2681. [PMID: 38587066 DOI: 10.1111/nph.19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
Norspermine (Nspm), one of the uncommon polyamines (PAs), was detected in bryophytes and lycophytes; therefore, the aminopropyltransferases involved in the synthesis of Nspm were investigated. The enzymatic activity was evaluated by the transient high expression of various aminopropyltransferase genes in Nicotiana benthamiana, followed by quantification of PA distribution in the leaves using gas chromatography-mass spectrometry. The bryophyte orthologues of ACL5, which is known to synthesise thermospermine (Tspm) in flowering plants, were found to have strong Nspm synthesis activity. In addition, two ACL5 orthologous with different substrate specificities were conserved in Selaginella moellendorffii, one of which was involved in Tspm synthesis and the other in Nspm synthesis. Therefore, further detailed analysis using these two factors revealed that the β-hairpin structural region consisting of β-strands 1 and 2 at the N-terminus of ACL5 is involved in substrate specificity. Through functional analysis of a total of 40 ACL5 genes in 33 organisms, including algae, it was shown that ACL5 has changed its substrate specificity several times during plant evolution and diversification. Furthermore, it was strongly suggested that ACL5 acquired strict Tspm synthesis activity during the emergence of vascular plants, especially through major changes around the β-hairpin structural region.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| |
Collapse
|
6
|
Li B, Liang J, Baniasadi HR, Kurihara S, Phillips MA, Michael AJ. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N 1-aminopropylagmatine synthases. J Biol Chem 2024; 300:107281. [PMID: 38588807 PMCID: PMC11107197 DOI: 10.1016/j.jbc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
7
|
Furumoto T, Yamaoka S, Kohchi T, Motose H, Takahashi T. Thermospermine Is an Evolutionarily Ancestral Phytohormone Required for Organ Development and Stress Responses in Marchantia Polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:460-471. [PMID: 38179828 PMCID: PMC11020214 DOI: 10.1093/pcp/pcae002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Thermospermine suppresses auxin-inducible xylem differentiation, whereas its structural isomer, spermine, is involved in stress responses in angiosperms. The thermospermine synthase, ACAULIS5 (ACL5), is conserved from algae to land plants, but its physiological functions remain elusive in non-vascular plants. Here, we focused on MpACL5, a gene in the liverwort Marchantia polymorpha, that rescued the dwarf phenotype of the acl5 mutant in Arabidopsis. In the Mpacl5 mutants generated by genome editing, severe growth retardation was observed in the vegetative organ, thallus, and the sexual reproductive organ, gametangiophore. The mutant gametangiophores exhibited remarkable morphological defects such as short stalks, fasciation and indeterminate growth. Two gametangiophores fused together, and new gametangiophores were often initiated from the old ones. Furthermore, Mpacl5 showed altered responses to heat and salt stresses. Given the absence of spermine in bryophytes, these results suggest that thermospermine has a dual primordial function in organ development and stress responses in M. polymorpha. The stress response function may have eventually been assigned to spermine during land plant evolution.
Collapse
Affiliation(s)
- Takuya Furumoto
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| |
Collapse
|
8
|
Cruz-Pulido YE, Mounce BC. Good cop, bad cop: Polyamines play both sides in host immunity and viral replication. Semin Cell Dev Biol 2023; 146:70-79. [PMID: 36604249 PMCID: PMC10101871 DOI: 10.1016/j.semcdb.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.
Collapse
Affiliation(s)
- Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Infectious Disease and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
9
|
Samanta I, Roy PC, Das E, Mishra S, Chowdhary G. Plant Peroxisomal Polyamine Oxidase: A Ubiquitous Enzyme Involved in Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:652. [PMID: 36771734 PMCID: PMC9919379 DOI: 10.3390/plants12030652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyamines (PAs) are positively charged amines that are present in all organisms. In addition to their functions specific to growth and development, they are involved in responding to various biotic and abiotic stress tolerance functions. The appropriate concentration of PA in the cell is maintained by a delicate balance between the catabolism and anabolism of PAs, which is primarily driven by two enzymes, namely diamine oxidase and polyamine oxidase (PAO). PAOs have been found to be localized in multiple subcellular locations, including peroxisomes. This paper presents a holistic account of peroxisomal PAOs. PAOs are flavin adenine dinucleotide-dependent enzymes with varying degrees of substrate specificity. They are expressed differentially upon various abiotic stress conditions, namely heat, cold, salinity, and dehydration. It has also been observed that in a particular species, the various PAO isoforms are expressed differentially with a spatial and temporal distinction. PAOs are targeted to peroxisome via a peroxisomal targeting signal (PTS) type 1. We conducted an extensive bioinformatics analysis of PTS1s present in various peroxisomal PAOs and present a consensus peroxisome targeting signal present in PAOs. Furthermore, we also propose an evolutionary perspective of peroxisomal PAOs. PAOs localized in plant peroxisomes are of potential importance in abiotic stress tolerance since peroxisomes are one of the nodal centers of reactive oxygen species (ROS) homeostasis and an increase in ROS is a major indicator of the plant being in stress conditions; hence, in the future, PAO enzymes could be used as a key candidate for generating abiotic stress tolerant crops.
Collapse
Affiliation(s)
- Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Pamela Chanda Roy
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Eshani Das
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| |
Collapse
|
10
|
Li X, Yan Z, Zhang M, Wang J, Xin P, Cheng S, Kou L, Zhang X, Wu S, Chu J, Yi C, Ye K, Wang B, Li J. SnoRNP is essential for thermospermine-mediated development in Arabidopsis thaliana. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2-11. [PMID: 36385591 DOI: 10.1007/s11427-022-2235-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones. Polyamines play critical roles in a range of developmental processes. However, the molecular mechanisms of polyamine signaling pathways remain poorly understood. Here, we measured the contents of main types of polyamines, and found that endogenous level of thermospermine (T-Spm) in Arabidopsis thaliana is comparable to those of classic phytohormones and is significantly lower than those of putrescine (Put), spermidine (Spd), and spermine (Spm). We further found a nodule-like structure around the junction area connecting the shoot and root of the T-Spm biosynthetic mutant acl5 and obtained more than 50 suppressors of acl5nodule structure (san) through suppressor screening. An in-depth study of two san suppressors revealed that NAP57 and NOP56, core components of box H/ACA and C/D snoRNPs, were essential for T-Spm-mediated nodule-like structure formation and plant height. Furthermore, analyses of rRNA modifications showed that the overall levels of pseudouridylation and 2'-O-methylation were compromised in san1 and san2 respectively. Taken together, these results establish a strong genetic relationship between rRNA modification and T-Spm-mediated growth and development, which was previously undiscovered in all organisms.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shujing Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
11
|
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, Noushahi HA, Wu W, Hu Q, Lu X, Huang G, Aamer M, Hassan MU, El Sabagh A. Versatile roles of polyamines in improving abiotic stress tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1003155. [PMID: 36311109 PMCID: PMC9606767 DOI: 10.3389/fpls.2022.1003155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants' optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs' accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants' stress tolerance under unfavorable cues.
Collapse
Affiliation(s)
- Jinhua Shao
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rabail Afzal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Haroon
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Weixiong Wu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Qiliang Hu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Xingda Lu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
| |
Collapse
|
12
|
Xi Y, Hu W, Zhou Y, Liu X, Qian Y. Genome-Wide Identification and Functional Analysis of Polyamine Oxidase Genes in Maize Reveal Essential Roles in Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:950064. [PMID: 35991458 PMCID: PMC9386529 DOI: 10.3389/fpls.2022.950064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) play a critical role in growth and developmental processes and stress responses in plants. Polyamine oxidase (PAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that plays a major role in PA catabolism. Here, for the first time, PAO genes in maize were screened for the whole genome-wide and nine ZmPAO genes were identified in this study, named as ZmPAO1-9. Based on structural characteristics and a comparison of phylogenetic relationships of PAO gene families from seven representative species, all nine PAO proteins in maize were categorized into three distinct subfamilies. Further, chromosome location and schematic structure revealed an unevenly distribution on chromosomes and evolutionarily conserved structure features of ZmPAO genes in maize, respectively. Furthermore, transcriptome analysis demonstrated that ZmPAO genes showed differential expression patterns at diverse developmental stages of maize, suggesting that these genes may play functional developmental roles in multiple tissues. Further, through qRT-PCR validation, these genes were confirmed to be responsive to heat, drought and salinity stress treatments in three various tissues, indicating their potential roles in abiotic stress responses. Eventually, to verify the biological function of ZmPAO genes, the transgenic Arabidopsis plants overexpressing ZmPAO6 gene were constructed as a typical representative to explore functional roles in plants. The results demonstrated that overexpression of ZmPAO6 can confer enhanced heat tolerance through mediating polyamine catabolism in transgenic Arabidopsis, which might result in reduced H2O2 and MDA accumulation and alleviated chlorophyll degradation under heat stress treatment, indicating that ZmPAO6 may play a crucial role in enhancing heat tolerance of transgenic Arabidopsis through the involvement in various physiological processes. Further, the expression analysis of related genes of antioxidant enzymes including glutathione peroxidase (GPX) and ascorbate peroxidase (APX) demonstrated that ZmPAO6 can enhance heat resistance in transgenic Arabidopsis through modulating heat-induced H2O2 accumulation in polyamine catabolism. Taken together, our results are the first to report the ZmPAO6 gene response to heat stress in plants and will serve to present an important theoretical basis for further unraveling the function and regulatory mechanism of ZmPAO genes in growth, development and adaptation to abiotic stresses in maize.
Collapse
|
13
|
Partap M, Warghat AR, Kumar S. Cambial meristematic cell culture: a sustainable technology toward in vitro specialized metabolites production. Crit Rev Biotechnol 2022:1-19. [PMID: 35658789 DOI: 10.1080/07388551.2022.2055995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cambial meristematic cells (CMCs) culture has received a fair share of scientific and industrial attention among the trending topics of plant cell culture, especially their potential toward secondary metabolites production. However, the conventional plant cell culture is often not commercially feasible because of difficulties associated with culture dedifferentiated cells. Several reports have been published to culture CMCs and bypass the dedifferentiation process in plant cell culture. Numerous mitochondria, multiple vacuoles, genetic stability, self-renewal, higher biomass, and stable metabolites accumulation are the characteristics features of CMCs compared with dedifferentiated cells (DDCs) culture. The CMCs culture has a broader application to produce large-scale natural compounds for: pharmaceuticals, food, and cosmetic industries. Cutting-edge progress in plant cellular and molecular biology has allowed unprecedented insights into cambial stem cell culture and its fundamental processes. Therefore, regarding sustainability and natural compound production, cambial cell culture ranks among the most vital biotechnological interventions for industrial and economic perspectives. This review highlights the recent advances in plant stem cell culture and understands the cambial cells induction and culture mechanisms that affect the growth and natural compounds production.
Collapse
Affiliation(s)
- Mahinder Partap
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Kundu A, Mishra S, Kundu P, Jogawat A, Vadassery J. Piriformospora indica recruits host-derived putrescine for growth promotion in plants. PLANT PHYSIOLOGY 2022; 188:2289-2307. [PMID: 34791442 PMCID: PMC8968253 DOI: 10.1093/plphys/kiab536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Growth promotion induced by the endosymbiont Piriformospora indica has been observed in various plants; however, except growth phytohormones, specific functional metabolites involved in P. indica-mediated growth promotion are unknown. Here, we used a gas chromatography-mass spectrometry-based untargeted metabolite analysis to identify tomato (Solanum lycopersicum) metabolites whose levels were altered during P. indica-mediated growth promotion. Metabolomic multivariate analysis revealed several primary metabolites with altered levels, with putrescine (Put) induced most significantly in roots during the interaction. Further, our results indicated that P. indica modulates the arginine decarboxylase (ADC)-mediated Put biosynthesis pathway via induction of SlADC1 in tomato. Piriformospora indica did not promote growth in Sladc1-(virus-induced gene silencing of SlADC1) lines of tomato and showed less colonization. Furthermore, using LC-MS/MS we showed that Put promoted growth by elevation of auxin (indole-3-acetic acid) and gibberellin (GA4 and GA7) levels in tomato. In Arabidopsis (Arabidopsis thaliana) adc knockout mutants, P. indica colonization also decreased and showed no plant growth promotion, and this response was rescued upon exogenous application of Put. Put is also important for hyphal growth of P. indica, indicating that it is co-adapted by both host and microbe. Taken together, we conclude that Put is an essential metabolite and its biosynthesis in plants is crucial for P. indica-mediated plant growth promotion and fungal growth.
Collapse
Affiliation(s)
- Anish Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pritha Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
15
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
16
|
Sheng S, Wu C, Xiang Y, Pu W, Duan S, Huang P, Cheng X, Gong Y, Liang Y, Liu L. Polyamine: A Potent Ameliorator for Plant Growth Response and Adaption to Abiotic Stresses Particularly the Ammonium Stress Antagonized by Urea. FRONTIERS IN PLANT SCIENCE 2022; 13:783597. [PMID: 35401587 PMCID: PMC8988247 DOI: 10.3389/fpls.2022.783597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 05/14/2023]
Abstract
Polyamine(s) (PA, PAs), a sort of N-containing and polycationic compound synthesized in almost all organisms, has been recently paid considerable attention due to its multifarious actions in the potent modulation of plant growth, development, and response to abiotic/biotic stresses. PAs in cells/tissues occur mainly in free or (non- or) conjugated forms by binding to various molecules including DNA/RNA, proteins, and (membrane-)phospholipids, thus regulating diverse molecular and cellular processes as shown mostly in animals. Although many studies have reported that an increase in internal PA may be beneficial to plant growth under abiotic conditions, leading to a suggestion of improving plant stress adaption by the elevation of endogenous PA via supply or molecular engineering of its biosynthesis, such achievements focus mainly on PA homeostasis/metabolism rather than PA-mediated molecular/cellular signaling cascades. In this study, to advance our understanding of PA biological actions important for plant stress acclimation, we gathered some significant research data to succinctly describe and discuss, in general, PA synthesis/catabolism, as well as PA as an internal ameliorator to regulate stress adaptions. Particularly, for the recently uncovered phenomenon of urea-antagonized NH4 +-stress, from a molecular and physiological perspective, we rationally proposed the possibility of the existence of PA-facilitated signal transduction pathways in plant tolerance to NH4 +-stress. This may be a more interesting issue for in-depth understanding of PA-involved growth acclimation to miscellaneous stresses in future studies.
Collapse
Affiliation(s)
- Song Sheng
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Changzheng Wu
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Shuhui Duan
- Hunan Tobacco Science Institute, Changsha, China
| | - Pingjun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaoyuan Cheng
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuanyong Gong
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Yilong Liang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Laihua Liu
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Laihua Liu,
| |
Collapse
|
17
|
Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It. SUSTAINABILITY 2021. [DOI: 10.3390/su132212758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Salinity is one of the most important abiotic stresses that influences plant growth and productivity worldwide. Salinity affects plant growth by ionic toxicity, osmotic stress, hormonal imbalance, nutrient mobilization reduction, and reactive oxygen species (ROS). To survive in saline soils, plants have developed various physiological and biochemical strategies such as ion exchange, activation of antioxidant enzymes, and hormonal stimulation. In addition to plant adaption mechanisms, plant growth-promoting rhizobacteria (PGPR) can enhance salt tolerance in plants via ion homeostasis, production of antioxidants, ACC deaminase, phytohormones, extracellular polymeric substance (EPS), volatile organic compounds, accumulation of osmolytes, activation of plant antioxidative enzymes, and improvement of nutrients uptake. One of the important issues in microbial biotechnology is establishing a link between the beneficial strains screened in the laboratory with industry and the consumer. Therefore, in the development of biocontrol agents, it is necessary to study the optimization of conditions for mass reproduction and the selection of a suitable carrier for their final formulation. Toward sustainable agriculture, the use of appropriate formulations of bacterial agents as high-performance biofertilizers, including microbial biocapsules, is necessary to improve salt tolerance and crop productivity.
Collapse
|
18
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
19
|
Xing Q, Bi G, Cao M, Belcour A, Aite M, Mo Z, Mao Y. Comparative Transcriptome Analysis Provides Insights into Response of Ulva compressa to Fluctuating Salinity Conditions. JOURNAL OF PHYCOLOGY 2021; 57:1295-1308. [PMID: 33715182 DOI: 10.1111/jpy.13167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Ulva compressa, a green tide-forming species, can adapt to hypo-salinity conditions, such as estuaries and brackish lakes. To understand the underlying molecular mechanisms of hypo-salinity stress tolerance, transcriptome-wide gene expression profiles in U. compressa were created using digital gene expression profiles. The RNA-seq data were analyzed based on the comparison of differently expressed genes involved in specific pathways under hypo-salinity and recovery conditions. The up-regulation of genes in photosynthesis and glycolysis pathways may contribute to the recovery of photosynthesis and energy metabolism, which could provide sufficient energy for the tolerance under long-term hyposaline stress. Multiple strategies, such as ion transportation and osmolytes metabolism, were performed to maintain the osmotic homeostasis. Additionally, several long noncoding RNA were differently expressed during the stress, which could play important roles in the osmotolerance. Our work will serve as an essential foundation for the understanding of the tolerance mechanism of U. compressa under the fluctuating salinity conditions.
Collapse
Affiliation(s)
- Qikun Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique deRoscoff (SBR), CNRS, Sorbonne Université, 29680, Roscoff, France
| | - Guiqi Bi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Agricultural Synthetic Biology Center, Chinese Academy of Agricultural Sciences, Agricultural Genomes Institute at Shenzhen, Shenzhen, 518120, China
| | - Min Cao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Arnaud Belcour
- Inria, CNRS, IRISA, Equipe Dyliss, Univ Rennes, Rennes, France
| | - Méziane Aite
- Inria, CNRS, IRISA, Equipe Dyliss, Univ Rennes, Rennes, France
| | - Zhaolan Mo
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxiang Mao
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
20
|
Qin J, Krivoruchko A, Ji B, Chen Y, Kristensen M, Özdemir E, Keasling JD, Jensen MK, Nielsen J. Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues. Nat Catal 2021. [DOI: 10.1038/s41929-021-00631-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Sagor GHM, Simm S, Kim DW, Niitsu M, Kusano T, Berberich T. Effect of thermospermine on expression profiling of different gene using massive analysis of cDNA ends (MACE) and vascular maintenance in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:577-586. [PMID: 33854285 PMCID: PMC7981342 DOI: 10.1007/s12298-021-00967-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 05/24/2023]
Abstract
Arabidopsis thaliana polyamine oxidase 5 gene (AtPAO5) functions as a thermospermine (T-Spm) oxidase. Aerial growth of its knock-out mutant (Atpao5-2) was significantly repressed by low dose(s) of T-Spm but not by other polyamines. To figure out the underlying mechanism, massive analysis of 3'-cDNA ends was performed. Low dose of T-Spm treatment modulates more than two fold expression 1,398 genes in WT compared to 3186 genes in Atpao5-2. Cell wall, lipid and secondary metabolisms were dramatically affected in low dose T-Spm-treated Atpao5-2, in comparison to other pathways such as TCA cycle-, amino acid- metabolisms and photosynthesis. The cell wall pectin metabolism, cell wall proteins and degradation process were highly modulated. Intriguingly Fe-deficiency responsive genes and drought stress-induced genes were also up-regulated, suggesting the importance of thermospermi'ne flux on regulation of gene network. Histological observation showed that the vascular system of the joint part between stem and leaves was structurally dissociated, indicating its involvement in vascular maintenance. Endogenous increase in T-Spm and reduction in H2O2 contents were found in mutant grown in T-Spm containing media. The results indicate that T-Spm homeostasis by a fine tuned balance of its synthesis and catabolism is important for maintaining gene regulation network and the vascular system in plants.
Collapse
Affiliation(s)
- G. H. M. Sagor
- Plant Molecular Genetics Laboratory, Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Dong Wook Kim
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290 Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Kitagawa T, Nishio T, Yoshikawa Y, Umezawa N, Higuchi T, Shew CY, Kenmotsu T, Yoshikawa K. Effects of Structural Isomers of Spermine on the Higher-Order Structure of DNA and Gene Expression. Int J Mol Sci 2021; 22:ijms22052355. [PMID: 33652986 PMCID: PMC7956460 DOI: 10.3390/ijms22052355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Polyamines are involved in various biological functions, including cell proliferation, differentiation, gene regulation, etc. Recently, it was found that polyamines exhibit biphasic effects on gene expression: promotion and inhibition at low and high concentrations, respectively. Here, we compared the effects of three naturally occurring tetravalent polyamines, spermine (SPM), thermospermine (TSPM), and N4-aminopropylspermidine (BSPD). Based on the single DNA observation with fluorescence microscopy together with measurements by atomic force microscopy revealed that these polyamines induce shrinkage and then compaction of DNA molecules, at low and high concentrations, respectively. We also performed the observation to evaluate the effects of these polyamine isomers on the activity of gene expression by adapting a cell-free luciferase assay. Interestingly, the potency of their effects on the DNA conformation and also on the inhibition of gene expression activity indicates the highest for TSPM among spermine isomers. A numerical evaluation of the strength of the interaction of these polyamines with negatively charged double-strand DNA revealed that this ordering of the potency corresponds to the order of the strength of the attractive interaction between phosphate groups of DNA and positively charged amino groups of the polyamines.
Collapse
Affiliation(s)
- Tomoki Kitagawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan; (T.K.); (T.N.); (Y.Y.)
| | - Takashi Nishio
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan; (T.K.); (T.N.); (Y.Y.)
| | - Yuko Yoshikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan; (T.K.); (T.N.); (Y.Y.)
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (N.U.); (T.H.)
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (N.U.); (T.H.)
| | - Chwen-Yang Shew
- Doctoral Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA;
- Department of Chemistry, College of Staten Island, Staten Island, New York, NY 10314, USA
| | - Takahiro Kenmotsu
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan; (T.K.); (T.N.); (Y.Y.)
- Correspondence: (T.K.); (K.Y.)
| | - Kenichi Yoshikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan; (T.K.); (T.N.); (Y.Y.)
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (T.K.); (K.Y.)
| |
Collapse
|
23
|
Xu J, Yang J, Xu Z, Zhao D, Hu X. Exogenous spermine-induced expression of SlSPMS gene improves salinity-alkalinity stress tolerance by regulating the antioxidant enzyme system and ion homeostasis in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:79-92. [PMID: 33096513 DOI: 10.1016/j.plaphy.2020.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The study tested the function of exogenous spermine (Spm) in resisting salinity-alkalinity stress in tomato seedlings and found that tomato Spm synthase gene (SlSPMS) was involved in this regulation. The tomato seedlings cultivated in normal conditions or salinity-alkalinity conditions were irrigated with 100 ml one strength Hoagland nutrient solution 100 ml mixed solution (5 ml 300 mmol/L NaCl, 45 ml 300 mmol/L Na2SO4, 45 ml 300 mmol/L NaHCO3, and 5 ml 300 mmol/L Na2CO3 (pH = 8.90)) every 2 days, respectively. The 0.5 mM Spm pretreatment improved superoxide dismutase (SOD; EC 1.15.1.1) activity, catalase (CAT; EC 1.11.1.6) activity, ascorbate peroxidase (APX; EC 1.11.1.11) activity, and glutathione reductase (GR; EC 1.6.4.2) activity and decreased endogenous hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, and relative electrical conductivity (REC) in tomato leaves. Na+ content declined and K+ concentration rose in tomato seedlings when pre-treated with Spm. However the results showed that under salinity-alkalinity stress, silencing of SlSPMS with virus-induced gene silencing had lower antioxidant enzyme activities and higher Na+ content and lower K+ content than normal tomato seedlings, meaning that they had low salinity-alkalinity tolerance. Exogenous Spm could not reconstruct the tolerance to salinity-alkalinity stress in SlSPMS gene-silencing tomato seedlings. Taken together, exogenous Spm could induce the expression level of SlSPMS, which regulated the antioxidant enzyme system and ion homeostasis in tomato seedlings living in salinity-alkalinity environment, thereby improving the ability of tomato seedlings to resist salinity-alkalinity stress.
Collapse
Affiliation(s)
- Jiwen Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jianyu Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Dingkang Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Milhinhos A, Bollhöner B, Blazquez MA, Novák O, Miguel CM, Tuominen H. ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees. FRONTIERS IN PLANT SCIENCE 2020; 11:601858. [PMID: 33304375 PMCID: PMC7701098 DOI: 10.3389/fpls.2020.601858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
In the primary root and young hypocotyl of Arabidopsis, ACAULIS5 promotes translation of SUPPRESSOR OF ACAULIS51 (SAC51) and thereby inhibits cytokinin biosynthesis and vascular cell division. In this study, the relationships between ACAULIS5, SAC51 and cytokinin biosynthesis were investigated during secondary growth of Populus stems. Overexpression of ACAULIS5 from the constitutive 35S promoter in hybrid aspen (Populus tremula × Populus tremuloides) trees suppressed the expression level of ACAULIS5, which resulted in low levels of the physiologically active cytokinin bases as well as their direct riboside precursors in the transgenic lines. Low ACAULIS5 expression and low cytokinin levels of the transgenic trees coincided with low cambial activity of the stem. ACAULIS5 therefore, contrary to its function in young seedlings in Arabidopsis, stimulates cytokinin accumulation and cambial activity during secondary growth of the stem. This function is not derived from maturing secondary xylem tissues as transgenic suppression of ACAULIS5 levels in these tissues did not influence secondary growth. Interestingly, evidence was obtained for increased activity of the anticlinal division of the cambial initials under conditions of low ACAULIS5 expression and low cytokinin accumulation. We propose that ACAULIS5 integrates auxin and cytokinin signaling to promote extensive secondary growth of tree stems.
Collapse
Affiliation(s)
- Ana Milhinhos
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Miguel A. Blazquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia, Valencia, Spain
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany, Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Célia M. Miguel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Alharbi B, Hunt JD, Dimitrova S, Spadafora ND, Cort AP, Colombo D, Müller CT, Ghuge SA, Davoli D, Cona A, Mariotti L, Picciarelli P, de Graaf B, Rogers HJ. Mutation of Arabidopsis Copper-Containing Amine Oxidase Gene AtCuAOδ Alters Polyamines, Reduces Gibberellin Content and Affects Development. Int J Mol Sci 2020; 21:E7789. [PMID: 33096855 PMCID: PMC7589035 DOI: 10.3390/ijms21207789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/20/2023] Open
Abstract
Polyamines (PAs) are essential metabolites in plants performing multiple functions during growth and development. Copper-containing amine oxidases (CuAOs) catalyse the catabolism of PAs and in Arabidopsis thaliana are encoded by a gene family. Two mutants of one gene family member, AtCuAOδ, showed delayed seed germination, leaf emergence, and flowering time. The height of the primary inflorescence shoot was reduced, and developmental leaf senescence was delayed. Siliques were significantly longer in mutant lines and contained more seeds. The phenotype of AtCuAOδ over-expressors was less affected. Before flowering, there was a significant increase in putrescine in AtCuAOδ mutant leaves compared to wild type (WT), while after flowering both spermidine and spermine concentrations were significantly higher than in WT leaves. The expression of GA (gibberellic acid) biosynthetic genes was repressed and the content of GA1, GA7, GA8, GA9, and GA20 was reduced in the mutants. The inhibitor of copper-containing amine oxidases, aminoguanidine hydrochloride, mimicked the effect of AtCuAOδ mutation on WT seed germination. Delayed germination, reduced shoot height, and delayed flowering in the mutants were rescued by GA3 treatment. These data strongly suggest AtCuAOδ is an important gene regulating PA homeostasis, and that a perturbation of PAs affects plant development through a reduction in GA biosynthesis.
Collapse
Affiliation(s)
- Basmah Alharbi
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Julie D. Hunt
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Simone Dimitrova
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Natasha D. Spadafora
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Alex P. Cort
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Davide Colombo
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Carsten T. Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Sandip A. Ghuge
- Department of Sciences, Università Roma Tre, Viale Marconi, 446, 00146 Roma, Italy; (S.A.G.); (A.C.)
| | - Daniela Davoli
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Alessandra Cona
- Department of Sciences, Università Roma Tre, Viale Marconi, 446, 00146 Roma, Italy; (S.A.G.); (A.C.)
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy; (L.M.); (P.P.)
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy; (L.M.); (P.P.)
| | - Barend de Graaf
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| |
Collapse
|
26
|
Agustí J, Blázquez MA. Plant vascular development: mechanisms and environmental regulation. Cell Mol Life Sci 2020; 77:3711-3728. [PMID: 32193607 PMCID: PMC11105054 DOI: 10.1007/s00018-020-03496-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.
Collapse
Affiliation(s)
- Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
27
|
Ohashi-Ito K, Fukuda H. Transcriptional networks regulating root vascular development. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:118-123. [PMID: 32927424 DOI: 10.1016/j.pbi.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Vascular development involves multiple processes, including the establishment of vascular stem cells (e.g. procambium/cambium cells), stem cell divisions, and cell specification. A number of key transcription factors regulating vascular development have been identified, and the molecular mechanisms underlying these regulators have been keenly investigated. These studies uncovered that transcriptional regulation and phytohormone signaling have central roles in proceeding vascular developmental processes. Recent research approaches contributed to identify key transcription factors and their downstream genes, which enhanced our understanding of vascular development. This review discusses some research approaches and emerging molecular mechanisms that mediate the activation of transcriptional networks regulating root vascular development.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
28
|
Dastkar E, Soleimani A, Jafary H, de Dios Alche J, Bahari A, Zeinalabedini M, Salami SA. Differential expression of genes in olive leaves and buds of ON- versus OFF-crop trees. Sci Rep 2020; 10:15762. [PMID: 32978460 PMCID: PMC7519672 DOI: 10.1038/s41598-020-72895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Alternate bearing (AB) refers to the tendency of trees to have an irregular crop load from 1 year (ON) to the next year (OFF). Despite its economic importance, it is not fully understood how gene networks and their related metabolic pathways may influence the irregular bearing in olive trees. To unravel molecular mechanisms of this phenomenon in olive (cv. Conservalia), the whole transcriptome of leaves and buds from ON and OFF-trees was sequenced using Illumina next generation sequencing approach. The results indicated that expressed transcripts were involved in metabolism of carbohydrates, polyamins, phytohormones and polyphenol oxidase (POD) related to antioxidant system. Expression of POD was increased in leaf samples of ON- versus OFF-trees. The expression pattern of the greater number of genes was changed more in buds than in leaves. Up-regulation of gene homologues to the majority of enzymes that were involved in photorespiration metabolism pathway in buds of ON-trees was remarkable that may support the hypotheses of an increase in photorespiratory metabolism in these samples. The results indicated changes in expression pattern of homologous to those taking part of abscisic acid and cytokinin synthesis which are connected to photorespiration. Our data did not confirm expression of homologue (s) to those of chlorogenic acid metabolism, which has been addressed earlier that have a probable role in biennial bearing in olive. Current findings provide new candidate genes for further functional analysis, gene cloning and exploring of molecular basses of AB in olive.
Collapse
Affiliation(s)
- Ebrahim Dastkar
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ali Soleimani
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Hossein Jafary
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Juan de Dios Alche
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biotechnology, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Abbas Bahari
- Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Seyed Alireza Salami
- Faculty of Agricultural Science and Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Li M, Lu J, Tao M, Li M, Yang H, Xia EH, Chen Q, Wan X. Genome-Wide Identification of Seven Polyamine Oxidase Genes in Camellia sinensis (L.) and Their Expression Patterns Under Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:544933. [PMID: 33013966 PMCID: PMC7500180 DOI: 10.3389/fpls.2020.544933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Polyamines (PAs) in plant play a critical role in growth and development and in response to environmental stress. Polyamine oxidase (PAO) is a flavin adenine dinucleotide dependent enzyme that plays a major role in PA catabolism. For the first time, PAO genes in tea plant were screened for the whole genome-wide and seven CsPAO genes were identified, which were named CsPAO1-7. Phylogenetic tree analysis revealed seven CsPAO protein sequences classed into three groups, including clade I, III, and IV. Compared with other plants, the tea plant lacked clade II members. Genetic structure and tissue specific expression analysis showed that there were significant differences among members of the CsPAO gene family. Among members of the CsPAOs family, CsPAO4 and CsPAO5 contain more introns and are highly expressed in various organizations. CsPAO1, CsPAO4, and CsPAO5 genes were cloned and expressed heterologously to verify theirs function. Heat map showed high response of CsPAO5 to drought stress, while CsPAO1 and CsPAO2 were sensitive to changes in nitrogen nutrition. Furthermore, exogenous abscisic acid (ABA) treatment indicated that the expression of most CsPAO genes in roots and leaves was significantly induced. In the root, Spm content increased significantly, while Put and Spd content decreased, suggesting that ABA has great influence on the biosynthesis of PAs. Anaerobic treatment of picked tea leaves showed that the decomposition of PAs was promoted to a certain extent. The above data help to clarify the role of CsPAO in response abiotic and nitrogen nutritional stresses in tea plants, and provide a reference perspective for the potential influence of PAs on the tea processing quality.
Collapse
Affiliation(s)
- Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mingmin Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Hua Yang
- College of Science, Anhui Agricultural University, Hefei, China
| | - En-hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Takamura H, Motose H, Otsu T, Shinohara S, Kouno R, Kadota I, Takahashi T. Chemical Synthesis and Biological Effect on Xylem Formation of Xylemin and Its Analogues. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Hiroyasu Motose
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Taichi Otsu
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Shiori Shinohara
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Ryugo Kouno
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Isao Kadota
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| | - Taku Takahashi
- Department of Biological Science; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka 700-8530 Kita-ku Okayama Japan
| |
Collapse
|
31
|
Lou YR, Ahmed S, Yan J, Adio AM, Powell HM, Morris PF, Jander G. Arabidopsis ADC1 functions as an N δ -acetylornithine decarboxylase. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:601-613. [PMID: 31081586 DOI: 10.1111/jipb.12821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Polyamines are small aliphatic amines found in almost all organisms, ranging from bacteria to plants and animals. In most plants, putrescine, the metabolic precursor for longer polyamines, such as spermidine and spermine, is produced from arginine, with either agmatine or ornithine as intermediates. Here we show that Arabidopsis thaliana (Arabidopsis) arginine decarboxylase 1 (ADC1), one of the two known arginine decarboxylases in Arabidopsis, not only synthesizes agmatine from arginine, but also converts Nδ -acetylornithine to N-acetylputrescine. Phylogenetic analyses indicate that duplication and neofunctionalization of ADC1 and NATA1, the enzymes that synthesize Nδ -acetylornithine in Arabidopsis, co-occur in a small number of related species in the Brassicaceae. Unlike ADC2, which is localized in the chloroplasts, ADC1 is in the endoplasmic reticulum together with NATA1, an indication that these two enzymes have access to the same substrate pool. Together, these results are consistent with a model whereby NATA1 and ADC1 together provide a pathway for the synthesis of N-acetylputrescine in Arabidopsis.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Adewale M Adio
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Hannah M Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| |
Collapse
|
32
|
Abstract
Polyamines are small organic compounds found in all living organisms. According to the high degree of positive charge at physiological pH, they interact with negatively charged macromolecules, such as DNA, RNA, and proteins, and modulate their activities. In plants, polyamines, some of which are presented as a conjugated form with cinnamic acids and proteins, are involved in a variety of physiological processes. In recent years, the study of plant polyamines, such as their biosynthetic and catabolic pathways and the roles they play in cellular processes, has flourished, becoming an exciting field of research. There is accumulating evidence that polyamine oxidation, the main catabolic pathway of polyamines, may have a potential role as a source of hydrogen peroxide. The papers in this Special Issue highlight new discoveries and research in the field of plant polyamine biology. The information will help to stimulate further research and make readers aware of the link between their own work and topics related to polyamines.
Collapse
Affiliation(s)
- Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
33
|
Killiny N, Nehela Y. Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions. PLANTS 2020; 9:plants9040426. [PMID: 32244406 PMCID: PMC7238152 DOI: 10.3390/plants9040426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation, morphology, and architecture; plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events; fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance to biotic and abiotic stresses and provide bases for further research into potential applications.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Correspondence: ; Tel.: +1-863-956-8833
| | - Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
34
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
35
|
Vuosku J, Muilu-Mäkelä R, Avia K, Suokas M, Kestilä J, Läärä E, Häggman H, Savolainen O, Sarjala T. Thermospermine Synthase ( ACL5) and Diamine Oxidase ( DAO) Expression Is Needed for Zygotic Embryogenesis and Vascular Development in Scots Pine. FRONTIERS IN PLANT SCIENCE 2019; 10:1600. [PMID: 31921249 PMCID: PMC6934065 DOI: 10.3389/fpls.2019.01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/14/2019] [Indexed: 05/27/2023]
Abstract
Unlike in flowering plants, the detailed roles of the enzymes in the polyamine (PA) pathway in conifers are poorly known. We explored the sequence conservation of the PA biosynthetic genes and diamine oxidase (DAO) in conifers and flowering plants to reveal the potential functional diversification of the enzymes between the plant lineages. The expression of the genes showing different selective constraints was studied in Scots pine zygotic embryogenesis and early seedling development. We found that the arginine decarboxylase pathway is strongly preferred in putrescine production in the Scots pine as well as generally in conifers and that the reduced use of ornithine decarboxylase (ODC) has led to relaxed purifying selection in ODC genes. Thermospermine synthase (ACL5) genes evolve under strong purifying selection in conifers and the DAO gene is also highly conserved in pines. In developing Scots pine seeds, the expression of both ACL5 and DAO increased as embryogenesis proceeded. Strong ACL5 expression was present in the procambial cells of the embryo and in the megagametophyte cells destined to die via morphologically necrotic cell death. Thus, the high sequence conservation of ACL5 genes in conifers may indicate the necessity of ACL5 for both embryogenesis and vascular development. Moreover, the result suggests the involvement of ACL5 in morphologically necrotic cell death and supports the view of the genetic regulation of necrosis in Scots pine embryogenesis and in plant development. DAO transcripts were located close to the cell walls and between the walls of adjacent cells in Scots pine zygotic embryos and in the roots of young seedlings. We propose that DAO, in addition to the role in Put oxidation for providing H2O2 during the cell-wall structural processes, may also participate in cell-to-cell communication at the mRNA level. To conclude, our findings indicate that the PA pathway of Scots pines possesses several special functional characteristics which differ from those of flowering plants.
Collapse
Affiliation(s)
- Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | | - Komlan Avia
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Johanna Kestilä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Esa Läärä
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Tytti Sarjala
- Production Systems, Natural Resources Institute Finland, Espoo, Finland
| |
Collapse
|
36
|
Shinohara S, Okamoto T, Motose H, Takahashi T. Salt hypersensitivity is associated with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:374-383. [PMID: 31257654 DOI: 10.1111/tpj.14448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, spermine is produced in most tissues and has been implicated in stress response, while its structural isomer thermospermine is only in xylem precursor cells. Studies on acaulis5 (acl5), a mutant defective in the biosynthesis of thermospermine, have revealed that thermospermine plays a repressive role in xylem development through enhancement of mRNA translation of the SAC51 family. In contrast, the pao5 mutant defective in the degradation of thermospermine has high levels of thermospermine and shows increased salt tolerance, suggesting a role of thermospermine in salt stress response. Here we compared acl5 with a mutant of spermine synthase, spms, in terms of abiotic stress tolerance and found that acl5 was much more sensitive to sodium than the wild-type and spms. A double-mutant of acl5 and sac51-d, which suppresses the excessive xylem phenotype of acl5, recovered normal sensitivity, while a quadruple T-DNA insertion mutant of the SAC51 family, which has an increased thermospermine level but shows excessive xylem development, showed increased salt sensitivity, unlike pao5. Together with the result that the salt tolerance of both wild-type and acl5 seedlings was improved by long-term treatment with thermospermine, we suggest a correlation of the salt tolerance with reduced xylem development rather than with the thermospermine level. We further found that the mutants containing high thermospermine levels showed increased tolerance to drought and heat stress, suggesting another role of thermospermine that may be common with that of spermine and secondary to that in restricting excess xylem development associated with salt hypersensitivity.
Collapse
Affiliation(s)
- Shiori Shinohara
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Takashi Okamoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Hiroyasu Motose
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Taku Takahashi
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
37
|
A polyamine-independent role for S-adenosylmethionine decarboxylase. Biochem J 2019; 476:2579-2594. [DOI: 10.1042/bcj20190561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
AbstractThe only known function of S-adenosylmethionine decarboxylase (AdoMetDC) is to supply, with its partner aminopropyltransferase enzymes such as spermidine synthase (SpdSyn), the aminopropyl donor for polyamine biosynthesis. Polyamine spermidine is probably essential for the growth of all eukaryotes, most archaea and many bacteria. Two classes of AdoMetDC exist, the prokaryotic class 1a and 1b forms, and the eukaryotic class 2 enzyme, which is derived from an ancient fusion of two prokaryotic class 1b genes. Herein, we show that ‘eukaryotic' class 2 AdoMetDCs are found in bacteria and are enzymatically functional. However, the bacterial AdoMetDC class 2 genes are phylogenetically limited and were likely acquired from a eukaryotic source via transdomain horizontal gene transfer, consistent with the class 2 form of AdoMetDC being a eukaryotic invention. We found that some class 2 and thousands of class 1b AdoMetDC homologues are present in bacterial genomes that also encode a gene fusion of an N-terminal membrane protein of the Major Facilitator Superfamily (MFS) class of transporters and a C-terminal SpdSyn-like domain. Although these AdoMetDCs are enzymatically functional, spermidine is absent, and an entire fusion protein or its SpdSyn-like domain only, does not biochemically complement a SpdSyn deletion strain of E. coli. This suggests that the fusion protein aminopropylates a substrate other than putrescine, and has a role outside of polyamine biosynthesis. Another integral membrane protein found clustered with these genes is DUF350, which is also found in other gene clusters containing a homologue of the glutathionylspermidine synthetase family and occasionally other polyamine biosynthetic enzymes.
Collapse
|
38
|
Effect of Thermospermine on the Growth and Expression of Polyamine-Related Genes in Rice Seedlings. PLANTS 2019; 8:plants8080269. [PMID: 31390771 PMCID: PMC6724145 DOI: 10.3390/plants8080269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
A mutant defective in the biosynthesis of thermospermine, acaulis5 (acl5), shows a dwarf phenotype with excess xylem vessels in Arabidopsis thaliana. Exogenous supply of thermospermine remarkably represses xylem differentiation in the root of seedlings, indicating the role of thermospermine in proper repression of xylem differentiation. However, the effect of thermospermine has rarely been investigated in other plant species. In this paper, we examined its effect on the growth and gene expression in rice seedlings. When grown with thermospermine, rice seedlings had no clearly enlarged metaxylem vessels in the root. Expression of OsACL5 was reduced in response to thermospermine, suggesting a negative feedback control of thermospermine biosynthesis like in Arabidopsis. Unlike Arabidopsis, however, rice showed up-regulation of phloem-expressed genes, OsHB5 and OsYSL16, by one-day treatment with thermospermine. Furthermore, expression of OsPAO2 and OsPAO6, encoding extracellular polyamine oxidase whose orthologs are not present in Arabidopsis, was induced by both thermospermine and spermine. These results suggest that thermospermine affects the expression of a subset of genes in rice different from those affected in Arabidopsis.
Collapse
|
39
|
Xu X, Backes A, Legay S, Berni R, Faleri C, Gatti E, Hausman J, Cai G, Guerriero G. Cell wall composition and transcriptomics in stem tissues of stinging nettle ( Urtica dioica L.): Spotlight on a neglected fibre crop. PLANT DIRECT 2019; 3:e00151. [PMID: 31417976 PMCID: PMC6689792 DOI: 10.1002/pld3.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 06/01/2023]
Abstract
Stinging nettle (Urtica dioica L.) produces silky cellulosic fibres, as well as bioactive molecules. To improve the knowledge on nettle and enhance its opportunities of exploitation, a draft transcriptome of the "clone 13" (a fibre clone) is here presented. The transcriptome of whole internodes sampled at the top and middle of the stem is then compared with the core and cortical tissues sampled at the bottom. Young internodes show an enrichment in genes involved in the biosynthesis of phytohormones (auxins and jasmonic acid) and secondary metabolites (flavonoids). The core of internodes collected at the bottom of the stem is enriched in genes partaking in different aspects of secondary cell wall formation (cellulose, hemicellulose, lignin biosynthesis), while the cortical tissues reveal the presence of a C starvation signal probably due to the UDP-glucose demand necessary for the thickening phase of bast fibres. Cell wall analysis indicates a difference in rhamnogalacturonan structure/composition of mature bast fibres, as evidenced by the higher levels of galactose measured, as well as the occurrence of more water-soluble pectins in elongating internodes. The targeted quantification of phenolics shows that the middle internode and the cortical tissues at the bottom have higher contents than top internodes. Ultrastructural analyses reveal the presence of a gelatinous layer in bast fibres with a lamellar structure. The data presented will be an important resource and reference for future molecular studies on a neglected fibre crop.
Collapse
Affiliation(s)
- Xuan Xu
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| | - Aurélie Backes
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
- Present address:
Unité de Recherche Résistance Induite et BioProtection des PlantesUFR Sciences Exactes et NaturellesSFR Condorcet FR CNRS 3417Université de Reims‐Champagne‐ArdenneReims Cedex 2France
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| | - Roberto Berni
- Department of Life SciencesUniversity of SienaSienaItaly
- Trees and Timber Institute‐National Research Council of Italy (CNR‐IVALSA)FollonicaItaly
| | - Claudia Faleri
- Department of Life SciencesUniversity of SienaSienaItaly
| | - Edoardo Gatti
- Institute of Biometeorology (IBIMET)National Research CouncilBolognaItaly
| | - Jean‐Francois Hausman
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| | - Giampiero Cai
- Department of Life SciencesUniversity of SienaSienaItaly
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| |
Collapse
|
40
|
Sobieszczuk-Nowicka E, Paluch-Lubawa E, Mattoo AK, Arasimowicz-Jelonek M, Gregersen PL, Pacak A. Polyamines - A New Metabolic Switch: Crosstalk With Networks Involving Senescence, Crop Improvement, and Mammalian Cancer Therapy. FRONTIERS IN PLANT SCIENCE 2019; 10:859. [PMID: 31354753 PMCID: PMC6635640 DOI: 10.3389/fpls.2019.00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/14/2019] [Indexed: 05/06/2023]
Abstract
Polyamines (PAs) are low molecular weight organic cations comprising biogenic amines that play multiple roles in plant growth and senescence. PA metabolism was found to play a central role in metabolic and genetic reprogramming during dark-induced barley leaf senescence (DILS). Robust PA catabolism can impact the rate of senescence progression in plants. We opine that deciphering senescence-dependent polyamine-mediated multidirectional metabolic crosstalks is important to understand regulation and involvement of PAs in plant death and re-mobilization of nutrients during senescence. This will involve optimizing the use of PA biosynthesis inhibitors, robust transgenic approaches to modulate PA biosynthetic and catabolic genes, and developing novel germplasm enriched in pro- and anti-senescence traits to ensure sustained crop productivity. PA-mediated delay of senescence can extend the photosynthesis capacity, thereby increasing grain starch content in malting grains such as barley. On the other hand, accelerating the onset of senescence can lead to increases in mineral and nitrogen content in grains for animal feed. Unraveling the "polyamine metabolic switch" and delineating the roles of PAs in senescence should further our knowledge about autophagy mechanisms involved in plant senescence as well as mammalian systems. It is noteworthy that inhibitors of PA biosynthesis block cell viability in animal model systems (cell tumor lines) to control some cancers, in this instance, proliferative cancer cells were led toward cell death. Likewise, PA conjugates work as signal carriers for slow release of regulatory molecule nitric oxide in the targeted cells. Taken together, these and other outcomes provide examples for developing novel therapeutics for human health wellness as well as developing plant resistance/tolerance to stress stimuli.
Collapse
Affiliation(s)
- Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ewelina Paluch-Lubawa
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, MD, United States
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Per L. Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Andrzej Pacak
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
41
|
Yu Z, Jia D, Liu T. Polyamine Oxidases Play Various Roles in Plant Development and Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E184. [PMID: 31234345 PMCID: PMC6632040 DOI: 10.3390/plants8060184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Polyamines not only play roles in plant growth and development, but also adapt to environmental stresses. Polyamines can be oxidized by copper-containing diamine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs). Two types of PAOs exist in the plant kingdom; one type catalyzes the back conversion (BC-type) pathway and the other catalyzes the terminal catabolism (TC-type) pathway. The catabolic features and biological functions of plant PAOs have been investigated in various plants in the past years. In this review, we focus on the advance of PAO studies in rice, Arabidopsis, and tomato, and other plant species.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Solé-Gil A, Hernández-García J, López-Gresa MP, Blázquez MA, Agustí J. Conservation of Thermospermine Synthase Activity in Vascular and Non-vascular Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:663. [PMID: 31244864 PMCID: PMC6579911 DOI: 10.3389/fpls.2019.00663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
In plants, the only confirmed function for thermospermine is regulating xylem cells maturation. However, genes putatively encoding thermospermine synthases have been identified in the genomes of both vascular and non-vascular plants. Here, we verify the activity of the thermospermine synthase genes and the presence of thermospermine in vascular and non-vascular land plants as well as in the aquatic plant Chlamydomonas reinhardtii. In addition, we provide information about differential content of thermospermine in diverse organs at different developmental stages in some vascular species that suggest that, although the major role of thermospermine in vascular plants is likely to be xylem development, other potential roles in development and/or responses to stress conditions could be associated to such polyamine. In summary, our results in vascular and non-vascular species indicate that the capacity to synthesize thermospermine is conserved throughout the entire plant kingdom.
Collapse
|
43
|
Heal KR, Kellogg NA, Carlson LT, Lionheart RM, Ingalls AE. Metabolic Consequences of Cobalamin Scarcity in the Diatom Thalassiosira pseudonana as Revealed Through Metabolomics. Protist 2019; 170:328-348. [PMID: 31260945 DOI: 10.1016/j.protis.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Diatoms perform an estimated 20% of global photosynthesis, form the base of the marine food web, and sequester carbon into the deep ocean through the biological pump. In some areas of the ocean, diatom growth is limited by the micronutrient cobalamin (vitamin B12), yet the biochemical ramifications of cobalamin limitation are not well understood. In a laboratory setting, we grew the diatom Thalassiosira pseudonana under replete and low cobalamin conditions to elucidate changes in metabolite pools. Using metabolomics, we show that the diatom experienced a metabolic cascade under cobalamin limitation that affected the central methionine cycle, transsulfuration pathway, and composition of osmolyte pools. In T. pseudonana, 5'-methylthioadenosine decreased under low cobalamin conditions, suggesting a disruption in the diatom's polyamine biosynthesis. Furthermore, two acylcarnitines accumulated under low cobalamin, suggesting the limited use of an adenosylcobalamin-dependent enzyme, methylmalonyl CoA mutase. Overall, these changes in metabolite pools yield insight into the metabolic consequences of cobalamin limitation in diatoms and suggest that cobalamin availability may have consequences for microbial interactions that are based on metabolite production by phytoplankton.
Collapse
Affiliation(s)
- Katherine R Heal
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Natalie A Kellogg
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Laura T Carlson
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Regina M Lionheart
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
44
|
Poidevin L, Unal D, Belda-Palazón B, Ferrando A. Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. PLANTS 2019; 8:plants8040109. [PMID: 31022874 PMCID: PMC6524035 DOI: 10.3390/plants8040109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey.
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
45
|
Sagor GHM, Kusano T, Berberich T. A Polyamine Oxidase from Selaginella lepidophylla (SelPAO5) can Replace AtPAO5 in Arabidopsis through Converting Thermospermine to Norspermidine instead to Spermidine. PLANTS 2019; 8:plants8040099. [PMID: 30991762 PMCID: PMC6524367 DOI: 10.3390/plants8040099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
Of the five polyamine oxidases in Arabidopsis thaliana, AtPAO5 has a substrate preference for the tetraamine thermospermine (T-Spm) which is converted to triamine spermidine (Spd) in a back-conversion reaction in vitro. A homologue of AtPAO5 from the lycophyte Selaginella lepidophylla (SelPAO5) back-converts T-Spm to the uncommon polyamine norspermidine (NorSpd) instead of Spd. An Atpao5 loss-of-function mutant shows a strong reduced growth phenotype when growing on a T-Spm containing medium. When SelPAO5 was expressed in the Atpao5 mutant, T-Spm level decreased to almost normal values of wild type plants, and NorSpd was produced. Furthermore the reduced growth phenotype was cured by the expression of SelPAO5. Thus, a NorSpd synthesis pathway by PAO reaction and T-Spm as substrate was demonstrated in planta and the assumption that a balanced T-Spm homeostasis is needed for normal growth was strengthened.
Collapse
Affiliation(s)
- G H M Sagor
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan.
| | - Thomas Berberich
- Laboratory Center, Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Marco F, Busó E, Lafuente T, Carrasco P. Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:972. [PMID: 31417589 PMCID: PMC6684778 DOI: 10.3389/fpls.2019.00972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Polyamines (PAs) constitute a group of low molecular weight aliphatic amines that have been implicated as key players in growth and development processes, as well as in the response to biotic and abiotic stresses. Transgenic plants overexpressing PA-biosynthetic genes show increased tolerance to abiotic stress. Therein, abscisic acid (ABA) is the hormone involved in plant responses to environmental stresses such as drought or high salinity. An increase in the level of free spermine (Spm) in transgenic Arabidopsis plants resulted in increased levels of endogenous ABA and promoted, in a Spm-dependent way, transcription of different ABA inducible genes. This phenotype was only partially reversed by blocking ABA biosynthesis, indicating an ABA independent response mediated by Spm. Moreover, the phenotype was reproduced by adding Spm to Col0 wild-type Arabidopsis plants. In contrast, Spm-deficient mutants showed a lower tolerance to salt stress. These results indicate that Spm plays a key role in modulating plant stress responses.
Collapse
Affiliation(s)
- Francisco Marco
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | | | - Teresa Lafuente
- Departamento de Biotecnologia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Pedro Carrasco
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
- *Correspondence: Pedro Carrasco,
| |
Collapse
|
47
|
Insights in the Physiological, Biochemical and Molecular Basis of Salt Stress Tolerance in Plants. SOIL BIOLOGY 2019. [DOI: 10.1007/978-3-030-18975-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Ishitsuka S, Yamamoto M, Miyamoto M, Kuwashiro Y, Imai A, Motose H, Takahashi T. Complexity and Conservation of Thermospermine-Responsive uORFs of SAC51 Family Genes in Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:564. [PMID: 31118941 PMCID: PMC6504692 DOI: 10.3389/fpls.2019.00564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/15/2019] [Indexed: 05/10/2023]
Abstract
ACAULIS5 (ACL5) encodes thermospermine synthase in Arabidopsis and its loss-of-function mutant acl5 shows excess xylem differentiation and severe dwarfism. SAC51 encodes a basic helix-loop-helix (bHLH) protein and was identified from sac51-d, a dominant suppressor mutant of acl5, which restores the wild-type phenotype without thermospermine. The 5' leader of the SAC51 mRNA contains multiple upstream open-reading frames (uORFs) and sac51-d has a premature stop codon in the fourth uORF. This uORF is conserved among SAC51 family genes in vascular plants. According to the GUS reporter assay, the SAC51 promoter was not responsive to thermospermine but the SAC51 5' leader fused to the constitutive 35S promoter enhanced the GUS activity in response to thermospermine. Disruption experiments of each start codon of the SAC51 uORFs revealed that uORF4 and uORF6 whose start codon corresponds to the second methionine codon of uORF4 had an inhibitory effect on the main ORF translation while the other four uORFs rather had a stimulatory effect. The response of the 5' leader to thermospermine was retained after disruption of each one of six start codons of these uORFs but abolished by mutating both uORF4 and uORF6 start codons, suggesting the importance of the C-terminal sequence shared by these uORFs in the action of thermospermine. We introduced GUS fusions with 5' leaders of SAC51 family genes from other angiosperm species into Arabidopsis and found that all 5' leaders responsive to thermospermine, so far examined, contained these two conserved, and overlapping uORFs.
Collapse
|
49
|
Polyamines in Microalgae: Something Borrowed, Something New. Mar Drugs 2018; 17:md17010001. [PMID: 30577419 PMCID: PMC6356823 DOI: 10.3390/md17010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023] Open
Abstract
Microalgae of different evolutionary origins are typically found in rivers, lakes, and oceans, providing more than 45% of global primary production. They provide not only a food source for animals, but also affect microbial ecosystems through symbioses with microorganisms or secretion of some metabolites. Derived from amino acids, polyamines are present in almost all types of organisms, where they play important roles in maintaining physiological functions or against stress. Microalgae can produce a variety of distinct polyamines, and the polyamine content is important to meet the physiological needs of microalgae and may also affect other species in the environment. In addition, some polyamines produced by microalgae have medical or nanotechnological applications. Previous studies on several types of microalgae have indicated that the putative polyamine metabolic pathways may be as complicated as the genomes of these organisms, which contain genes originating from plants, animals, and even bacteria. There are also several novel polyamine synthetic routes in microalgae. Understanding the nature of polyamines in microalgae will not only improve our knowledge of microalgal physiology and ecological function, but also provide valuable information for biotechnological applications.
Collapse
|
50
|
Takahashi T, Takano A, Kakehi JI. Detection of Thermospermine and Spermine by HPLC in Plants. Methods Mol Biol 2018; 1694:69-73. [PMID: 29080156 DOI: 10.1007/978-1-4939-7398-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Thermospermine, a structural isomer of spermine, is widely spread in the plant kingdom and has recently been shown to play a key role in the repression of xylem differentiation in vascular plants. However, a standard high-performance liquid chromatography (HPLC) protocol for detecting polyamines as their dansyl derivative cannot distinguish themospermine from spermine. These isomers become separated from each other after benzoylation. In this chapter, we describe a simple protocol for extraction, benzoylation, and HPLC detection of thermospermine and spermine with other polyamines from plant material.
Collapse
Affiliation(s)
- Taku Takahashi
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, kita-ku, 700-8530, Okayama, Japan.
| | - Ayaka Takano
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, kita-ku, 700-8530, Okayama, Japan
| | - Jun-Ichi Kakehi
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, kita-ku, 700-8530, Okayama, Japan
| |
Collapse
|