1
|
Oliveira CEDS, Jalal A, Aguilar JV, de Camargos LS, Zoz T, Ghaley BB, Abdel-Maksoud MA, Alarjani KM, AbdElgawad H, Teixeira Filho MCM. Yield, nutrition, and leaf gas exchange of lettuce plants in a hydroponic system in response to Bacillus subtilis inoculation. FRONTIERS IN PLANT SCIENCE 2023; 14:1248044. [PMID: 37954988 PMCID: PMC10634435 DOI: 10.3389/fpls.2023.1248044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Inoculation with Bacillus subtilis is a promising approach to increase plant yield and nutrient acquisition. In this context, this study aimed to estimate the B. subtilis concentration that increases yield, gas exchange, and nutrition of lettuce plants in a hydroponic system. The research was carried out in a greenhouse in Ilha Solteira, Brazil. A randomized block design with five replications was adopted. The treatments consisted of B. subtilis concentrations in nutrient solution [0 mL "non-inoculated", 7.8 × 103, 15.6 × 103, 31.2 × 103, and 62.4 × 103 colony forming units (CFU) mL-1 of nutrient solution]. There was an increase of 20% and 19% in number of leaves and 22% and 25% in shoot fresh mass with B. subtilis concentrations of 15.6 × 103 and 31.2 × 103 CFU mL-1 as compared to the non-inoculated plants, respectively. Also, B. subtilis concentration at 31.2 × 103 CFU mL-1 increased net photosynthesis rate by 95%, intercellular CO2 concentration by 30%, and water use efficiency by 67% as compared to the non-inoculated treatments. The concentration of 7.8 × 103 CFU mL-1 improved shoot accumulation of Ca, Mg, and S by 109%, 74%, and 69%, when compared with non-inoculated plants, respectively. Inoculation with B. subtilis at 15.6 × 103 CFU mL-1 provided the highest fresh leaves yield while inoculation at 15.6 × 103 and 31.2 × 103 CFU mL-1 increased shoot fresh mass and number of leaves. Concentrations of 7.8 × 103 and 15.6 × 103 increased shoot K accumulation. The concentrations of 7.8 × 103, 15.6 × 103, and 31.2 × 103 CFU mL-1 increased shoot N accumulation in hydroponic lettuce plants.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Oliveira
- Department of Plant Protection, Rural Engineering and Soils, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Jailson Vieira Aguilar
- Department of Biology and Zootechnics, Lab of Plant Morphology and Anatomy/Lab Plant Metabolism and Physiology, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Liliane Santos de Camargos
- Department of Biology and Zootechnics, Lab of Plant Morphology and Anatomy/Lab Plant Metabolism and Physiology, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| | - Tiago Zoz
- Department of Crop Science, State University of Mato Grosso do Sul – UEMS, Mundo Novo, Mato Grosso do Sul, Brazil
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Protection, Rural Engineering and Soils, School of Engineering, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, Brazil
| |
Collapse
|
2
|
Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B. Organelles and phytohormones: a network of interactions in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7165-7181. [PMID: 36169618 PMCID: PMC9675595 DOI: 10.1093/jxb/erac384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.
Collapse
|
3
|
Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P. Melatonin: First-line soldier in tomato under abiotic stress current and future perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:188-197. [PMID: 35700585 DOI: 10.1016/j.plaphy.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
Melatonin is a natural, multifunctional, nontoxic, regulatory, and ubiquitous biomolecule, having low molecular weight and pleiotropic effects in the plant kingdom. It is a recently discovered plant master regulator which has a crucial role under abiotic stress conditions (salinity, drought, heat, cold, alkalinity, acid rain, ozone, and metals stress). In the solanaceous family, the tomato is highly sensitive to abiotic stresses that affect its growth and development, ultimately hampering production and productivity. Melatonin acts as a strong antioxidant, bio-stimulator, and growth regulator, facilitating photosynthesis, delaying leaf senescence, and increasing the antioxidant enzymes system through direct scavenging of reactive oxygen species (ROS) under abiotic stresses. In addition, melatonin also boosts morphological traits such as vegetative growth, leaf photosynthesis, root architecture system, mineral nutrient elements, and antioxidant activities in tomato plants, confirming their tolerances against salinity, drought, heat, cold, alkalinity, acid rain, chemical, pathogen, and metals stress. In this review, an attempt has been made to summarize the potential role of melatonin for tomato plant endurance towards abiotic stresses, along with the known relationship between the two.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Management, Hainan University, Haikou, 570228, China
| | | | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Moreira VDA, Oliveira CEDS, Jalal A, Gato IMB, Oliveira TJSS, Boleta GHM, Giolo VM, Vitória LS, Tamburi KV, Filho MCMT. Inoculation with Trichoderma harzianum and Azospirillum brasilense increases nutrition and yield of hydroponic lettuce. Arch Microbiol 2022; 204:440. [PMID: 35771351 DOI: 10.1007/s00203-022-03047-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
The use of beneficial fungi and bacteria stimulate plant growth and serve to improve yield and food quality in a sustainable manner. The electrical conductivity of nutrients solution is closely linked to better nutrition of vegetable plants in a hydroponic system. Therefore, objectives of current study were to evaluate the effect of isolated and combined inoculation with Azospirillum brasilense and Trichoderma harzianum under two electrical conductivities on growth, nutrition, and yield of lettuce in hydroponic cultivation. The experiment was designed in a strip-plot block with five replications in a 4 × 2 factorial scheme. The treatments were consisted of four microbial inoculations (without, A. brasilense, T. harzianum and co-inoculation) and electrical conductivities (1.2 and 1.4 dS m-1). Inoculation with A. brasilense and T. harzianum increased lettuce root growth by 47% and 20%, respectively. The single inoculation of T. harzianum provided higher fresh leaves yield (24%) at electrical conductivity of 1.2 dS m-1, while single inoculation with A. brasilense increased fresh leaves yield by 17% at electrical conductivity 1.4 dS m-1. The lowest shoot NO3- accumulation (40%) was observed with inoculation of A. brasilense and highest (28%) with inoculation T. harzianum in both electrical conductivities. Inoculation with A. brasilense increased leaf accumulation of K, P, Ca, Mg, Fe, Mn, Cu, and Zn, which are essential for human nutrition and being recommended to improve yield of lettuce plants in hydroponics. It is recommended to use EC 1.4 dS m-1 of the nutrients solution to improve accumulation of K, Mn, Cu, and Zn, regardless of inoculations for biofortification of lettuce with application of fertilizers.
Collapse
Affiliation(s)
- Vitoria de Almeida Moreira
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil.
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Isabela Martins Bueno Gato
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Thaissa Julyanne Soares Sena Oliveira
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Guilherme Henrique Marcandalli Boleta
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Victoria Moraes Giolo
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Letícia Schenaide Vitória
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Karen Vicentini Tamburi
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Protection, Rural Engineering and Soils, São Paulo State University-UNESP-FEIS, School of Engineering, Ilha Solteira, São Paulo, 15385-000, Brazil.
| |
Collapse
|
5
|
Abstract
Abiotic stress adversely affects plant growth and metabolism and as such reduces plant productivity. Recognized as a major contributor in the production of reactive oxygen species (ROS), it hinders the growth of plants through induction of oxidative stress. Biostimulants such as melatonin have a multifunctional role, acting as a defense strategy in minimizing the effects of oxidative stress. Melatonin plays important role in plant processes ranging from seed germination to senescence, besides performing the function of a biostimulant in improving the plant’s productivity. In addition to its important role in the signaling cascade, melatonin acts as an antioxidant that helps in scavenging ROS, generated as part of different stresses among plants. The current study was undertaken to elaborate the synthesis and regulation of melatonin in plants, besides emphasizing its function under various abiotic stress namely, salt, temperature, herbicides, heavy metals, and drought. Additionally, a special consideration was put on the crosstalk of melatonin with phytohormones to overcome plant abiotic stress.
Collapse
|
6
|
Gerasimov NY, Nevrova OV, Zhigacheva IV, Generozova IP, Goloshchapov AN. In Vitro Effects of Different Resveratrol Concentrations on the Structural State of Mitochondrial Membranes Isolated from Pea Leaves. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Ca 2+-regulated mitochondrial carriers of ATP-Mg 2+/Pi: Evolutionary insights in protozoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119038. [PMID: 33839167 DOI: 10.1016/j.bbamcr.2021.119038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022]
Abstract
In addition to its uptake across the Ca2+ uniporter, intracellular calcium signals can stimulate mitochondrial metabolism activating metabolite exchangers of the inner mitochondrial membrane belonging to the mitochondrial carrier family (SLC25). One of these Ca2+-regulated mitochondrial carriers (CaMCs) are the reversible ATP-Mg2+/Pi transporters, or SCaMCs, required for maintaining optimal adenine nucleotide (AdN) levels in the mitochondrial matrix representing an alternative transporter to the ADP/ATP translocases (AAC). This CaMC has a distinctive Calmodulin-like (CaM-like) domain fused to the carrier domain that makes its transport activity strictly dependent on cytosolic Ca2+ signals. Here we investigate about its origin analysing its distribution and features in unicellular eukaryotes. Unexpectedly, we find two types of ATP-Mg2+/Pi carriers, the canonical ones and shortened variants lacking the CaM-like domain. Phylogenetic analysis shows that both SCaMC variants have a common origin, unrelated to AACs, suggesting in turn that recurrent losses of the regulatory module have occurred in the different phyla. They are excluding variants that show a more limited distribution and less conservation than AACs. Interestingly, these truncated variants of SCaMC are found almost exclusively in parasitic protists, such as apicomplexans, kinetoplastides or animal-patogenic oomycetes, and in green algae, suggesting that its lost could be related to certain life-styles. In addition, we find an intricate structural diversity in these variants that may be associated with their pathogenicity. The consequences on SCaMC functions of these new SCaMC-b variants are discussed.
Collapse
|
8
|
Pirayesh N, Giridhar M, Ben Khedher A, Vothknecht UC, Chigri F. Organellar calcium signaling in plants: An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118948. [PMID: 33421535 DOI: 10.1016/j.bbamcr.2021.118948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Calcium ion (Ca2+) is a versatile signaling transducer in all eukaryotic organisms. In plants, intracellular changes in free Ca2+ levels act as regulators in many growth and developmental processes. Ca2+ also mediates the cellular responses to environmental stimuli and thus plays an important role in providing stress tolerance to plants. Ca2+ signals are decoded by a tool kit of various families of Ca2+-binding proteins and their downstream targets, which mediate the transformation of the Ca2+ signal into appropriate cellular response. Early interest and research on Ca2+ signaling focused on its function in the cytosol, however it has become evident that this important regulatory pathway also exists in organelles such as nucleus, chloroplast, mitochondria, peroxisomes and the endomembrane system. In this review, we give an overview on the knowledge about organellar Ca2+ signaling with a focus on recent advances and developments.
Collapse
Affiliation(s)
- Niloufar Pirayesh
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Maya Giridhar
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ahlem Ben Khedher
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ute C Vothknecht
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Fatima Chigri
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
9
|
Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020; 10:metabo10120505. [PMID: 33321781 PMCID: PMC7764227 DOI: 10.3390/metabo10120505] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Adverse environmental conditions due to climate change, combined with declining soil fertility, threaten food security. Modern agriculture is facing a pressing situation where novel strategies must be developed for sustainable food production and security. Biostimulants, conceptually defined as non-nutrient substances or microorganisms with the ability to promote plant growth and health, represent the potential to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and crop productivity. Current knowledge and phenotypic observations suggest that biostimulants potentially function in regulating and modifying physiological processes in plants to promote growth, alleviate stresses, and improve quality and yield. However, to successfully develop novel biostimulant-based formulations and programs, understanding biostimulant-plant interactions, at molecular, cellular and physiological levels, is a prerequisite. Metabolomics, a multidisciplinary omics science, offers unique opportunities to predictively decode the mode of action of biostimulants on crop plants, and identify signatory markers of biostimulant action. Thus, this review intends to highlight the current scientific efforts and knowledge gaps in biostimulant research and industry, in context of plant growth promotion and stress responses. The review firstly revisits models that have been elucidated to describe the molecular machinery employed by plants in coping with environmental stresses. Furthermore, current definitions, claims and applications of plant biostimulants are pointed out, also indicating the lack of biological basis to accurately postulate the mechanisms of action of plant biostimulants. The review articulates briefly key aspects in the metabolomics workflow and the (potential) applications of this multidisciplinary omics science in the biostimulant industry.
Collapse
|
10
|
Fernie AR, Cavalcanti JHF, Nunes-Nesi A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020; 10:E1013. [PMID: 32650612 PMCID: PMC7408384 DOI: 10.3390/biom10071013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial carriers (MC) are a large family (MCF) of inner membrane transporters displaying diverse, yet often redundant, substrate specificities, as well as differing spatio-temporal patterns of expression; there are even increasing examples of non-mitochondrial subcellular localization. The number of these six trans-membrane domain proteins in sequenced plant genomes ranges from 39 to 141, rendering the size of plant families larger than that found in Saccharomyces cerevisiae and comparable with Homo sapiens. Indeed, comparison of plant MCs with those from these better characterized species has been highly informative. Here, we review the most recent comprehensive studies of plant MCFs, incorporating the torrent of genomic data emanating from next-generation sequencing techniques. As such we present a more current prediction of the substrate specificities of these carriers as well as review the continuing quest to biochemically characterize this feature of the carriers. Taken together, these data provide an important resource to guide direct genetic studies aimed at addressing the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Instiute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - João Henrique F. Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá 69800-000, Amazonas, Brazil;
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
11
|
A novel Ca 2+-binding protein influences photosynthetic electron transport in Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:519-532. [PMID: 31034800 DOI: 10.1016/j.bbabio.2019.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
Abstract
Ca2+ is a potent signalling molecule that regulates many cellular processes. In cyanobacteria, Ca2+ has been linked to cell growth, stress response and photosynthesis, and to the development of specialist heterocyst cells in certain nitrogen-fixing species. Despite this, the pathways of Ca2+ signal transduction in cyanobacteria are poorly understood, and very few protein components are known. The current study describes a previously unreported Ca2+-binding protein which was called the Ca2+ Sensor EF-hand (CSE), which is conserved in filamentous, nitrogen-fixing cyanobacteria. CSE is shown to bind Ca2+, which induces a conformational change in the protein structure. Poor growth of a strain of Anabaena sp. PCC 7120 overexpressing CSE was attributed to diminished photosynthetic performance. Transcriptomics, biophysics and proteomics analyses revealed modifications in the light-harvesting phycobilisome and photosynthetic reaction centre protein complexes.
Collapse
|
12
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
13
|
The Significance of Calcium in Photosynthesis. Int J Mol Sci 2019; 20:ijms20061353. [PMID: 30889814 PMCID: PMC6471148 DOI: 10.3390/ijms20061353] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
As a secondary messenger, calcium participates in various physiological and biochemical reactions in plants. Photosynthesis is the most extensive biosynthesis process on Earth. To date, researchers have found that some chloroplast proteins have Ca2+-binding sites, and the structure and function of some of these proteins have been discussed in detail. Although the roles of Ca2+ signal transduction related to photosynthesis have been discussed, the relationship between calcium and photosynthesis is seldom systematically summarized. In this review, we provide an overview of current knowledge of calcium’s role in photosynthesis.
Collapse
|
14
|
Xu Y, Berkowitz O, Narsai R, De Clercq I, Hooi M, Bulone V, Van Breusegem F, Whelan J, Wang Y. Mitochondrial function modulates touch signalling in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:623-645. [PMID: 30537160 DOI: 10.1111/tpj.14183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Plants respond to short- and long-term mechanical stimuli, via altered transcript abundance and growth respectively. Jasmonate, gibberellic acid and calcium have been implicated in mediating responses to mechanical stimuli. Previously it has been shown that the transcript abundance for the outer mitochondrial membrane protein of 66 kDa (OM66), is induced several fold after 30 min in response to touch. Therefore, the effect of mitochondrial function on the response to mechanical stimulation by touch at 30 min was investigated. Twenty-five mutants targeting mitochondrial function or regulators revealed that all affected the touch transcriptome. Double and triple mutants revealed synergistic or antagonistic effects following the observed responses in the single mutants. Changes in the touch-responsive transcriptome were localised, recurring with repeated rounds of stimulus. The gene expression kinetics after repeated touch were complex, displaying five distinct patterns. These transcriptomic responses were altered by some regulators of mitochondrial retrograde signalling, such as cyclic dependent protein kinase E1, a kinase protein in the mediator complex, and KIN10 (SnRK1 - sucrose non-fermenting related protein kinase 1), revealing an overlap between the touch response and mitochondrial stress signalling and alternative mitochondrial metabolic pathways. Regulatory network analyses revealed touch-induced stress responses and suppressed growth and biosynthetic processes. Interaction with the phytohormone signalling pathways indicated that ethylene and gibberellic acid had the greatest effect. Hormone measurements revealed that mutations of genes that encoded mitochondrial proteins altered hormone concentrations. Mitochondrial function modulates touch-induced changes in gene expression directly through altered regulatory networks, and indirectly via altering hormonal levels.
Collapse
Affiliation(s)
- Yue Xu
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - Michelle Hooi
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
15
|
da Fonseca-Pereira P, Neri-Silva R, Cavalcanti JHF, Brito DS, Weber APM, Araújo WL, Nunes-Nesi A. Data-Mining Bioinformatics: Connecting Adenylate Transport and Metabolic Responses to Stress. TRENDS IN PLANT SCIENCE 2018; 23:961-974. [PMID: 30287161 DOI: 10.1016/j.tplants.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Adenine nucleotides are essential in countless processes within the cellular metabolism. In plants, ATP is mainly produced in chloroplasts and mitochondria through photophosphorylation and oxidative phosphorylation, respectively. Thus, efficient adenylate transport systems are required for intracellular energy partitioning between the cell organelles. Adenylate carriers present in different subcellular compartments have been previously identified and biochemically characterized in plants. Here, by using data-mining bioinformatics tools, we propose how, and to what extent, these carriers integrate energy metabolism within a plant cell under different environmental conditions. We demonstrate that the expression pattern of the corresponding genes is variable under different environmental conditions, suggesting that specific adenylate carriers have distinct and nonredundant functions in plants.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - Roberto Neri-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Danielle S Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Balmer A, Pastor V, Glauser G, Mauch-Mani B. Tricarboxylates Induce Defense Priming Against Bacteria in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1221. [PMID: 30177948 PMCID: PMC6110165 DOI: 10.3389/fpls.2018.01221] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
Exposure of plants to biotic stress results in an effective induction of numerous defense mechanisms that involve a vast redistribution within both primary and secondary metabolisms. For instance, an alteration of tricarboxylic acid (TCA) levels can accompany the increase of plant resistance stimulated by various synthetic and natural inducers. Moreover, components of the TCA flux may play a role during the set-up of plant defenses. In this study, we show that citrate and fumarate, two major components of the TCA cycle, are able to induce priming in Arabidopsis against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Both citrate and fumarate show no direct antimicrobial effect and therefore enhanced bacterial resistance found in planta is solely based on the induction of the plant defense system. During the priming phase, both TCA intermediates did not induce any changes in transcript abundances of a set of defense genes, and in phytohormones and camalexin levels. However, at early time points of bacterial challenge, citrate induced a stronger salicylic acid and camalexin accumulation followed later by a boost of the jasmonic acid pathway. On the other hand, adaptations of hormonal pathways in fumarate-treated plants were more complex. While jasmonic acid was not induced, mutants impaired in jasmonic acid perception failed to mount a proper priming response induced by fumarate. Our results suggest that changes in carboxylic acid abundances can enhance Arabidopsis defense through complex signaling pathways. This highlights a promising feature of TCAs as novel defense priming agents and calls for further exploration in other pathosystems and stress situations.
Collapse
Affiliation(s)
- Andrea Balmer
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Castellon, Spain
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
17
|
Wang X, Komatsu S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J Proteomics 2018; 172:201-215. [PMID: 29133124 DOI: 10.1016/j.jprot.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Soybean is the important crop with abundant protein, vegetable oil, and several phytochemicals. With such predominant values, soybean is cultivated with a long history. However, flooding and drought stresses exert deleterious effects on soybean growth. The present review summarizes the morphological changes and affected events in soybean exposed to such extreme-water conditions. Sensitive organ in stressed soybean at different-developmental stages is presented based on protein profiles. Protein quality control and calcium homeostasis in the endoplasmic reticulum are discussed in soybean under both stresses. In addition, the way of calcium homeostasis in mediating protein folding and energy metabolism is addressed. Finally, stress response to flooding and drought is systematically demonstrated. This review concludes the recent findings of plant response to flooding and drought stresses in soybean employed proteomic approaches. BIOLOGICAL SIGNIFICANCE Soybean is considered as traditional-health food because of nutritional elements and pharmacological values. Flooding and drought exert deleterious effects to soybean growth. Proteomic approaches have been employed to elucidate stress response in soybean exposed to flooding and drought stresses. In this review, stress response is presented on organ-specific manner in the early-stage plant and soybean seedling exposed to combined stresses. The endoplasmic reticulum (ER) stress is induced by both stresses; and stress-response in the ER is addressed in the root tip of early-stage soybean. Moreover, calcium-response processes in stressed plant are described in the ER and in the cytosol. Additionally, stress-dependent response was discussed in flooded and drought-stressed plant. This review depicts stress response in the sensitive organ of stressed soybean and forms the basis to develop molecular markers related to plant defense under flooding and drought stresses.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
18
|
Monné M, Daddabbo L, Gagneul D, Obata T, Hielscher B, Palmieri L, Miniero DV, Fernie AR, Weber APM, Palmieri F. Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. J Biol Chem 2018; 293:4213-4227. [PMID: 29371401 DOI: 10.1074/jbc.ra117.000771] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Indexed: 12/29/2022] Open
Abstract
The Arabidopsis thaliana genome contains 58 members of the solute carrier family SLC25, also called the mitochondrial carrier family, many of which have been shown to transport specific metabolites, nucleotides, and cofactors across the mitochondrial membrane. Here, two Arabidopsis members of this family, AtUCP1 and AtUCP2, which were previously thought to be uncoupling proteins and hence named UCP1/PUMP1 and UCP2/PUMP2, respectively, are assigned with a novel function. They were expressed in bacteria, purified, and reconstituted in phospholipid vesicles. Their transport properties demonstrate that they transport amino acids (aspartate, glutamate, cysteine sulfinate, and cysteate), dicarboxylates (malate, oxaloacetate, and 2-oxoglutarate), phosphate, sulfate, and thiosulfate. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. AtUCP1 and AtUCP2 catalyzed a fast counterexchange transport as well as a low uniport of substrates, with transport rates of AtUCP1 being much higher than those of AtUCP2 in both cases. The aspartate/glutamate heteroexchange mediated by AtUCP1 and AtUCP2 is electroneutral, in contrast to that mediated by the mammalian mitochondrial aspartate glutamate carrier. Furthermore, both carriers were found to be targeted to mitochondria. Metabolite profiling of single and double knockouts shows changes in organic acid and amino acid levels. Notably, AtUCP1 and AtUCP2 are the first reported mitochondrial carriers in Arabidopsis to transport aspartate and glutamate. It is proposed that the primary function of AtUCP1 and AtUCP2 is to catalyze an aspartateout/glutamatein exchange across the mitochondrial membrane and thereby contribute to the export of reducing equivalents from the mitochondria in photorespiration.
Collapse
Affiliation(s)
- Magnus Monné
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.,the Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lucia Daddabbo
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - David Gagneul
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Toshihiro Obata
- the Department Willmitzer, Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany, and
| | - Björn Hielscher
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Luigi Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.,the Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Daniela Valeria Miniero
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Alisdair R Fernie
- the Department Willmitzer, Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany, and
| | - Andreas P M Weber
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ferdinando Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy, .,the Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
19
|
Versaw WK, Garcia LR. Intracellular transport and compartmentation of phosphate in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:25-30. [PMID: 28570954 DOI: 10.1016/j.pbi.2017.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) is an essential macronutrient with structural and metabolic roles within every compartment of the plant cell. Intracellular Pi transporters direct Pi to each organelle and also control its exchange between subcellular compartments thereby providing the means to coordinate compartmented metabolic processes, including glycolysis, photosynthesis, and respiration. In this review we summarize recent advances in the identification and functional analysis of Pi transporters that localize to vacuoles, chloroplasts, non-photosynthetic plastids, mitochondria, and the Golgi apparatus. Electrical potentials across intracellular membranes and the pH of subcellular environments will also be highlighted as key factors influencing the energetics of Pi transport, and therefore pose limits for Pi compartmentation.
Collapse
Affiliation(s)
- Wayne K Versaw
- Texas A&M University, Department of Biology, College Station, TX 77843, USA.
| | - L Rene Garcia
- Texas A&M University, Department of Biology, College Station, TX 77843, USA
| |
Collapse
|
20
|
Wang X, Komatsu S. Proteomic Analysis of Calcium Effects on Soybean Root Tip under Flooding and Drought Stresses. PLANT & CELL PHYSIOLOGY 2017; 58:1405-1420. [PMID: 28586431 DOI: 10.1093/pcp/pcx078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Flooding and drought are disadvantageous environmental conditions that induce cytosolic calcium in soybean. To explore the effects of flooding- and drought-induced increases in calcium, a gel-free/label-free proteomic analysis was performed. Cytosolic calcium was decreased by blocking calcium channels in the endoplasmic reticulum (ER) and plasma membrane under both stresses. Calnexin, protein disulfide isomerase, heat shock proteins and thioredoxin were predominantly affected as the ER proteins in response to calcium, and ER-associated degradation-related proteins of HCP-like superfamily protein were up-regulated under stress exposure and then down-regulated. Glycolysis, fermentation, the tricarboxylic acid cycle and amino acid metabolism were mainly induced as the types of cellular metabolism in response to calcium under both stresses. Pyruvate decarboxylase was increased and decreased under flooding and drought, respectively, and was further decreased by the reduction of cytosolic calcium; however, it was recovered by exogenous calcium under both stresses. Furthermore, pyruvate decarboxylase activity was increased under flooding, but decreased under drought. These results suggest that calcium is involved in protein folding in the ER, and ER-associated degradation might alleviate ER stress during the early stage of both stresses. Furthermore, calcium appears to modify energy metabolism, and pyruvate decarboxylase may be a key enzyme in this process under flooding and drought.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| |
Collapse
|
21
|
Monné M, Daddabbo L, Giannossa LC, Nicolardi MC, Palmieri L, Miniero DV, Mangone A, Palmieri F. Mitochondrial ATP-Mg/phosphate carriers transport divalent inorganic cations in complex with ATP. J Bioenerg Biomembr 2017; 49:369-380. [PMID: 28695448 DOI: 10.1007/s10863-017-9721-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
The ATP-Mg/phosphate carriers (APCs) modulate the intramitochondrial adenine nucleotide pool size. In this study the concentration-dependent effects of Mg2+ and other divalent cations (Me2+) on the transport of [3H]ATP in liposomes reconstituted with purified human and Arabidopsis APCs (hAPCs and AtAPCs, respectively, including some lacking their N-terminal domains) have been investigated. The transport of Me2+ mediated by these proteins was also measured. In the presence of a low external concentration of [3H]ATP (12 μM) and increasing concentrations of Me2+, Mg2+ stimulated the activity (measured as initial transport rate of [3H]ATP) of hAPCs and decreased that of AtAPCs; Fe2+ and Zn2+ stimulated markedly hAPCs and moderately AtAPCs; Ca2+ and Mn2+ markedly AtAPCs and moderately hAPCs; and Cu2+ decreased the activity of both hAPCs and AtAPCs. All the Me2+-dependent effects correlated well with the amount of ATP-Me complex present. The transport of [14C]AMP, which has a much lower ability of complexation than ATP, was not affected by the presence of the Me2+ tested, except Cu2+. Furthermore, the transport of [3H]ATP catalyzed by the ATP/ADP carrier, which is known to transport only free ATP and ADP, was inhibited by all the Me2+ tested in an inverse relationship with the formation of the ATP-Me complex. Finally, direct measurements of Mg2+, Mn2+, Fe2+, Zn2+ and Cu2+ showed that they are cotransported with ATP by both hAPCs and AtAPCs. It is likely that in vivo APCs transport free ATP and ATP-Mg complex to different degrees, and probably trace amounts of other Me2+ in complex with ATP.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100, Potenza, Italy
| | - Lucia Daddabbo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | | | - Maria Cristina Nicolardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Annarosa Mangone
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy.
| |
Collapse
|
22
|
Ma Y, Shukla V, Merewitz EB. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLoS One 2017; 12:e0175848. [PMID: 28445484 PMCID: PMC5406032 DOI: 10.1371/journal.pone.0175848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022] Open
Abstract
Creeping bentgrass is an important cool-season turfgrass species sensitive to drought. Treatment with polyamines (PAs) has been shown to improve drought tolerance; however, the mechanism is not yet fully understood. Therefore, this study aimed to evaluate transcriptome changes of creeping bentgrass in response to drought and exogenous spermidine (Spd) application using RNA sequencing (RNA-Seq). The high-quality sequences were assembled and 18,682 out of 49,190 (38%) were detected as coding sequences. A total of 22% and 19% of genes were found to be either up- or down-regulated due to drought while 20% and 34% genes were either up- or down- regulated in response to Spd application under drought conditions, respectively. Gene ontology (GO) and enrichment analysis were used to interpret the biological processes of transcripts and relative transcript abundance. Enriched or differentially expressed transcripts due to drought stress and/or Spd application were primarily associated with energy metabolism, transport, antioxidants, photosynthesis, signaling, stress defense, and cellular response to water deprivation. This research is the first to provide transcriptome data for creeping bentgrass under an abiotic stress using RNA-Seq analysis. Differentially expressed transcripts identified here could be further investigated for use as molecular markers or for functional analysis in responses to drought and Spd.
Collapse
Affiliation(s)
- Yingmei Ma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Vijaya Shukla
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Emily B. Merewitz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
23
|
Akman M, Kleine R, van Tienderen PH, Schranz EM. Identification of the Submergence Tolerance QTL Come Quick Drowning1 (CQD1) in Arabidopsis thaliana. J Hered 2017; 108:308-317. [DOI: 10.1093/jhered/esx014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/12/2017] [Indexed: 01/03/2023] Open
|
24
|
No plastidial calmodulin-like proteins detected by two targeted mass-spectrometry approaches and GFP fusion proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.neps.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
26
|
Walter J, Lynch F, Battchikova N, Aro EM, Gollan PJ. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3997-4008. [PMID: 27012282 PMCID: PMC4915528 DOI: 10.1093/jxb/erw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Fiona Lynch
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
27
|
Kmiecik P, Leonardelli M, Teige M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3793-807. [PMID: 27053718 DOI: 10.1093/jxb/erw136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To coordinate growth, development and responses to environmental stimuli, plant cells need to communicate the metabolic state between different sub-compartments of the cell. This requires signalling pathways, including protein kinases, secondary messengers such as Ca(2+) ions or reactive oxygen species (ROS) as well as metabolites and plant hormones. The signalling networks involved have been intensively studied over recent decades and have been elaborated more or less in detail. However, it has become evident that these signalling networks are also tightly interconnected and often merge at common targets such as a distinct group of transcription factors, most prominently ABI4, which are amenable to regulation by phosphorylation, potentially also in a Ca(2+)- or ROS-dependent fashion. Moreover, the signalling pathways connect several organelles or subcellular compartments, not only in functional but also in physical terms, linking for example chloroplasts to the nucleus or peroxisomes to chloroplasts thereby enabling physical routes for signalling by metabolite exchange or even protein translocation. Here we briefly discuss these novel findings and try to connect them in order to point out the remaining questions and emerging developments in plant organellar signalling.
Collapse
Affiliation(s)
- Przemyslaw Kmiecik
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Manuela Leonardelli
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
28
|
Del Arco A, Contreras L, Pardo B, Satrustegui J. Calcium regulation of mitochondrial carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2413-21. [PMID: 27033520 DOI: 10.1016/j.bbamcr.2016.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Araceli Del Arco
- Facultad de Ciencias Ambientales y Bioquímica, Centro RegionaI de Investigaciones Biomédicas, Universidad de Castilla la Mancha, Toledo 45071, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorgina Satrustegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
29
|
Lorenz A, Lorenz M, Vothknecht UC, Niopek-Witz S, Neuhaus HE, Haferkamp I. In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca(2+)-effects. BMC PLANT BIOLOGY 2015; 15:238. [PMID: 26444389 PMCID: PMC4595200 DOI: 10.1186/s12870-015-0616-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/12/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND Adenine nucleotide/phosphate carriers (APCs) from mammals and yeast are commonly known to adapt the mitochondrial adenine nucleotide pool in accordance to cellular demands. They catalyze adenine nucleotide--particularly ATP-Mg--and phosphate exchange and their activity is regulated by calcium. Our current knowledge about corresponding proteins from plants is comparably limited. Recently, the three putative APCs from Arabidopsis thaliana were shown to restore the specific growth phenotype of APC yeast loss-of-function mutants and to interact with calcium via their N-terminal EF--hand motifs in vitro. In this study, we performed biochemical characterization of all three APC isoforms from A. thaliana to gain further insights into their functional properties. RESULTS Recombinant plant APCs were functionally reconstituted into liposomes and their biochemical characteristics were determined by transport measurements using radiolabeled substrates. All three plant APCs were capable of ATP, ADP and phosphate exchange, however, high preference for ATP-Mg, as shown for orthologous carriers, was not detectable. By contrast, the obtained data suggest that in the liposomal system the plant APCs rather favor ATP-Ca as substrate. Moreover, investigation of a representative mutant APC protein revealed that the observed calcium effects on ATP transport did not primarily/essentially involve Ca(2+)-binding to the EF-hand motifs in the N-terminal domain of the carrier. CONCLUSION Biochemical characteristics suggest that plant APCs can mediate net transport of adenine nucleotides and hence, like their pendants from animals and yeast, might be involved in the alteration of the mitochondrial adenine nucleotide pool. Although, ATP-Ca was identified as an apparent import substrate of plant APCs in vitro it is arguable whether ATP-Ca formation and thus the corresponding transport can take place in vivo.
Collapse
Affiliation(s)
- André Lorenz
- Cellular Physiology/Membrane Transport, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - Melanie Lorenz
- Cellular Physiology/Membrane Transport, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - Ute C Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152, Planegg-Martinsried, Germany.
| | - Sandra Niopek-Witz
- Plant Physiology, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - Ilka Haferkamp
- Cellular Physiology/Membrane Transport, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| |
Collapse
|
30
|
He L, Li B, Lu X, Yuan L, Yang Y, Yuan Y, Du J, Guo S. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia. Sci Rep 2015; 5:11391. [PMID: 26304855 PMCID: PMC4548228 DOI: 10.1038/srep11391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 04/29/2015] [Indexed: 11/20/2022] Open
Abstract
Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.
Collapse
Affiliation(s)
- Lizhong He
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Horticulture Research Institute, Shanghai Academy Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai, 201403, China
| | - Bin Li
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomin Lu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Lingyun Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjuan Yang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Functional characterization and organ distribution of three mitochondrial ATP-Mg/Pi carriers in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1220-30. [PMID: 26140942 DOI: 10.1016/j.bbabio.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Three members of this family, here named AtAPC1, AtAPC2, and AtAPC3, exhibit high structural similarities to the human mitochondrial ATP-Mg(2+)/phosphate carriers. Under normal physiological conditions the AtAPC1 gene was expressed at least five times more than the other two AtAPC genes in flower, leaf, stem, root and seedlings. However, in stress conditions the expression levels of AtAPC1 and AtAPC3 change. Direct transport assays with recombinant and reconstituted AtAPC1, AtAPC2 and AtAPC3 showed that they transport phosphate, AMP, ADP, ATP, adenosine 5'-phosphosulfate and, to a lesser extent, other nucleotides. AtAPC2 and AtAPC3 also had the ability to transport sulfate and thiosulfate. All three AtAPCs catalyzed a counter-exchange transport that was saturable and inhibited by pyridoxal-5'-phosphate. The transport activities of AtAPCs were also inhibited by the addition of EDTA or EGTA and stimulated by the addition of Ca(2+). Given that phosphate and sulfate can be recycled via their own specific carriers, these findings indicate that AtAPCs can catalyze net transfer of adenine nucleotides across the inner mitochondrial membrane in exchange for phosphate (or sulfate), and that this transport is regulated both at the transcriptional level and by Ca(2+).
Collapse
|
32
|
Hu J, Chen X, Zhang H, Ding Y. Genome-wide analysis of DNA methylation in photoperiod- and thermo-sensitive male sterile rice Peiai 64S. BMC Genomics 2015; 16:102. [PMID: 25887533 PMCID: PMC4367915 DOI: 10.1186/s12864-015-1317-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/03/2015] [Indexed: 11/29/2022] Open
Abstract
Background Epigenetic modifications play important roles in the regulation of plant development. DNA methylation is an important epigenetic modification that dynamically regulates gene expression during developmental processes. However, little studies have been reported about the methylation profiles of photoperiod- and thermo-sensitive genic male sterile (PTGMS) rice during the fertility transition. Results In this study, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), the global DNA methylation patterns were compared in the rice PTGMS line PA64S under two different environments (different temperatures and day lengths). The profiling of the DNA methylation under two different phenotypes (sterility and fertility) revealed that hypermethylation was observed in PA64S (sterility), and 1258 differentially methylated regions (DMRs) were found between PA64S (sterility) and PA64S (fertility). Twenty differentially methylated genes of them were further validated through bisulfite sequencing, and four of these genes were analyzed by qRT-PCR. Especially, a differentially methylated gene (LOC_Os08g38210), which encoded transcription factor BIM2, is a component of brassinosteroid signaling in rice. The hypermethylated BIM2 gene may suppress some downstream genes in brassinosteroid signaling pathway, and thus affect the male fertility in PA64S. Conclusions The results presented here indicated that hypermethylation was observed in PA64S (sterility). Gene Ontology (GO) analysis and KEGG analysis revealed that flavone and flavonol biosynthrsis, circadian rhythm, photosynthesis and oxidative phosphorylation pathways were involved in sterility-fertility transition of PA64S. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1317-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Xiaojun Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Hongyuan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
33
|
Nomura H, Shiina T. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. MOLECULAR PLANT 2014; 7:1094-1104. [PMID: 24574521 DOI: 10.1093/mp/ssu020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent studies have demonstrated that chloroplasts and mitochondria evoke specific Ca(2+) signals in response to biotic and abiotic stresses in a stress-dependent manner. The identification of Ca(2+) transporters and Ca(2+) signaling molecules in chloroplasts and mitochondria implies that they play roles in controlling not only intra-organellar functions, but also extra-organellar processes such as plant immunity and stress responses. It appears that organellar Ca(2+) signaling might be more important to plant cell functions than previously thought. This review briefly summarizes what is known about the molecular basis of Ca(2+) signaling in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Hironari Nomura
- Department of Health and Nutrition, Gifu Women's University, 80 Taromaru, Gifu 501-2592, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku Kyoto 606-8522, Japan
| |
Collapse
|
34
|
Identification of CP12 as a Novel Calcium-Binding Protein in Chloroplasts. PLANTS 2013; 2:530-40. [PMID: 27137392 PMCID: PMC4844381 DOI: 10.3390/plants2030530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/08/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
Calcium plays an important role in the regulation of several chloroplast processes. However, very little is still understood about the calcium fluxes or calcium-binding proteins present in plastids. Indeed, classical EF-hand containing calcium-binding proteins appears to be mostly absent from plastids. In the present study we analyzed the stroma fraction of Arabidopsis chloroplasts for the presence of novel calcium-binding proteins using 2D-PAGE separation followed by calcium overlay assay. A small acidic protein was identified by mass spectrometry analyses as the chloroplast protein CP12 and the ability of CP12 to bind calcium was confirmed with recombinant proteins. CP12 plays an important role in the regulation of the Calvin-Benson-Bassham Cycle participating in the assembly of a supramolecular complex between phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase, indicating that calcium signaling could play a role in regulating carbon fixation.
Collapse
|
35
|
Monné M, Palmieri F, Kunji ERS. The substrate specificity of mitochondrial carriers: mutagenesis revisited. Mol Membr Biol 2012; 30:149-59. [PMID: 23121155 DOI: 10.3109/09687688.2012.737936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane α-helices linked by a short α-helix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane α-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | |
Collapse
|
36
|
Rocha AG, Vothknecht UC. The role of calcium in chloroplasts--an intriguing and unresolved puzzle. PROTOPLASMA 2012; 249:957-66. [PMID: 22227834 DOI: 10.1007/s00709-011-0373-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 05/24/2023]
Abstract
More than 70 years of studies have indicated that chloroplasts contain a significant amount of calcium, are a potential storage compartment for this ion, and might themselves be prone to calcium regulation. Many of these studies have been performed on the photosynthetic light reaction as well as CO(2) fixation via the Calvin-Benson-Bassham cycle, and they showed that calcium is required in several steps of these processes. Further studies have indicated that calcium is involved in other chloroplast functions that are not directly related to photosynthesis and that there is a calcium-dependent regulation similar to cytoplasmic calcium signal transduction. Nevertheless, the precise role that calcium has as a functional and regulatory component of chloroplast processes remains enigmatic. Calcium concentrations in different chloroplast subcompartments have been measured, but the extent and direction of intra-plastidal calcium fluxes or calcium transport into and from the cytosol are not yet very well understood. In this review we want to give an overview over the current knowledge on the relationship between chloroplasts and calcium and discuss questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Agostinho G Rocha
- Department of Biology I, Botany, LMU Munich, Grosshaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
37
|
Evidence for nucleotide-dependent processes in the thylakoid lumen of plant chloroplasts--an update. FEBS Lett 2012; 586:2946-54. [PMID: 22796491 DOI: 10.1016/j.febslet.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 12/21/2022]
Abstract
The thylakoid lumen is an aqueous chloroplast compartment enclosed by the thylakoid membrane network. Bioinformatic and proteomic studies indicated the existence of 80-90 thylakoid lumenal proteins in Arabidopsis thaliana, having photosynthetic, non-photosynthetic or unclassified functions. None of the identified lumenal proteins had canonical nucleotide-binding motifs. It was therefore suggested that, in contrast to the chloroplast stroma harboring nucleotide-dependent enzymes and other proteins, the thylakoid lumen is a nucleotide-free compartment. Based on recent findings, we provide here an updated view about the presence of nucleotides in the thylakoid lumen of plant chloroplasts, and their role in function and dynamics of photosynthetic complexes.
Collapse
|
38
|
Stael S, Rocha AG, Wimberger T, Anrather D, Vothknecht UC, Teige M. Cross-talk between calcium signalling and protein phosphorylation at the thylakoid. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1725-33. [PMID: 22197893 PMCID: PMC3970089 DOI: 10.1093/jxb/err403] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The role of protein phosphorylation for adjusting chloroplast functions to changing environmental needs is well established, whereas calcium signalling in the chloroplast is only recently becoming appreciated. The work presented here explores the potential cross-talk between calcium signalling and protein phosphorylation in chloroplasts and provides the first evidence for targets of calcium-dependent protein phosphorylation at the thylakoid membrane. Thylakoid proteins were screened for calcium-dependent phosphorylation by 2D gel electrophoresis combined with phospho-specific labelling and PsaN, CAS, and VAR1, among other proteins, were identified repeatedly by mass spectrometry. Subsequently their calcium-dependent phosphorylation was confirmed in kinase assays using the purified proteins and chloroplast extracts. This is the first report on the protein targets of calcium-dependent phosphorylation of thylakoid proteins and provides ground for further studies in this direction.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| | - Agostinho G. Rocha
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Terje Wimberger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| |
Collapse
|
39
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|