1
|
Sáenz-Narciso B, Bell SE, Matheson LS, Venigalla RKC, Turner M. ZFP36-family RNA-binding proteins in regulatory T cells reinforce immune homeostasis. Nat Commun 2025; 16:4192. [PMID: 40328742 PMCID: PMC12056042 DOI: 10.1038/s41467-025-58993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
RNA binding proteins (RBP) of the ZFP36 family limit the differentiation and effector functions of CD4 and CD8 T cells, but little is known of their expression or function in regulatory T (Treg) cells. By using Treg cell-restricted deletion of Zfp36 family members we identify the role of Zfp36l1 and Zfp36l2 in Treg cells to maintain immune homeostasis. Mice with Treg cells deficient in these RBP display an inflammatory phenotype with an expansion in the numbers of type-2 conventional dendritic cells, T effector cells, T follicular helper and germinal center B cells and elevated serum cytokines and immunoglobulins. In the absence of Zfp36l1 and Zfp36l2, the pool of cycling CTLA-4 in naïve Treg cells is reduced, Treg cells are less sensitive to IL-2 and IL-7 but are more sensitive to IFNγ. In mice lacking both RBP in Treg cells, the deletion of a single allele of Ifng is sufficient to ameliorate the pathology. Our results indicate that ZFP36L1 and ZFP36L2 regulate the availability of IFNγ and are required for the maintenance of Treg cell stability. Thus, ZFP36L1 and ZFP36L2 regulate multiple pathways that enable Treg cells to enforce immune homeostasis.
Collapse
Affiliation(s)
- Beatriz Sáenz-Narciso
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Sarah E Bell
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Louise S Matheson
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Ram K C Venigalla
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
2
|
Kim J, Kim Y, Song Y, Kim TJ, Lee SH, Kim HJ. Indoor particulate matter induces epigenetic changes in companion atopic dogs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115544. [PMID: 37827097 DOI: 10.1016/j.ecoenv.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
The prevalence of atopic dermatitis (AD) is increasing and environmental factors are receiving attention as contributing causes. Indoor air pollutants (IAPs), especially particulate matter (PM) can alter epigenetic markers, DNA methylation (DNAm). Although DNAm-mediated epigenetic changes have been reported to modulate the pathogenesis of AD, their role at high risk of exposure to PM is still unclear. The study investigated the effects of exposure to IAPs in the development of AD and epigenetic changes through DNAm in companion atopic dogs that share indoor environment with their owners. Dogs were divided into two groups: AD (n = 47) and controls (n = 21). The IAPs concentration in each household was measured for 48 h, and a questionnaire on the residential environment was completed in all dogs. Eighteen dogs with AD and 12 healthy dogs were selected for DNAm analysis. In addition, clinical and immunological evaluations were conducted. The concentrations of PM2.5, PM10, and volatile organic compounds (VOCs) were significantly higher in the AD group. Moreover, there were more significant methylation differences in the LDLRAD4, KHSRP, and CTDSP2 genes in connection with PM10 in AD group compared to the controls. The degree of methylation of the LDLRAD4 and CTDSP2 genes was also correlated with related protein productions. The present study revealed that exposure to high indoor PM can cause epigenetic development of AD by methylation of the LDLRAD4, KHSRP, and CTDSP2 genes in dogs. Under the concept of "One Health," improving indoor environments should be considered to prevent the development of AD.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Yeji Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Yunji Song
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Tae Jung Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ha-Jung Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
3
|
Srivastava R, Horwitz M, Hershko-Moshe A, Bronstein S, Ben-Dov IZ, Melloul D. Posttranscriptional regulation of the prostaglandin E receptor spliced-isoform EP3-γ and its implication in pancreatic β-cell failure. FASEB J 2023; 37:e22958. [PMID: 37171267 DOI: 10.1096/fj.202201984r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
In Type 2 diabetes (T2D), elevated lipid levels have been suggested to contribute to insulin resistance and β-cell dysfunction. We previously reported that the expression of the PGE2 receptor EP3 is elevated in islets of T2D individuals and is preferentially stimulated by palmitate, leading to β-cell failure. The mouse EP3 receptor generates three isoforms by alternative splicing which differ in their C-terminal domain and are referred to as mEP3α, mEP3β, and mEP3γ. We bring evidence that the expression of the mEP3γ isoform is elevated in islets of diabetic db/db mice and is selectively upregulated by palmitate. Specific knockdown of the mEP3γ isoform restores the expression of β-cell-specific genes and rescues MIN6 cells from palmitate-induced dysfunction and apoptosis. This study indicates that palmitate stimulates the expression of the mEP3γ by a posttranscriptional mechanism, compared to the other spliced isoforms, and that the de novo synthesized ceramide plays an important role in FFA-induced mEP3γ expression in β-cells. Moreover, induced levels of mEP3γ mRNA by palmitate or ceramide depend on p38 MAPK activation. Our findings suggest that mEP3γ gene expression is regulated at the posttranscriptional level and defines the EP3 signaling axis as an important pathway mediating β-cell-impaired function and demise.
Collapse
Affiliation(s)
- Rohit Srivastava
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | - Margalit Horwitz
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | - Anat Hershko-Moshe
- Department of Internal Medicine, Hadassah University Hospital, Jerusalem, Israel
| | - Shirly Bronstein
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | - Iddo Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah University Hospital, Jerusalem, Israel
| | - Danielle Melloul
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
4
|
Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A. The Role of KH-Type Splicing Regulatory Protein (KSRP) for Immune Functions and Tumorigenesis. Cells 2022; 11:cells11091482. [PMID: 35563788 PMCID: PMC9104899 DOI: 10.3390/cells11091482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional control of gene expression is one important mechanism that enables stringent and rapid modulation of cytokine, chemokines or growth factors expression, all relevant for immune or tumor cell function and communication. The RNA-binding protein KH-type splicing regulatory protein (KSRP) controls the mRNA stability of according genes by initiation of mRNA decay and inhibition of translation, and by enhancing the maturation of microRNAs. Therefore, KSRP plays a pivotal role in immune cell function and tumor progression. In this review, we summarize the current knowledge about KSRP with regard to the regulation of immunologically relevant targets, and the functional role of KSRP on immune responses and tumorigenesis. KSRP is involved in the control of myeloid hematopoiesis. Further, KSRP-mediated mRNA decay of pro-inflammatory factors is necessary to keep immune homeostasis. In case of infection, functional impairment of KSRP is important for the induction of robust immune responses. In this regard, KSRP seems to primarily dampen T helper cell 2 immune responses. In cancer, KSRP has often been associated with tumor growth and metastasis. In summary, aside of initiation of mRNA decay, the KSRP-mediated regulation of microRNA maturation seems to be especially important for its diverse biological functions, which warrants further in-depth examination.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
- Correspondence: ; Tel.: +49-6131-179276; Fax: +49-6131-179042
| |
Collapse
|
5
|
Rappl P, Brüne B, Schmid T. Role of Tristetraprolin in the Resolution of Inflammation. BIOLOGY 2021; 10:biology10010066. [PMID: 33477783 PMCID: PMC7832405 DOI: 10.3390/biology10010066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Chronic inflammatory diseases account for up to 60% of deaths worldwide and, thus, are considered a great threat for human health by the World Health Organization. Nevertheless, acute inflammatory reactions are an integral part of the host defense against invading pathogens or injuries. To avoid excessive damage due to the persistence of a highly reactive environment, inflammations need to resolve in a coordinate and timely manner, ensuring for the immunological normalization of the affected tissues. Since post-transcriptional regulatory mechanisms are essential for effective resolution, the present review discusses the key role of the RNA-binding and post-transcriptional regulatory protein tristetraprolin in establishing resolution of inflammation. Abstract Inflammation is a crucial part of immune responses towards invading pathogens or tissue damage. While inflammatory reactions are aimed at removing the triggering stimulus, it is important that these processes are terminated in a coordinate manner to prevent excessive tissue damage due to the highly reactive inflammatory environment. Initiation of inflammatory responses was proposed to be regulated predominantly at a transcriptional level, whereas post-transcriptional modes of regulation appear to be crucial for resolution of inflammation. The RNA-binding protein tristetraprolin (TTP) interacts with AU-rich elements in the 3′ untranslated region of mRNAs, recruits deadenylase complexes and thereby facilitates degradation of its targets. As TTP regulates the mRNA stability of numerous inflammatory mediators, it was put forward as a crucial post-transcriptional regulator of inflammation. Here, we summarize the current understanding of the function of TTP with a specific focus on its role in adding to resolution of inflammation.
Collapse
Affiliation(s)
- Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular and Applied Ecology, 60596 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
- Correspondence:
| |
Collapse
|
6
|
Sneezum L, Eislmayr K, Dworak H, Sedlyarov V, Le Heron A, Ebner F, Fischer I, Iwakura Y, Kovarik P. Context-Dependent IL-1 mRNA-Destabilization by TTP Prevents Dysregulation of Immune Homeostasis Under Steady State Conditions. Front Immunol 2020; 11:1398. [PMID: 32733464 PMCID: PMC7358311 DOI: 10.3389/fimmu.2020.01398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The bioavailability of the major pro-inflammatory cytokines IL-1α and IL-1β is tightly controlled by transcription and post-translational processing to prevent hyperinflammation. The role of mRNA decay in maintenance of physiological IL-1 amounts remained unknown. Here we show that the down-regulation of Il1a and Il1b mRNA by the mRNA-destabilizing protein TTP (gene Zfp36) is required for immune homeostasis. The TTP deficiency syndrome, a multi organ inflammation in TTP-/- mice, was significantly ameliorated upon deletion of the IL-1 receptor. Il1a and Il1b played non-redundant roles in triggering the pathological IL-1 signaling in TTP-/- mice. Accordingly, tissues from TTP-/- animals contained increased amounts of Il1b mRNA. Unexpectedly, TTP destabilized Il1b mRNA in cell type-specific ways as evident from RNA-Seq and mRNA stability assays. These results demonstrate that TTP-driven mRNA destabilization depends on the cellular context. Moreover, such context-defined mRNA decay is essential for keeping steady state IL-1 levels in the physiological range.
Collapse
Affiliation(s)
- Lucy Sneezum
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Kevin Eislmayr
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Helene Dworak
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Vitaly Sedlyarov
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Anita Le Heron
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Florian Ebner
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Pavel Kovarik
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Wei TH, Hsieh CL. Effect of Acupuncture on the p38 Signaling Pathway in Several Nervous System Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E4693. [PMID: 32630156 PMCID: PMC7370084 DOI: 10.3390/ijms21134693] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Acupuncture is clinically used to treat various diseases and exerts positive local and systemic effects in several nervous system diseases. Advanced molecular and clinical studies have continually attempted to decipher the mechanisms underlying these effects of acupuncture. While a growing understanding of the pathophysiology underlying several nervous system diseases shows it to be related to inflammation and impair cell regeneration after ischemic events, the relationship between the therapeutic mechanism of acupuncture and the p38 MAPK signal pathway has yet to be elucidated. This review discusses the latest advancements in the identification of the effect of acupuncture on the p38 signaling pathway in several nervous system diseases. We electronically searched databases including PubMed, Embase, and the Cochrane Library from their inception to April 2020, using the following keywords alone or in various combinations: "acupuncture", "p38 MAPK pathway", "signaling", "stress response", "inflammation", "immune", "pain", "analgesic", "cerebral ischemic injury", "epilepsy", "Alzheimer's disease", "Parkinson's disease", "dementia", "degenerative", and "homeostasis". Manual acupuncture and electroacupuncture confer positive therapeutic effects by regulating proinflammatory cytokines, ion channels, scaffold proteins, and transcription factors including TRPV1/4, Nav, BDNF, and NADMR1; consequently, p38 regulates various phenomena including cell communication, remodeling, regeneration, and gene expression. In this review article, we found the most common acupoints for the relief of nervous system disorders including GV20, GV14, ST36, ST37, and LI4. Acupuncture exhibits dual regulatory functions of activating or inhibiting different p38 MAPK pathways, contributing to an overall improvement of clinical symptoms and function in several nervous system diseases.
Collapse
Affiliation(s)
- Tzu-Hsuan Wei
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
8
|
Ridley ML, Fleskens V, Roberts CA, Lalnunhlimi S, Alnesf A, O'Byrne AM, Steel KJA, Povoleri GAM, Sumner J, Lavender P, Taams LS. IKZF3/Aiolos Is Associated with but Not Sufficient for the Expression of IL-10 by CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2940-2948. [PMID: 32321757 PMCID: PMC7231851 DOI: 10.4049/jimmunol.1901283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 01/10/2023]
Abstract
The expression of anti-inflammatory IL-10 by CD4+ T cells is indispensable for immune homeostasis, as it allows T cells to moderate their effector function. We previously showed that TNF-α blockade during T cell stimulation in CD4+ T cell/monocyte cocultures resulted in maintenance of IL-10-producing T cells and identified IKZF3 as a putative regulator of IL-10. In this study, we tested the hypothesis that IKZF3 is a transcriptional regulator of IL-10 using a human CD4+ T cell-only culture system. IL-10+ CD4+ T cells expressed the highest levels of IKZF3 both ex vivo and after activation compared with IL-10-CD4+ T cells. Pharmacological targeting of IKZF3 with the drug lenalidomide showed that IKZF3 is required for anti-CD3/CD28 mAb-mediated induction of IL-10 but is dispensable for ex vivo IL-10 expression. However, overexpression of IKZF3 was unable to upregulate IL-10 at the mRNA or protein level in CD4+ T cells and did not drive the transcription of the IL10 promoter or putative local enhancer constructs. Collectively, these data indicate that IKZF3 is associated with but not sufficient for IL-10 expression in CD4+ T cells.
Collapse
Affiliation(s)
- Michael L Ridley
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Veerle Fleskens
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Ceri A Roberts
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Aldana Alnesf
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Aoife M O'Byrne
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Giovanni A M Povoleri
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Jonathan Sumner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Paul Lavender
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom;
| |
Collapse
|
9
|
CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells. Mol Immunol 2019; 114:524-534. [DOI: 10.1016/j.molimm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
|
10
|
Zhan S, Che P, Zhao X, Li N, Ding Y, Liu J, Li S, Ding K, Han L, Huang Z, Wu L, Wang Y, Hu M, Han X, Ding Q. Molecular mechanism of tumour necrosis factor alpha regulates hypocretin (orexin) expression, sleep and behaviour. J Cell Mol Med 2019; 23:6822-6834. [PMID: 31386303 PMCID: PMC6787512 DOI: 10.1111/jcmm.14566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 01/10/2023] Open
Abstract
Hypocretin 1 and hypocretin 2 (orexin A and B) regulate sleep, wakefulness and emotion. Tumour necrosis factor alpha (TNF-α) is an important neuroinflammation mediator. Here, we examined the effects of TNF-α treatment on hypocretin expression in vivo and behaviour in mice. TNF-α decreased hypocretin 1 and hypocretin 2 expression in a dose-dependent manner in cultured hypothalamic neurons. TNF-α decreased mRNA stability of prepro-hypocretin, the single precursor of hypocretin 1 and hypocretin 2. Mice challenged with TNF-α demonstrated decreased expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in hypothalamus. In response to TNF-α, prepro-hypocretin mRNA decay was increased in hypothalamus. TNF-α neutralizing antibody restored the expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in vivo in TNF-α challenged mice, supporting hypocretin system can be impaired by increased TNF-α through decreasing hypocretin expression. Repeated TNF-α challenge induced muscle activity during rapid eye movement sleep and sleep fragmentation, but decreased learning, cognition and memory in mice. TNF-α neutralizing antibody blocked the effects of TNF-α; in contrast, hypocretin receptor antagonist enhanced the effects of TNF-α. The data support that TNF-α is involved in the regulation of hypocretin expression, sleep and cognition. The findings shed some lights on the role of neuroinflammation in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Shuqin Zhan
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Pulin Che
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- NeurologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Xue‐ke Zhao
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Ning Li
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Yan Ding
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Jianghong Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Spring Li
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Karyn Ding
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Lynn Han
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Liyong Wu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Meng Hu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xiaosi Han
- NeurologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Qiang Ding
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
11
|
The RNA-Binding Protein KSRP Modulates Cytokine Expression of CD4 + T Cells. J Immunol Res 2019; 2019:4726532. [PMID: 31511826 PMCID: PMC6714327 DOI: 10.1155/2019/4726532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
The KH-type splicing regulatory protein (KSRP) is a RNA-binding protein, which regulates the stability of many mRNAs encoding immune-relevant proteins. As KSRP regulates innate immune responses, for instance by the modulation of type I interferon mRNA stability, we were interested whether knockdown of the protein (KSRP−/−) interferes with T cell activation and polarization. Polyclonally stimulated KSRP−/− CD4+ T cells proliferated at a higher extent and higher frequency and expressed the activation marker CD25 more than wild-type T cells. In supernatants of stimulated KSRP−/− CD4+ T cells, levels of IL-5, IL-9, IL-10, and IL-13 were observed to be increased compared to those of the control group. KSRP−/− CD8+ T cells showed no altered proliferative capacity upon polyclonal stimulation, but supernatants contained lower levels of interferon-γ. Similar changes in the cytokine expression patterns were also detected in T cells derived from KSRP−/− mice undergoing arthritis induction indicative of a pathophysiological role of KSRP-dependent T cell polarization. We demonstrated the direct binding of KSRP to the 3′ untranslated region of IL-13, IL-10, and IFN-γ mRNA in in vitro experiments. Moreover, since IL-4 mRNA decay was reduced in KSRP−/− CD4+ T cells, we identify KSRP as a negative regulator of IL-4 expression. These data indicate that overexpression of IL-4, which constitutes the primary inducer of Th2 polarization, may cause the Th2 bias of polyclonally stimulated KSRP−/− CD4+ T cells. This is the first report demonstrating that KSRP is involved in the regulation of T cell responses. We present strong evidence that T cells derived from KSRP−/− mice favor Th2-driven immune responses.
Collapse
|
12
|
Ernst O, Glucksam-Galnoy Y, Bhatta B, Athamna M, Ben-Dror I, Glick Y, Gerber D, Zor T. Exclusive Temporal Stimulation of IL-10 Expression in LPS-Stimulated Mouse Macrophages by cAMP Inducers and Type I Interferons. Front Immunol 2019; 10:1788. [PMID: 31447835 PMCID: PMC6691811 DOI: 10.3389/fimmu.2019.01788] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/16/2019] [Indexed: 01/02/2023] Open
Abstract
Expression of the key anti-inflammatory cytokine IL-10 in lipopolysaccharide (LPS)-stimulated macrophages is mediated by a delayed autocrine/paracrine loop of type I interferons (IFN) to ensure timely attenuation of inflammation. We have previously shown that cAMP synergizes with early IL-10 expression by LPS, but is unable to amplify the late type I IFN-dependent activity. We now examined the mechanism of this synergistic transcription in mouse macrophages at the promoter level, and explored the crosstalk between type I IFN signaling and cAMP, using the β-adrenergic receptor agonist, isoproterenol, as a cAMP inducer. We show that silencing of the type I IFN receptor enables isoproterenol to synergize with LPS also at the late phase, implying that autocrine type I IFN activity hinders synergistic augmentation of LPS-stimulated IL-10 expression by cAMP at the late phase. Furthermore, IL-10 expression in LPS-stimulated macrophages is exclusively stimulated by either IFNα or isoproterenol. We identified a set of two proximate and inter-dependent cAMP response element (CRE) sites that cooperatively regulate early IL-10 transcription in response to isoproterenol-stimulated CREB and that further synergize with a constitutive Sp1 site. At the late phase, up-regulation of Sp1 activity by LPS-stimulated type I IFN is correlated with loss of function of the CRE sites, suggesting a mechanism for the loss of synergism when LPS-stimulated macrophages switch to type I IFN-dependent IL-10 expression. This report delineates the molecular mechanism of cAMP-accelerated IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.
Collapse
Affiliation(s)
- Orna Ernst
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Glucksam-Galnoy
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Bibek Bhatta
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Athamna
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel.,Triangle Regional Research and Development Center, Kafr Qara, Israel
| | - Iris Ben-Dror
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yair Glick
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Doron Gerber
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Tsaffrir Zor
- Department of Biochemistry & Molecular Biology, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Ehlting C, Rex J, Albrecht U, Deenen R, Tiedje C, Köhrer K, Sawodny O, Gaestel M, Häussinger D, Bode JG. Cooperative and distinct functions of MK2 and MK3 in the regulation of the macrophage transcriptional response to lipopolysaccharide. Sci Rep 2019; 9:11021. [PMID: 31363109 PMCID: PMC6667695 DOI: 10.1038/s41598-019-46791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/04/2022] Open
Abstract
The p38MAPK downstream targets MAPKAP kinases (MK) 2 and 3 are critical for the regulation of the macrophage response to LPS. The extents to which these two kinases act cooperatively and distinctly in regulating LPS-induced inflammatory cytokine expression are still unclear. To address this uncertainty, whole transcriptome analyses were performed using bone marrow-derived macrophages (BMDM) generated from MK2−/− or MK2/3−/− animals and their wild-type littermates. The results suggest that in BMDM, MK2 and MK3 not only cooperatively regulate the transcript expression of signaling intermediates, including IL-10, IL-19, CXCL2 and the IL-4 receptor (IL-4R)α subunit, they also exert distinct regulatory effects on the expression of specific transcripts. Based on the differential regulation of gene expression by MK2 and MK3, at least six regulatory patterns were identified. Importantly, we confirmed our previous finding, which showed that in the absence of MK2, MK3 negatively regulates IFN-β. Moreover, this genome-wide analysis identified the regulation of Cr1A, NOD1 and Serpina3f as similar to that of IFN-β. In the absence of MK2, MK3 also delayed the nuclear translocation of NFκB by delaying the ubiquitination and subsequent degradation of IκBβ, reflecting the substantial plasticity of the response of BMDM to LPS.
Collapse
Affiliation(s)
- Christian Ehlting
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Julia Rex
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Genomics & Transcriptomics Laboratory, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics & Transcriptomics Laboratory, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
The cAMP Pathway Amplifies Early MyD88-Dependent and Type I Interferon-Independent LPS-Induced Interleukin-10 Expression in Mouse Macrophages. Mediators Inflamm 2019; 2019:3451461. [PMID: 31148944 PMCID: PMC6501241 DOI: 10.1155/2019/3451461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/05/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Interleukin-10 (IL-10) is a key anti-inflammatory cytokine, secreted by macrophages and other immune cells to attenuate inflammation. Autocrine type I interferons (IFNs) largely mediate the delayed expression of IL-10 by LPS-stimulated macrophages. We have previously shown that IL-10 is synergistically expressed in macrophages following a costimulus of a TLR agonist and cAMP. We now show that the cAMP pathway directly upregulates IL-10 transcription and plays an important permissive and synergistic role in early, but not late, LPS-stimulated IL-10 mRNA and protein expression in mouse macrophages and in a mouse septic shock model. Our results suggest that the loss of synergism is not due to desensitization of the cAMP inducing signal, and it is not mediated by a positive crosstalk between the cAMP and type I IFN pathways. First, cAMP elevation in LPS-treated cells decreased the secretion of type I IFN. Second, autocrine/paracrine type I IFNs induce IL-10 promoter reporter activity only additively, but not synergistically, with the cAMP pathway. IL-10 promoter reporter activity was synergistically induced by cAMP elevation in macrophages stimulated by an agonist of either TLR4, TLR2/6, or TLR7, receptors which signal via MyD88, but not by an agonist of TLR3 which signals independently of MyD88. Moreover, MyD88 knockout largely reduced the synergistic IL-10 expression, indicating that MyD88 is required for the synergism displayed by LPS with cAMP. This report delineates the temporal regulation of early cAMP-accelerated vs. late type I IFN-dependent IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.
Collapse
|
15
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its function in maintaining the delicate balance between effective immunity and tissue protection, it is evident that IL-10 expression is highly dynamic and needs to be tightly regulated. The transcriptional regulation of IL-10 production in myeloid cells and T cells is the topic of this review. Drivers of IL-10 expression as well as their downstream signaling pathways and transcription factors will be discussed. We will examine in more detail how various signals in CD4+ T cells converge on common transcriptional circuits, which fine-tune IL-10 expression in a context-dependent manner.
Collapse
|
16
|
Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, Libert C, Smets I, Goris A, Wouters C, Matthys P. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol 2018; 48:1506-1521. [DOI: 10.1002/eji.201847578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Maya Imbrechts
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Karlien Fierens
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Ellen Brisse
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Tania Mitera
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Claude Libert
- VIB Center for Inflammation Research; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Ide Smets
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
- Department of Neurology; University Hospitals Leuven; Leuven Belgium
| | - An Goris
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
| | - Carine Wouters
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
- Laboratory of Paediatric Immunology; University Hospitals Leuven; Leuven Belgium
| | - Patrick Matthys
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| |
Collapse
|
17
|
Qi MY, Song JW, Zhang Z, Huang S, Jing Q. P38 activation induces the dissociation of tristetraprolin from Argonaute 2 to increase ARE-mRNA stabilization. Mol Biol Cell 2018; 29:988-1002. [PMID: 29444957 PMCID: PMC5896936 DOI: 10.1091/mbc.e17-02-0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ARE-mRNAs are actively degraded with tristetraprolin (TTP) in resting cells while they turn into stable messengers in activated cells. P38 plays a crucial role in stabilizing ARE-mRNA. Here we reveal that P38 activation represses the interaction between TTP and Ago2, thus restraining TTP from being targeted into processing bodies and stabilizing ARE-mRNA.
Collapse
Affiliation(s)
- Mei-Yan Qi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Wen Song
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
18
|
ZFP36L1 and ZFP36L2 inhibit cell proliferation in a cyclin D-dependent and p53-independent manner. Sci Rep 2018; 8:2742. [PMID: 29426877 PMCID: PMC5807420 DOI: 10.1038/s41598-018-21160-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/29/2018] [Indexed: 12/28/2022] Open
Abstract
ZFP36 family members include ZFP36, ZFP36L1, and ZFP36L2, which belong to CCCH-type zinc finger proteins with two tandem zinc finger (TZF) regions. Whether ZFP36L1 and ZFP36L2 have antiproliferative activities similar to that of ZFP36 is unclear. In this study, when ZFP36L1 or ZFP36L2 was overexpressed in T-REx-293 cells, cell proliferation was dramatically inhibited and the cell cycle was arrested at the G1 phase. The levels of cell-cycle-related proteins, including cyclin B, cyclin D, cyclin A, and p21, decreased; however, p53 increased in ZFP36L1-or ZFP36L2-overexpressing T-REx-293 cells. Forced expression of ZFP36L1 or ZFP36L2 also inhibited cell proliferation and cyclin D gene expression in three human colorectal cancer cell lines: HCT116 p53+/+, HCT116 p53−/−, and SW620 (mutated p53) cells. However, it increased p53 and p21 expression only in HCT116 p53+/+ cells. Knockdown of ZFP36L1 or ZFP36L2 increased cell proliferation and cyclin D expression; furthermore, the mutation of the TZF of ZFP36L1 or ZFP36L2 caused them to lose their antiproliferative ability, to the extent that they could not inhibit cyclin D expression in these three cell lines. The results indicated that ZFP36L1 and ZFP36L2 play a negative role in cell proliferation; the underlying mechanisms might be mediated through a cyclin D-dependent and p53-independent pathway.
Collapse
|
19
|
O'Neil JD, Ammit AJ, Clark AR. MAPK p38 regulates inflammatory gene expression via tristetraprolin: Doing good by stealth. Int J Biochem Cell Biol 2018; 94:6-9. [PMID: 29128684 PMCID: PMC6562201 DOI: 10.1016/j.biocel.2017.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Abstract
Tristetraprolin (TTP) is an RNA-destabilizing protein that exerts profound anti-inflammatory effects by inhibiting the expression of tumour necrosis factor and many other inflammatory mediators. The mitogen-activated protein kinase (MAPK) p38 signaling pathway controls the strength and duration of inflammatory responses by regulating both the expression and function of TTP. The kinase MK2 (MAPK activated kinase 2) is activated by MAPK p38, and in turn phosphorylates TTP at two critical serine residues. One consequence of these phosphorylations is the protection of TTP from proteasome-mediated degradation. Another consequence is the loss of mRNA destabilizing activity. The control of TTP expression and function by the MAPK p38 pathway provides an elegant mechanism for coupling the on and off phases of inflammatory responses, and dictating the precise kinetics of expression of individual inflammatory mediators.
Collapse
Affiliation(s)
- J D O'Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | - A J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia; School of Life Sciences, Faculty of Science, University of Technology, Sydney, New South Wales, Australia
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, United Kingdom.
| |
Collapse
|
20
|
Bulbrook D, Brazier H, Mahajan P, Kliszczak M, Fedorov O, Marchese FP, Aubareda A, Chalk R, Picaud S, Strain-Damerell C, Filippakopoulos P, Gileadi O, Clark AR, Yue WW, Burgess-Brown NA, Dean JLE. Tryptophan-Mediated Interactions between Tristetraprolin and the CNOT9 Subunit Are Required for CCR4-NOT Deadenylase Complex Recruitment. J Mol Biol 2017; 430:722-736. [PMID: 29291391 DOI: 10.1016/j.jmb.2017.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
The zinc-finger protein tristetraprolin (TTP) binds to AU-rich elements present in the 3' untranslated regions of transcripts that mainly encode proteins of the inflammatory response. TTP-bound mRNAs are targeted for destruction via recruitment of the eight-subunit deadenylase complex "carbon catabolite repressor protein 4 (CCR4)-negative on TATA-less (NOT)," which catalyzes the removal of mRNA poly-(A) tails, the first obligatory step in mRNA decay. Here we show that a novel interaction between TTP and the CCR4-NOT subunit, CNOT9, is required for recruitment of the deadenylase complex. In addition to CNOT1, CNOT9 is now included in the identified CCR4-NOT subunits shown to interact with TTP. We find that both the N- and C-terminal domains of TTP are involved in an interaction with CNOT9. Through a combination of SPOT peptide array, site-directed mutagenesis, and bio-layer interferometry, we identified several conserved tryptophan residues in TTP that serve as major sites of interaction with two tryptophan-binding pockets of CNOT9, previously found to interact with another modulator GW182. We further demonstrate that these interactions are also required for recruitment of the CCR4-NOT complex and TTP-directed decay of an mRNA containing an AU-rich element in its 3'-untranslated region. Together the results reveal new molecular details for the TTP-CNOT interaction that shape an emerging mechanism whereby TTP targets inflammatory mRNAs for deadenylation and decay.
Collapse
Affiliation(s)
- D Bulbrook
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - H Brazier
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom; Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - P Mahajan
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - M Kliszczak
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - O Fedorov
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - F P Marchese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - A Aubareda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - R Chalk
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - S Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - C Strain-Damerell
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - P Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom; Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - O Gileadi
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - W W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom.
| | - N A Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, United Kingdom.
| | - J L E Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
21
|
Inflammation-regulated mRNA stability and the progression of vascular inflammatory diseases. Clin Sci (Lond) 2017; 131:2687-2699. [PMID: 29109302 DOI: 10.1042/cs20171373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease remains a major medical and socioeconomic burden in developed and developing societies, and will increase with an aging and increasingly sedentary society. Vascular disease and atherosclerotic vascular syndromes are essentially inflammatory disorders, and transcriptional and post-transcriptional processes play essential roles in the ability of resident vascular and inflammatory cells to adapt to environmental stimuli. The regulation of mRNA translocation, stability, and translation are key processes of post-transcriptional regulation that permit these cells to rapidly respond to inflammatory stimuli. For the most part, these processes are controlled by elements in the 3'-UTR of labile, proinflammatory transcripts. Since proinflammatory transcripts almost exclusively contain AU-rich elements (AREs), this represents a tightly regulated and specific mechanism for initiation and maintenance of the proinflammatory phenotype. RNA-binding proteins (RBPs) recognize cis elements in 3'-UTR, and regulate each of these processes, but there is little literature exploring the concept that RBPs themselves can be directly regulated by inflammatory stimuli. Conceptually, inflammation-responsive RBPs represent an attractive target of rational therapies to combat vascular inflammatory syndromes. Herein we briefly describe the cellular and molecular etiology of atherosclerosis, and summarize our current understanding of RBPs and their specific roles in regulation of inflammatory mRNA stability. We also detail RBPs as targets of current anti-inflammatory modalities and how this may translate into better treatment for vascular inflammatory diseases.
Collapse
|
22
|
The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem Soc Trans 2017; 44:1321-1337. [PMID: 27911715 PMCID: PMC5095909 DOI: 10.1042/bst20160166] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.
Collapse
|
23
|
Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR, O'Neil JD, Clark AR. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E 2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep 2017; 7:4350. [PMID: 28659609 PMCID: PMC5489520 DOI: 10.1038/s41598-017-04100-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/09/2017] [Indexed: 01/02/2023] Open
Abstract
In many different cell types, pro-inflammatory agonists induce the expression of cyclooxygenase 2 (COX-2), an enzyme that catalyzes rate-limiting steps in the conversion of arachidonic acid to a variety of lipid signaling molecules, including prostaglandin E2 (PGE2). PGE2 has key roles in many early inflammatory events, such as the changes of vascular function that promote or facilitate leukocyte recruitment to sites of inflammation. Depending on context, it also exerts many important anti-inflammatory effects, for example increasing the expression of the anti-inflammatory cytokine interleukin 10 (IL-10), and decreasing that of the pro-inflammatory cytokine tumor necrosis factor (TNF). The tight control of both biosynthesis of, and cellular responses to, PGE2 are critical for the precise orchestration of the initiation and resolution of inflammatory responses. Here we describe evidence of a negative feedback loop, in which PGE2 augments the expression of dual specificity phosphatase 1, impairs the activity of mitogen-activated protein kinase p38, increases the activity of the mRNA-destabilizing factor tristetraprolin, and thereby inhibits the expression of COX-2. The same feedback mechanism contributes to PGE2-mediated suppression of TNF release. Engagement of the DUSP1-TTP regulatory axis by PGE2 is likely to contribute to the switch between initiation and resolution phases of inflammation.
Collapse
Affiliation(s)
- Tina Tang
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Thomas E Scambler
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Tim Smallie
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Helen E Cunliffe
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Ewan A Ross
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Dalya R Rosner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - John D O'Neil
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK.
| |
Collapse
|
24
|
Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice. Eur J Pharmacol 2017; 810:15-25. [PMID: 28583427 DOI: 10.1016/j.ejphar.2017.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Seizures increase prostaglandin and cytokine levels in the brain. However, it remains to be determined whether cyclooxygenase-2 (COX-2) derived metabolites play a role in seizure-induced cytokine increase in the brain and whether anticonvulsant activity is shared by all COX-2 inhibitors. In this study we investigated whether three different COX-2 inhibitors alter pentylenetetrazol (PTZ)-induced seizures and increase of interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) levels in the hippocampus and cerebral cortex of mice. Adult male albino Swiss mice received nimesulide, celecoxib or etoricoxib (0.2, 2 or 20mg/kg in 0.1% carboxymethylcellulose (CMC) in 5% Tween 80, p.o.). Sixty minutes thereafter the animals were injected with PTZ (50mg/kg, i.p.) and the latency to myoclonic jerks and to generalized tonic-clonic seizures were recorded. Twenty minutes after PTZ injection animals were killed and cytokine levels were measured. PTZ increased cytokine levels in the cerebral cortex and hippocampus. While celecoxib and nimesulide attenuated PTZ -induced increase of proinflammatory cytokines in the cerebral cortex, etoricoxib did not. Nimesulide was the only COX-2 inhibitors that attenuated PTZ-induced seizures. This effect coincided with an increase of IL-10 levels in the cerebral cortex and hippocampus, constituting circumstantial evidence that IL-10 increase may be involved in the anticonvulsant effect of nimesulide.
Collapse
|
25
|
Andrianne M, Assabban A, La C, Mogilenko D, Salle DS, Fleury S, Doumont G, Van Simaeys G, Nedospasov SA, Blackshear PJ, Dombrowicz D, Goriely S, Van Maele L. Tristetraprolin expression by keratinocytes controls local and systemic inflammation. JCI Insight 2017; 2:92979. [PMID: 28570274 DOI: 10.1172/jci.insight.92979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
Tristetraprolin (TTP, encoded by the Zfp36 gene) regulates the mRNA stability of several important cytokines. Due to the critical role of this RNA-binding protein in the control of inflammation, TTP deficiency leads to the spontaneous development of a complex inflammatory syndrome. So far, this phenotype has been largely attributed to dysregulated production of TNF and IL‑23 by myeloid cells, such as macrophages or DCs. Here, we generated mice with conditional deletion of TTP in keratinocytes (Zfp36fl/flK14-Cre mice, referred to herein as Zfp36ΔEP mice). Unlike DC-restricted (CD11c-Cre) or myeloid cell-restricted (LysM-Cre) TTP ablation, these mice developed exacerbated inflammation in the imiquimod-induced psoriasis model. Furthermore, Zfp36ΔEP mice progressively developed a spontaneous pathology with systemic inflammation, psoriatic-like skin lesions, and dactylitis. Finally, we provide evidence that keratinocyte-derived TNF production drives these different pathological features. In summary, these findings expand current views on the initiation of psoriasis and related arthritis by revealing the keratinocyte-intrinsic role of TTP.
Collapse
Affiliation(s)
- Mathieu Andrianne
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Assiya Assabban
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caroline La
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Mogilenko
- Université de Lille, Inserm, Institut Pasteur de Lille, CHU Lille, Lille, France
| | | | - Sébastien Fleury
- Université de Lille, Inserm, Institut Pasteur de Lille, CHU Lille, Lille, France
| | - Gilles Doumont
- Centre of Microscopy and Molecular Imaging (CMMI), ULB, Charleroi (Gosselies), Belgium
| | - Gaëtan Van Simaeys
- Centre of Microscopy and Molecular Imaging (CMMI), ULB, Charleroi (Gosselies), Belgium.,Department of Nuclear Medicine, Hôpital Erasme, ULB, Brussels, Belgium
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Lomonosov Moscow State University, Moscow, Russia
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - David Dombrowicz
- Université de Lille, Inserm, Institut Pasteur de Lille, CHU Lille, Lille, France
| | - Stanislas Goriely
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurye Van Maele
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
26
|
Gain-of-Function Mutation of Tristetraprolin Impairs Negative Feedback Control of Macrophages In Vitro yet Has Overwhelmingly Anti-Inflammatory Consequences In Vivo. Mol Cell Biol 2017; 37:MCB.00536-16. [PMID: 28265004 PMCID: PMC5440651 DOI: 10.1128/mcb.00536-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/25/2017] [Indexed: 12/20/2022] Open
Abstract
The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequence-specific manner to the 3' untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent anti-inflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function in vitro However, the in vivo effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10.
Collapse
|
27
|
Phua T, Sng MK, Tan EHP, Chee DSL, Li Y, Wee JWK, Teo Z, Chan JSK, Lim MMK, Tan CK, Zhu P, Arulampalam V, Tan NS. Angiopoietin-like 4 Mediates Colonic Inflammation by Regulating Chemokine Transcript Stability via Tristetraprolin. Sci Rep 2017; 7:44351. [PMID: 28287161 PMCID: PMC5347094 DOI: 10.1038/srep44351] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022] Open
Abstract
Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation.
Collapse
Affiliation(s)
- Terri Phua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, Stockholm 17177, Sweden
| | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Eddie Han Pin Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Dickson Shao Liang Chee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinliang Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ziqiang Teo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Maegan Miang Kee Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chek Kun Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Pengcheng Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Velmurugesan Arulampalam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, Stockholm 17177, Sweden
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore.,Institute of Molecular Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology &Research, Singapore 138673, Singapore.,KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| |
Collapse
|
28
|
Ross EA, Naylor AJ, O'Neil JD, Crowley T, Ridley ML, Crowe J, Smallie T, Tang TJ, Turner JD, Norling LV, Dominguez S, Perlman H, Verrills NM, Kollias G, Vitek MP, Filer A, Buckley CD, Dean JL, Clark AR. Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann Rheum Dis 2017; 76:612-619. [PMID: 27597652 PMCID: PMC5446007 DOI: 10.1136/annrheumdis-2016-209424] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Tristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP. METHODS The expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP. RESULTS TTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation. CONCLUSIONS The phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- E A Ross
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - A J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D O'Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T Crowley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - M L Ridley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J Crowe
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - T Smallie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T J Tang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L V Norling
- William Harvey Research Institute, QMUL, London, UK
| | - S Dominguez
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - H Perlman
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - N M Verrills
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - G Kollias
- Division of Immunology, Biomedical Sciences Research Center ‘Alexander Fleming’, Vari, Greece
| | - M P Vitek
- Cognosci Inc., Research Triangle Park, North Carolina, USA
| | - A Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - C D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J L Dean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Mol Cell Biol 2016; 37:MCB.00454-16. [PMID: 27795299 PMCID: PMC5192081 DOI: 10.1128/mcb.00454-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA.
Collapse
|
30
|
Kim TM, An CH, Rhee JK, Jung SH, Lee SH, Baek IP, Kim MS, Lee SH, Chung YJ. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma. Oncotarget 2016; 6:27725-35. [PMID: 26336987 PMCID: PMC4695021 DOI: 10.18632/oncotarget.4834] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022] Open
Abstract
Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four -stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a ‘parallel’ evolution of synchronous adenoma-to-carcinoma, rather than a ‘stepwise’ evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Hyeok An
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Je-Keun Rhee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Hyun Jung
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Pyo Baek
- Department of Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min Sung Kim
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sug Hyung Lee
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeun-Jun Chung
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
31
|
Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 2016; 32:17-30. [PMID: 27522641 DOI: 10.1016/j.cytogfr.2016.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host's immune response to certain bacteria when antibiotics are not completely effective.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Barbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Isidora Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Chile
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
32
|
The Opposite Expected Effect of p38 Inhibitors on Fat Graft Survival. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e806. [PMID: 27536485 PMCID: PMC4977134 DOI: 10.1097/gox.0000000000000821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/20/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fat grafting is an increasingly popular method of augmentation/reconstruction of soft tissue defects. However, the clinical unpredictability and high resorption rates of the grafts remain problematic. Cellular stress from the harvest and the ensuing ischemic episode may be the cause of this. Cellular stress activates the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In response to cellular stress, the p38 pathway can lead to apoptosis and can negatively regulate cell proliferation. Inhibition of p38 in ex vivo experiments has been shown to promote the expansion of human cord blood hematopoietic stem cell and improve the adipogenesis process through its upstream regulator, Shp2. Because of its wide-ranging cell regulation and antiinflammatory properties, large-scale clinical trials using p38 inhibitors are also currently being performed, especially for therapeutic effect in chronic obstructive pulmonary disease and asthma. The rationale for our study was that the treatment of fat grafts with p38 inhibitor would (a) prevent apoptosis of adipose-derived stem cells in the fat grafts, (b) increase adipose-derived stem cells proliferation, and (c) stimulate the release of several angiogenic factors and promote revascularization. METHODS Clinical and histological testing was performed on 5 fat-transplanted (1 mL) CD-1 nude mice compared with the test group of 5 mice, which were injected with a p38 MAPK inhibitor at 1, 3, 6, and 9 days after the fat transplantation. RESULTS The weights and volumes of the control group grafts were significantly higher than those of the p38 MAPK inhibitor-treated grafts. Average volume resorption was 36% in the control group and 92% in the test group. Histological evaluation of the grafts revealed significantly improved integration, with a significant reduction of fibrosis and inflammation in the control group versus the treated group. CONCLUSIONS This preliminary study suggests that as opposed to our hypothesis, inhibition of p38 significantly increases fat graft resorption. The dramatic effects observed in our study may suggest that p38 may act differently on the numerous cell types that constitute the fat graft, and further investigation is necessary.
Collapse
|
33
|
McDermott B, Ellis S, Bou-Gharios G, Clegg P, Tew S. RNA binding proteins regulate anabolic and catabolic gene expression in chondrocytes. Osteoarthritis Cartilage 2016; 24:1263-73. [PMID: 26853752 PMCID: PMC4917896 DOI: 10.1016/j.joca.2016.01.988] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Regulation of anabolic and catabolic factors is considered essential in maintaining the homoeostasis of healthy articular cartilage. In this study we investigated the influence of RNA binding proteins (RNABPs) in this process. DESIGN Using small interfering RNA (siRNA), RNABP expression was knocked down in SW1353 chondrosarcoma cells and human articular chondrocytes. Gene expression and messenger RNA (mRNA) decay of anabolic (SOX9, Aggrecan) and catabolic (matrix metalloproteinase (MMP)13) factors were analysed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). RNA-electromobility shift assays (EMSAs) were used to investigate RNABP interactions with the SOX9 mRNA 3' untranslated region (UTR). Immunohistochemical localisation of MMP13 and the RNABP human antigen R (HuR) was performed in E13.5 and E16.5 mouse embryo sections. RESULTS SOX9 mRNA, mRNA half-life and protein expression were increased with siRNA targeting the RNABP tristetraprolin (TTP) in both HACs and SW1353s. TTP knockdown also stimulated aggrecan mRNA expression but did not affect its stability. RNA-EMSAs demonstrated that adenine uracil (AU)-rich elements in the SOX9 mRNA 3'UTR interacted with chondrocyte proteins with three specific elements interacting with TTP. HuR knockdown significantly increased MMP13 expression and also regulated the expression of a number of known transcriptional repressors of MMP13. HuR was ubiquitously expressed within mouse embryos yet displayed regional down-regulation within developing skeletal structures. CONCLUSION This study demonstrates for the first time how RNABPs are able to affect the balance of anabolic and catabolic gene expression in human chondrocytes. The post-transcriptional mechanisms controlled by RNABPs present novel avenues of regulation and potential points of intervention for controlling the expression of SOX9 and MMP13 in chondrocytes.
Collapse
Affiliation(s)
| | | | | | | | - S.R. Tew
- Address correspondence and reprint requests to: S.R. Tew, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK. Tel: 44-(0)-151-7956235; Fax: 44-(0)-151-7946034.
| |
Collapse
|
34
|
Sedlyarov V, Fallmann J, Ebner F, Huemer J, Sneezum L, Ivin M, Kreiner K, Tanzer A, Vogl C, Hofacker I, Kovarik P. Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution. Mol Syst Biol 2016; 12:868. [PMID: 27178967 PMCID: PMC4988506 DOI: 10.15252/msb.20156628] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Precise regulation of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. However, a global model integrating regulation and functional consequences of inflammation‐associated mRNA decay remains to be established. Using time‐resolved high‐resolution RNA binding analysis of the mRNA‐destabilizing protein tristetraprolin (TTP), an inflammation‐limiting factor, we qualitatively and quantitatively characterize TTP binding positions in the transcriptome of immunostimulated macrophages. We identify pervasive destabilizing and non‐destabilizing TTP binding, including a robust intronic binding, showing that TTP binding is not sufficient for mRNA destabilization. A low degree of flanking RNA structuredness distinguishes occupied from silent binding motifs. By functionally relating TTP binding sites to mRNA stability and levels, we identify a TTP‐controlled switch for the transition from inflammatory into the resolution phase of the macrophage immune response. Mapping of binding positions of the mRNA‐stabilizing protein HuR reveals little target and functional overlap with TTP, implying a limited co‐regulation of inflammatory mRNA decay by these proteins. Our study establishes a functionally annotated and navigable transcriptome‐wide atlas (http://ttp-atlas.univie.ac.at) of cis‐acting elements controlling mRNA decay in inflammation.
Collapse
Affiliation(s)
- Vitaly Sedlyarov
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Jörg Fallmann
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Jakob Huemer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Lucy Sneezum
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Masa Ivin
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kristina Kreiner
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Andrea Tanzer
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Shah S, Mostafa MM, McWhae A, Traves SL, Newton R. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1): IMPLICATIONS FOR REGULATION BY GLUCOCORTICOIDS. J Biol Chem 2015; 291:110-25. [PMID: 26546680 DOI: 10.1074/jbc.m115.697599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3'-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Andrew McWhae
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Suzanne L Traves
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
36
|
Kratochvill F, Gratz N, Qualls JE, Van De Velde LA, Chi H, Kovarik P, Murray PJ. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res 2015; 75:3054-64. [PMID: 26183929 DOI: 10.1158/0008-5472.can-15-0205] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Tristetraprolin (TTP) is an inducible zinc finger AU-rich RNA-binding protein essential for enforcing degradation of mRNAs encoding inflammatory chemokines and cytokines. Most studies on TTP center on the connection between mRNA half-life and inflammatory output, because loss of TTP amplifies inflammation by increasing the stability of AU-rich mRNAs. Here, we focused on how TTP controls cytokine and chemokine production in the nonresolving inflammation of cancer using tissue-specific approaches. In contrast with model in vitro macrophage systems, we found constitutive TTP expression in late-stage tumor-associated macrophages (TAM). However, TTP's effects on AU-rich mRNA stability were negligible and limited by constitutive p38α MAPK activity, which was the main driver of proinflammatory cytokine production in TAMs at the posttranscriptional level. Instead, elimination of TTP caused excessive protein production of inflammatory mediators, suggesting TTP-dependent translational suppression of AU-rich mRNAs. Manipulation of the p38α-TTP axis in macrophages has significant effects on the growth of tumors and therefore represents a means to manipulate inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Franz Kratochvill
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Nina Gratz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joseph E Qualls
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lee-Ann Van De Velde
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pavel Kovarik
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
37
|
Smallie T, Ross EA, Ammit AJ, Cunliffe HE, Tang T, Rosner DR, Ridley ML, Buckley CD, Saklatvala J, Dean JL, Clark AR. Dual-Specificity Phosphatase 1 and Tristetraprolin Cooperate To Regulate Macrophage Responses to Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2015; 195:277-88. [PMID: 26019272 PMCID: PMC4472943 DOI: 10.4049/jimmunol.1402830] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
Dual-specificity phosphatase (DUSP) 1 dephosphorylates and inactivates members of the MAPK superfamily, in particular, JNKs, p38α, and p38β MAPKs. It functions as an essential negative regulator of innate immune responses, hence disruption of the Dusp1 gene renders mice extremely sensitive to a wide variety of experimental inflammatory challenges. The principal mechanisms behind the overexpression of inflammatory mediators by Dusp1(-/-) cells are not known. In this study, we use a genetic approach to identify an important mechanism of action of DUSP1, involving the modulation of the activity of the mRNA-destabilizing protein tristetraprolin. This mechanism is key to the control of essential early mediators of inflammation, TNF, CXCL1, and CXCL2, as well as the anti-inflammatory cytokine IL-10. The same mechanism also contributes to the regulation of a large number of transcripts induced by treatment of macrophages with LPS. These findings demonstrate that modulation of the phosphorylation status of tristetraprolin is an important physiological mechanism by which innate immune responses can be controlled.
Collapse
Affiliation(s)
- Tim Smallie
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ewan A Ross
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alaina J Ammit
- Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia; and
| | - Helen E Cunliffe
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tina Tang
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dalya R Rosner
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael L Ridley
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher D Buckley
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jeremy Saklatvala
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jonathan L Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Andrew R Clark
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
38
|
Ross EA, Smallie T, Ding Q, O'Neil JD, Cunliffe HE, Tang T, Rosner DR, Klevernic I, Morrice NA, Monaco C, Cunningham AF, Buckley CD, Saklatvala J, Dean JL, Clark AR. Dominant Suppression of Inflammation via Targeted Mutation of the mRNA Destabilizing Protein Tristetraprolin. THE JOURNAL OF IMMUNOLOGY 2015; 195:265-76. [PMID: 26002976 PMCID: PMC4472942 DOI: 10.4049/jimmunol.1402826] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
In myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators. Mice expressing only the mutant form of TTP were healthy and fertile, and their systemic inflammatory responses to LPS were strongly attenuated. Adaptive immune responses and protection against infection by Salmonella typhimurium were spared. A single allele encoding the mutant form of TTP was sufficient for enhanced mRNA degradation and underexpression of inflammatory mediators. Therefore, the equilibrium between unphosphorylated and phosphorylated TTP is a critical determinant of the inflammatory response, and manipulation of this equilibrium may be a means of treating inflammatory pathologies.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tim Smallie
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Qize Ding
- Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - John D O'Neil
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Helen E Cunliffe
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tina Tang
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dalya R Rosner
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Iva Klevernic
- Unit of Signal Transduction, Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, University Hospital, 4000 Liege, Belgium
| | - Nicholas A Morrice
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; and
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Adam F Cunningham
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher D Buckley
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jeremy Saklatvala
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jonathan L Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Andrew R Clark
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
39
|
Habil N, Abate W, Beal J, Foey AD. Heat-killed probiotic bacteria differentially regulate colonic epithelial cell production of human β-defensin-2: dependence on inflammatory cytokines. Benef Microbes 2015; 5:483-95. [PMID: 25116382 DOI: 10.3920/bm2013.0061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inducible antimicrobial peptide human β-defensin-2 (hBD-2) stimulated by pro-inflammatory cytokines and bacterial products is essential to antipathogen responses of gut epithelial cells. Commensal and probiotic bacteria can augment such mucosal defences. Probiotic use in the treatment of inflammatory bowel disease, however, may have adverse effects, boosting inflammatory responses. The aim of this investigation was to determine the effect of selected probiotic strains on hBD-2 production by epithelial cells induced by pathologically relevant pro-inflammatory cytokines and the role of cytokine modulators in controlling hBD-2. Caco-2 colonic intestinal epithelial cells were pre-incubated with heat-killed probiotics, i.e. Lactobacillus casei strain Shirota (LcS) or Lactobacillus fermentum strain MS15 (LF), followed by stimulation of hBD-2 by interleukin (IL)-1β and tumour necrosis factor alpha (TNF-α) in the absence or presence of exogenous IL-10 or anti-IL-10 neutralising antibody. Cytokines and hBD-2 mRNA and protein were analysed by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. LcS augmented IL-1β-induced hBD-2, whereas LF enhanced TNF-α- and suppressed IL-1β-induced hBD-2. LF enhanced TNF-α-induced TNF-α and suppressed IL-10, whereas augmented IL-1β-induced IL-10. LcS upregulated IL-1β-induced TNF-α mRNA and suppressed IL-10. Endogenous IL-10 differentially regulated hBD-2; neutralisation of IL-10 augmented TNF-α- and suppressed IL-1β-induced hBD-2. Exogenous IL-10, however, suppressed both TNF-α- and IL-1β-induced hBD-2; LcS partially rescued suppression in TNF-α- and IL-1β-stimulation, whereas LF further suppressed IL-1β-induced hBD-2. It can be concluded that probiotic strains differentially regulate hBD-2 mRNA expression and protein secretion, modulation being dictated by inflammatory stimulus and resulting cytokine environment.
Collapse
Affiliation(s)
- N Habil
- School of Biomedical & Healthcare Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom Foundation of Technical Education (FTE), Alnakabat Street, 55555 Baghdad, Iraq
| | - W Abate
- School of Biomedical & Healthcare Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - J Beal
- School of Biomedical & Healthcare Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - A D Foey
- School of Biomedical & Healthcare Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
40
|
Abstract
Chronic inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are clinically and socioeconomically important diseases globally. Currently the mainstay of anti-inflammatory therapy in respiratory diseases is corticosteroids. Although corticosteroids have proven clinical efficacy in asthma, many asthmatic inflammatory conditions (e.g., infection, exacerbation, and severe asthma) are not responsive to corticosteroids. Moreover, despite an understanding that COPD progression is driven by inflammation, we currently do not have effective anti-inflammatory strategies to combat this disease. Hence, alternative anti-inflammatory strategies are required. p38 mitogen-activated protein kinase (MAPK) has emerged as an important signaling molecule driving airway inflammation, and pharmacological inhibitors against p38 MAPK may provide potential therapies for chronic respiratory disease. In this review, we discuss some of the recent in vitro and in vivo studies targeting p38 MAPK, but suggest that p38 MAPK inhibitors may prove less effective than originally considered because they may block anti-inflammatory molecules along with proinflammatory responses. We propose that an alternative strategy may be to target an anti-inflammatory molecule farther downstream of p38 MAPK, i.e., tristetraprolin (TTP). TTP is an mRNA-destabilizing, RNA-binding protein that enhances the decay of mRNAs, including those encoding proteins implicated in chronic respiratory diseases. We suggest that understanding the molecular mechanism of TTP expression and its temporal regulation will guide future development of novel anti-inflammatory pharmacotherapeutic approaches to combat respiratory disease.
Collapse
Affiliation(s)
- Pavan Prabhala
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Prabhala P, Bunge K, Rahman MM, Ge Q, Clark AR, Ammit AJ. Temporal regulation of cytokine mRNA expression by tristetraprolin: dynamic control by p38 MAPK and MKP-1. Am J Physiol Lung Cell Mol Physiol 2015; 308:L973-80. [PMID: 25724669 DOI: 10.1152/ajplung.00219.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/22/2015] [Indexed: 01/16/2023] Open
Abstract
Cytokines drive many inflammatory diseases, including asthma. Understanding the molecular mechanisms responsible for cytokine secretion will allow us to develop novel strategies to repress inflammation in the future. Harnessing the power of endogenous anti-inflammatory proteins is one such strategy. In this study, we investigate the p38 MAPK-mediated regulatory interaction of two anti-inflammatory proteins, mitogen-activated protein kinase phosphatase 1 (MKP-1) and tristetraprolin (TTP), in the context of asthmatic inflammation. Using primary cultures of airway smooth muscle cells in vitro, we explored the temporal regulation of IL-6 cytokine mRNA expression upon stimulation with TNF-α. Intriguingly, the temporal profile of mRNA expression was biphasic. This was not due to COX-2-derived prostanoid upregulation, increased expression of NLRP3 inflammasome components, or upregulation of the cognate receptor for TNF-α-TNFR1. Rather, the biphasic nature of TNF-α-induced IL-6 mRNA expression was regulated temporally by the RNA-destabilizing molecule, TTP. Importantly, TTP function is controlled by p38 MAPK, and our study reveals that its expression in airway smooth muscle cells is p38 MAPK-dependent and its anti-inflammatory activity is also controlled by p38 MAPK-mediated phosphorylation. MKP-1 is a MAPK deactivator; thus, by controlling p38 MAPK phosphorylation status in a temporally distinct manner, MKP-1 ensures that TTP is expressed and made functional at precisely the correct time to repress cytokine expression. Together, p38 MAPK, MKP-1, and TTP may form a regulatory network that exerts significant control on cytokine secretion in proasthmatic inflammation through precise temporal signaling.
Collapse
Affiliation(s)
- Pavan Prabhala
- Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| | - Kristin Bunge
- Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| | | | - Qi Ge
- Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia; and
| | - Andrew R Clark
- Centre for Translational Inflammation Research, School of Immunity and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, New South Wales, Australia;
| |
Collapse
|
42
|
Köther K, Nordhoff C, Masemann D, Varga G, Bream JH, Gaestel M, Wixler V, Ludwig S. MAPKAP kinase 3 suppresses Ifng gene expression and attenuates NK cell cytotoxicity and Th1 CD4 T-cell development upon influenza A virus infection. FASEB J 2014; 28:4235-46. [PMID: 24935968 DOI: 10.1096/fj.14-249599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MK2 and MK3 are downstream targets of p38 and ERK1/2. They control the mRNA stability of several inflammatory cytokines, including TNF-α and IL-10. Whereas MK2 is expressed ubiquitously, the expression of MK3 is restricted to muscle, liver, and heart tissues and T and NK cells. Using Mk-deficient and wild-type (WT) mice, we demonstrated an inhibitory effect of MK3, but not of MK2, on interferon (IFN)-γ expression in T and NK lymphocytes. The results provided evidence that the inhibitory effect of MK3 is based on negative feedback phosphorylation of p38 and ERK1/2, which causes decreased binding of Stat4 to the IFN-γ promoter and reduced expression of IFN-γ mRNA and protein. Consequently, all Mk3(-/-) mice challenged with the Th1-inducing influenza A virus (IAV) survived the WT LD50 virus dose. The reduced disease severity in the Mk3(-/-) mice was accompanied by a >10-fold reduction in viral lung titer and an increase in the number of activated NK cells and enhanced Th1 activation of CD4 T cells. Thus, our data describe the protein kinase MK3 as a novel regulator of the innate and adaptive immune responses.-Köther, K., Nordhoff, C., Masemann, D., Varga, G., Bream, J. H., Gaestel, M., Wixler, V., Ludwig, S. MAPKAP kinase 3 suppresses Ifng gene expression and attenuates NK cell cytotoxicity and Th1 CD4 T-cell development upon influenza A virus infection.
Collapse
Affiliation(s)
- Katharina Köther
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and
| | - Carolin Nordhoff
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and
| | - Dörthe Masemann
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, Westfälische Wilhelms University, Münster, Germany
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany; and
| | - Viktor Wixler
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
43
|
Kawarazaki Y, Ichijo H, Naguro I. Apoptosis signal-regulating kinase 1 as a therapeutic target. Expert Opin Ther Targets 2014; 18:651-64. [DOI: 10.1517/14728222.2014.896903] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Ebeling S, Naumann K, Pollok S, Wardecki T, Vidal-y-Sy S, Nascimento JM, Boerries M, Schmidt G, Brandner JM, Merfort I. From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract. PLoS One 2014; 9:e86147. [PMID: 24465925 PMCID: PMC3899119 DOI: 10.1371/journal.pone.0086147] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/05/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Birch bark has a long lasting history as a traditional medicinal remedy to accelerate wound healing. Recently, the efficacy of birch bark preparations has also been proven clinically. As active principle pentacyclic triterpenes are generally accepted. Here, we report a comprehensive study on the underlying molecular mechanisms of the wound healing properties of a well-defined birch bark preparation named as TE (triterpene extract) as well as the isolated single triterpenes in human primary keratinocytes and porcine ex-vivo wound healing models. METHODOLOGY/PRINCIPAL FINDINGS We show positive wound healing effects of TE and betulin in scratch assay experiments with primary human keratinocytes and in a porcine ex-vivo wound healing model (WHM). Mechanistical studies elucidate that TE and betulin transiently upregulate pro-inflammatory cytokines, chemokines and cyclooxygenase-2 on gene and protein level. For COX-2 and IL-6 this increase of mRNA is due to an mRNA stabilizing effect of TE and betulin, a process in which p38 MAPK and HuR are involved. TE promotes keratinocyte migration, putatively by increasing the formation of actin filopodia, lamellipodia and stress fibers. Detailed analyses show that the TE components betulin, lupeol and erythrodiol exert this effect even in nanomolar concentrations. Targeting the actin cytoskeleton is dependent on the activation of Rho GTPases. CONCLUSION/SIGNIFICANCE Our results provide insights to understand the molecular mechanism of the clinically proven wound healing effect of birch bark. TE and betulin address the inflammatory phase of wound healing by transient up-regulation of several pro-inflammatory mediators. Further, they enhance migration of keratinocytes, which is essential in the second phase of wound healing. Our results, together with the clinically proven efficacy, identify birch bark as the first medical plant with a high potential to improve wound healing, a field which urgently needs effective remedies.
Collapse
Affiliation(s)
- Sandra Ebeling
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Katrin Naumann
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Simone Pollok
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tina Wardecki
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sabine Vidal-y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Juliana M. Nascimento
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Johanna M. Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Irmgard Merfort
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Gabryšová L, Howes A, Saraiva M, O'Garra A. The regulation of IL-10 expression. Curr Top Microbiol Immunol 2014; 380:157-90. [PMID: 25004818 DOI: 10.1007/978-3-662-43492-5_8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells.
Collapse
Affiliation(s)
- Leona Gabryšová
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | |
Collapse
|
46
|
Teixeira-Coelho M, Guedes J, Ferreirinha P, Howes A, Pedrosa J, Rodrigues F, Lai WS, Blackshear PJ, O'Garra A, Castro AG, Saraiva M. Differential post-transcriptional regulation of IL-10 by TLR2 and TLR4-activated macrophages. Eur J Immunol 2013; 44:856-66. [PMID: 24227629 PMCID: PMC4623319 DOI: 10.1002/eji.201343734] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/16/2013] [Accepted: 11/08/2013] [Indexed: 01/08/2023]
Abstract
The activation of TLRs by microbial molecules triggers intracellular-signaling cascades and the expression of cytokines such as IL-10. Il10 expression is tightly controlled to ensure effective immune responses, while preventing pathology. Maximal TLR-induction of Il10 transcription in macrophages requires signaling through the MAPKs, ERK, and p38. Signals via p38 downstream of TLR4 activation also regulate IL-10 at the post-transcriptional level, but whether this mechanism operates downstream of other TLRs is not clear. We compared the regulation of IL-10 production in TLR2 and TLR4-stimulated BM-derived macrophages and found different stability profiles for the Il10 mRNA. TLR2 signals promoted a rapid induction and degradation of Il10 mRNA, whereas TLR4 signals protected Il10 mRNA from rapid degradation, due to the activation of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and enhanced p38 signaling. This differential post-transcriptional mechanism contributes to a stronger induction of IL-10 secretion via TLR4. Our study provides a molecular mechanism for the differential IL-10 production by TLR2- or TLR4-stimulated BMMs, showing that p38-induced stability is not common to all TLR-signaling pathways. This mechanism is also observed upon bacterial activation of TLR2 or TLR4 in BMMs, contributing to IL-10 modulation in these cells in an infection setting.
Collapse
Affiliation(s)
- Maria Teixeira-Coelho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lai WS, Perera L, Hicks SN, Blackshear PJ. Mutational and structural analysis of the tandem zinc finger domain of tristetraprolin. J Biol Chem 2013; 289:565-80. [PMID: 24253039 DOI: 10.1074/jbc.m113.466326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tristetraprolin (TTP), the best known member of a class of tandem (R/K)YKTELCX8CX5CX3H zinc finger proteins, can destabilize target mRNAs by first binding to AU-rich elements (AREs) in their 3'-untranslated regions (UTRs) and subsequently promoting deadenylation and ultimate destruction of those mRNAs. This study sought to determine the roles of selected amino acids in the RNA binding domain, known as the tandem zinc finger (TZF) domain, in the ability of the full-length protein to bind to AREs within the tumor necrosis factor α (TNF) mRNA 3'-UTR. Within the CX8C region of the TZF domain, mutation of some of the residues specific to TTP, not found in other members of the TTP protein family, resulted in decreased binding to RNA as well as inhibited mRNA deadenylation and decay. Evaluation of simulation solution models revealed a distinct structure in the second zinc finger of TTP that was induced by the presence of these TTP-specific residues. In addition, mutations within the lead-in sequences preceding the first C of highly conserved residues within the CX5C or CX3H regions or within the linker region between the two fingers also perturbed both RNA binding and the simulation model of the TZF domain in complex with RNA. We conclude that, although the majority of conserved residues within the TZF domain of TTP are required for productive binding, not all residues at sequence-equivalent positions in the two zinc fingers of the TZF domain of TTP are functionally equivalent.
Collapse
Affiliation(s)
- Wi S Lai
- From the Laboratories of Signal Transduction and
| | | | | | | |
Collapse
|
48
|
Yuan J, Muljo SA. Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 2013; 253:290-303. [PMID: 23550653 DOI: 10.1111/imr.12048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of microRNAs has renewed interest in posttranscriptional modes of regulation, fueling an emerging view of a rich RNA world within our cells that deserves further exploration. Much work has gone into elucidating genetic regulatory networks that orchestrate gene expression programs and direct cell fate decisions in the hematopoietic system. However, the focus has been to elucidate signaling pathways and transcriptional programs. To bring us one step closer to reverse engineering the molecular logic of cellular differentiation, it will be necessary to map posttranscriptional circuits as well and integrate them in the context of existing network models. In this regard, RNA-binding proteins (RBPs) may rival transcription factors as important regulators of cell fates and represent a tractable opportunity to connect the RNA world to the proteome. ChIP-seq has greatly facilitated genome-wide localization of DNA-binding proteins, helping us to understand genomic regulation at a systems level. Similarly, technological advances such as CLIP-seq allow transcriptome-wide mapping of RBP binding sites, aiding us to unravel posttranscriptional networks. Here, we review RBP-mediated posttranscriptional regulation, paying special attention to findings relevant to the immune system. As a prime example, we highlight the RBP Lin28B, which acts as a heterochronic switch between fetal and adult lymphopoiesis.
Collapse
Affiliation(s)
- Joan Yuan
- Integrative Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
49
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
50
|
MacKenzie KF, Van Den Bosch MWM, Naqvi S, Elcombe SE, McGuire VA, Reith AD, Blackshear PJ, Dean JLE, Arthur JSC. MSK1 and MSK2 inhibit lipopolysaccharide-induced prostaglandin production via an interleukin-10 feedback loop. Mol Cell Biol 2013; 33:1456-67. [PMID: 23382072 PMCID: PMC3624268 DOI: 10.1128/mcb.01690-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/24/2013] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin production is catalyzed by cyclooxygenase 2 (cox-2). We demonstrate here that MSK1 and MSK2 (MSK1/2) can exert control on the induction of cox-2 mRNA by Toll-like receptor (TLR) agonists. In the initial phase of cox-2 induction, MSK1/2 knockout macrophages confirmed a role for MSK in the positive regulation of transcription. However, at later time points both lipopolysaccharide (LPS)-induced prostaglandin and cox-2 protein levels were increased in MSK1/2 knockout. Further analysis found that while MSKs promoted cox-2 mRNA transcription, following longer LPS stimulation MSKs also promoted degradation of cox-2 mRNA. This was found to be the result of an interleukin 10 (IL-10) feedback mechanism, with endogenously produced IL-10 promoting cox-2 degradation. The ability of IL-10 to do this was dependent on the mRNA binding protein TTP through a p38/MK2-mediated mechanism. As MSKs regulate IL-10 production in response to LPS, MSK1/2 knockout results in reduced IL-10 secretion and therefore reduced feedback from IL-10 on cox-2 mRNA stability. Following LPS stimulation, this increased mRNA stability correlated to an elevated induction of both of cox-2 protein and prostaglandin secretion in MSK1/2 knockout macrophages relative to that in wild-type cells. This was not restricted to isolated macrophages, as a similar effect of MSK1/2 knockout was seen on plasma prostaglandin E2 (PGE2) levels following intraperitoneal injection of LPS.
Collapse
Affiliation(s)
- Kirsty F. MacKenzie
- MRC Protein Phosphorylation Unit, Sir James Black Complex, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mirjam W. M. Van Den Bosch
- MRC Protein Phosphorylation Unit, Sir James Black Complex, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Shaista Naqvi
- MRC Protein Phosphorylation Unit, Sir James Black Complex, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Suzanne E. Elcombe
- MRC Protein Phosphorylation Unit, Sir James Black Complex, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Victoria A. McGuire
- MRC Protein Phosphorylation Unit, Sir James Black Complex, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alastair D. Reith
- External Alliances & Development, GlaxoSmithKline (China) R&D Co. Ltd., Medicines Research Centre, Stevenage, United Kingdom
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jonathan L. E. Dean
- Kennedy Institute of Rheumatology, University of Oxford, London, United Kingdom
| | - J. Simon C. Arthur
- MRC Protein Phosphorylation Unit, Sir James Black Complex, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|