1
|
Liu A, Liang J, Wen J. CircNRD1 elevates THAP domain containing 11 through sequestering microRNA-421 to inhibit gastric cancer growth and tumorigenesis. J Biochem Mol Toxicol 2024; 38:e23705. [PMID: 38602237 DOI: 10.1002/jbt.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
We explored the role and mechanism of circular RNAcircNRD1 in gastric cancer (GC) progression, aiming to identify new bio-markers for the treatment and prognosis of GC patients. The RNA expression was examined by reverse transcription-quantitative polymerase chain reaction. Cell proliferation, migration and invasion were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, scratch assay and transwell assay. Western blot assay was conducted for protein expression measurement. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were conducted to verify the interaction between microRNA-421 (miR-421) and circNRD1 or THAP domain containing 11 (THAP11). Xenograft tumor model was established to perform in vivo experiments. CircNRD1 was notably downregulated in GC tissues and cell lines. Additionally, decreased circNRD1 level was closely associated with advanced tumor stage and dismal prognosis in GC patients. CircNRD1 overexpression suppressed the proliferation and metastasis of GC cells. CircNRD1 acted as a molecular sponge for miR-421 in GC cells, and the antitumor impacts of circNRD1 overexpression in GC cells could be alleviated by miR-421 overexpression. miR-421 directly targeted THAP11, and circNRD1 could up-regulate THAP11 expression in GC cells through sponging miR-421. THAP11 knockdown reversed circNRD1 overexpression-induced tumor suppressing effects in GC cells. CircNRD1 overexpression significantly blocked tumor growth in vivo. CircNRD1 suppressed the proliferation and metastasis of GC cells in vitro and blocked tumor growth in vivo via modulating miR-421/THAP11 axis.
Collapse
Affiliation(s)
- Anwen Liu
- Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingcong Liang
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianfeng Wen
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Abedeera SM, Davila-Calderon J, Haddad C, Henry B, King J, Penumutchu S, Tolbert BS. The Repurposing of Cellular Proteins during Enterovirus A71 Infection. Viruses 2023; 16:75. [PMID: 38257775 PMCID: PMC10821071 DOI: 10.3390/v16010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.
Collapse
Affiliation(s)
- Sudeshi M. Abedeera
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Jesse Davila-Calderon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Barrington Henry
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Josephine King
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Srinivasa Penumutchu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Blanton S. Tolbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Yang ZY, Zhang WL, Jiang CW, Sun G. PCBP1-mediated regulation of WNT signaling is critical for breast tumorigenesis. Cell Biol Toxicol 2023; 39:2331-2343. [PMID: 35639300 DOI: 10.1007/s10565-022-09722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Loss of expression or protein kinase B (Akt1)-mediated post-translational modification of the RNA binding protein Poly r(C) binding protein 1 (PCBP1) is closely related to metastatic advancement of breast cancer. However, the role of PCBP1 in tumorigenesis is not completely defined. Using a xenograft orthotopic model of breast tumorigenesis (4T1-Pcbp1-/-), we show here that PCBP1 knockdown-induced tumorigenesis is inhibited by activation of the WNT signaling via treating with the glycogen synthase kinase 3 beta inhibitor TWS119, but not the Akt2/Akt3 inhibitor GSK690693. Mass cytometry-based evaluation of the tumor microenvironment (TME) revealed significantly more regulatory T cells (Tregs) and significantly less cytotoxic T cells in 4T1-Pcbp1-/-mice treated with saline control in comparison to mice treated with TWS119. Infiltrating cytotoxic T cells were phenotypically and functionally exhausted. Treatment with TWS119 resulted in rescue of cytotoxic T cell function and inhibition of suppressor activity of Tregs. Using cytotoxic T cells isolated from healthy donors, we show that TWS119-induced WNT signaling-mediated inhibition of cytotoxic T cell expansion is reliant on expression of PCBP1. In conclusion, decreased PCBP1 expression favors breast tumorigenesis by potentiating skewing of tumor infiltrating T cells towards Tregs, thereby effectively suppressing anti-tumor immunity.
Collapse
Affiliation(s)
- Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China
| | - Wen-Long Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Cheng-Wei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Guang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China.
| |
Collapse
|
4
|
Wei L, Liu Z, Qin L, Xian L, Chen K, Zhou S, Hu L, Xiong Y, Li B, Qin Y. BORIS variant SF2(C2/A4) promotes the malignant development of liver cancer by activating epithelial-mesenchymal transition and hepatic stellate cells. Mol Carcinog 2023; 62:731-742. [PMID: 36929051 DOI: 10.1002/mc.23520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
The underlying mechanisms of metastasis and recurrence of liver cancer remain largely unknown. Here, we found that Brother of the Regulator of Imprinted Sites (BORIS) variant SF2(C2/A4) was highly expressed in high metastatic potential hepatocellular carcinoma (HCC) cells and clinical tumor samples, related to the formation of satellite nodules. Its over expression promoted self-renewal, the expression of tumor stem cell markers, chemoresistance, wound healing rate, invasion and metastasis of HepG2 and Hep3B cells; reinforced epithelial-mesenchymal transition (EMT), decreased the expression of E-cadherin and increased N-cadherin and Vimentin. Subcellular localization experiment showed that BORIS SF2(C2/A4) was localized in nucleus and cytoplasm. Further double luciferase reporter gene experiment confirmed that it bound to TWIST1 gene promoter and significantly increased latter expression. BORIS SF2(C2/A4) knock down induced apoptosis of HCCLM3 and PLC/PRF/5 cells, and increased the protein content of cleaved caspase 3. Additionally, BORIS SF2(C2/A4) over expression increased the expression of fibroblast growth factor 2 (FGF2) in HepG2 and Hep3B cells. FGF2 expressed higher in HCC tumor tissues than in paired peri-tumor tissues, and its expression was positively correlated with BORIS SF2(C2/A4). Interestingly, high expression of FGF2 is also associated with the formation of satellite nodules. Moreover, using the medium from BORIS SF2(C2/A4) overexpressed cell lines to coculture hepatic stellate cell (HSCs) line LX-2, the latter could be activated and increased the expression of CD90 and PIGF, which is consistent with the effect of adding bFGF alone. These results indicate that BORIS SF2(C2/A4) plays a role in deterioration of liver cancer by regulating TWIST1 to induce EMT, and by FGF2 to activate HSCs.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhongjian Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Longjun Xian
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Chen
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Siqi Zhou
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Hu
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Li
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Lv C, Sun J, Ye Y, Lin Z, Li H, Liu Y, Mo K, Xu W, Hu W, Draz E, Wang S. LncRNA EIF1AX-AS1 promotes endometrial cancer cell apoptosis by affecting EIF1AX mRNA stabilization. Cancer Sci 2022; 113:1277-1291. [PMID: 35080085 PMCID: PMC8990785 DOI: 10.1111/cas.15275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to play an important role in the occurrence and development of endometrial carcinoma (EC). Here, using RNA sequencing analysis, we systemically screened and identified the lncRNA EIF1AX-AS1, which is aberrantly down-regulated in clinical EC tissues and closely correlated with tumor type. EIF1AX-AS1 markedly inhibited EC cell proliferation and promoted apoptosis in vitro and in vivo. Mechanistically, EIF1AX-AS1 interacts with EIF1AX mRNA and poly C binding protein 1 (PCBP1), which promote eukaryotic translation initiation factor 1A, X-linked (EIF1AX) mRNA degradation. Intriguingly, interaction with IRES-related proteins Y-box binding protein 1 (YBX-1), EIF1AX promotes c-Myc translation through the internal ribosome enter site pathway. c-Myc promotes EIF1AX transcription and thus forms a feed-forward loop to regulate EC cell proliferation. Taken together, these data reveal new insights into the biology driving EC proliferation and highlights the potential of lncRNAs as biomarkers for prognosis and future therapeutic targets for cancer.
Collapse
Affiliation(s)
- Chengyu Lv
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Yuhong Ye
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Pathology, The First Affiliated Hospital of Fujian Medical University, 350005, Fuzhou, P. R.China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Kaien Mo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Weitao Hu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Eman Draz
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China.,Human Anatomy and Embryology department, Suez Canal University, 12411, Egypt
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China
| |
Collapse
|
6
|
Sanghavi HM, Majumdar S. Oligomerization of THAP9 Transposase via Amino-Terminal Domains. Biochemistry 2021; 60:1822-1835. [PMID: 34033475 DOI: 10.1021/acs.biochem.1c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Active DNA transposases like the Drosophila P element transposase (DmTNP) undergo oligomerization as a prerequisite for transposition. Human THAP9 (hTHAP9) is a catalytically active but functionally uncharacterized homologue of DmTNP. Here we report (using co-immunoprecipitation, pull down, colocalization, and proximity ligation assays) that both full length and truncated hTHAP9 (corresponding to amino-terminal DNA binding and predicted coiled coil domains) undergo homo-oligomerization, predominantly in the nuclei of HEK293T cells. Interestingly, the oligomerization is shown to be partially mediated by DNA. However, mutating the leucines (either individually or together) or deleting the predicted coiled coil region did not significantly affect oligomerization. Thus, we highlight the importance of DNA and the amino-terminal regions of hTHAP9 for their ability to form higher-order oligomeric states. We also report that Hcf-1, THAP1, THAP10, and THAP11 are possible protein interaction partners of hTHAP9. Elucidating the functional relevance of the different putative oligomeric state(s) of hTHAP9 would help answer questions about its interaction partners as well as its unknown physiological roles.
Collapse
Affiliation(s)
- Hiral M Sanghavi
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Sharmistha Majumdar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
7
|
Lu N, Zhang M, Lu L, Liu YZ, Zhang HH, Liu XD. miRNA‑490‑3p promotes the metastatic progression of invasive ductal carcinoma. Oncol Rep 2021; 45:706-716. [PMID: 33416185 PMCID: PMC7757091 DOI: 10.3892/or.2020.7880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/mir)‑490‑3p has been defined as a tumor suppressor in different types of cancer, including breast cancer. However, miR‑490‑3p has been shown to function as a tumor suppressor and promoter in a context‑dependent manner in hepatocellular and lung cancer. Contrary to previous studies, the present study revealed that miR‑490‑3p expression was significantly higher in invasive ductal carcinoma (IDC) tissue specimens, the most common form of breast cancer, compared to tumor‑adjacent normal tissue specimens (n=20). Its expression was also higher in the more metastatic breast cancer cell line, MDA‑MB‑231, compared to the non‑metastatic breast cancer cell line, MCF7, and the moderately metastatic breast cancer cell line, MDA‑MB‑468. The expression of miR‑490‑3p was induced following transforming growth factor (TGF)‑β‑induced epithelial‑to‑mesenchymal transition (EMT) in MCF10A cells. Gain‑and loss‑of‑function assays revealed that the expression of miR‑490‑3p regulated the proliferation, colony formation, EMT, migration and invasion in vitro, but not the apoptosis of MDA‑MB‑468 and MDA‑MB‑231 cells. The knockdown of miR‑490‑3p expression in MDA‑MB‑231 cells inhibited experimental metastasis in a tumor xenograft assay. As in lung cancer, miR‑490‑3p was found to target and downregulate the expression of the tumor suppressor RNA binding protein poly r(C) binding protein 1 (PCBP1). PCBP1 protein and miR‑490‑3p expression inversely correlated in patients with ductal carcinoma in situ (DCIS; n=10; no nodal involvement) and IDC (n=10; different stages of metastatic progression) with a significantly higher miR‑490‑3p expression in patients with IDC compared to those with DCIS. The expression of miR‑490‑3p was negatively associated with both overall and disease‑free survival in the patients with breast cancer included in the present study. On the whole, the results confirm a pro‑metastatic role of miR‑490‑3p in IDC, establishing it as a biomarker for disease progression in these patients.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- Disease Progression
- Disease-Free Survival
- Epithelial-Mesenchymal Transition/genetics
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Mastectomy
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- RNA-Binding Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Lu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yan-Zhao Liu
- Department of Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hai-Hong Zhang
- Department of Human Resources, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiao-Dong Liu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| |
Collapse
|
8
|
THAP11 Functions as a Tumor Suppressor in Gastric Cancer through Regulating c-Myc Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7838924. [PMID: 32908912 PMCID: PMC7474744 DOI: 10.1155/2020/7838924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022]
Abstract
We aim to investigate the role of THAP11 (thanatos-associated protein11) in gastric cancer and its regulation mechanisms. THAP11 expression was analyzed in 51 pairs of GC tissues and the corresponding paracancerous tissues by qRT-PCR and Western blot. After THAP11 was overexpressed or knocked-down, cell proliferation, cell cycle, and apoptosis were detected in MKN-45 cells. We found that THAP11 was significantly downregulated in GC tissues and GC cell lines. Functionally, THAP11 overexpression markedly inhibited cell growth, induced G1/G0 cell-cycle arrest, and promoted cell apoptosis of MKN-45 cells, while silencing of THAP11 led to increased cell growth, increased DNA synthesis, and inhibited apoptosis. In addition, THAP11 negatively regulated the expression of c-Myc, decreased cyclinD1 protein, and increased p27 and p21 protein levels. We also found cell growth suppression induced by THAP11 was rescued by c-Myc overexpression, further confirming that THAP11 suppresses gastric cancer cell growth via the c-Myc pathway. THAP11 acts as a cell growth suppressor and exerts its role possibly through negatively regulating c-Myc pathway in gastric cancer.
Collapse
|
9
|
Dehaene H, Praz V, Lhôte P, Lopes M, Herr W. THAP11F80L cobalamin disorder-associated mutation reveals normal and pathogenic THAP11 functions in gene expression and cell proliferation. PLoS One 2020; 15:e0224646. [PMID: 31905202 PMCID: PMC6944463 DOI: 10.1371/journal.pone.0224646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Twelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often owing to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin (vitamin B12) metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.
Collapse
Affiliation(s)
- Harmonie Dehaene
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Philippe Lhôte
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Maykel Lopes
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Ziaei S, Rezaei-Tavirani M, Ardeshirylajimi A, Arefian E, Soleimani M. Induced Overexpression of THAP11 in Human Fibroblast Cells Enhances Expression of Key Pluripotency Genes. Galen Med J 2019; 8:e1308. [PMID: 34466492 PMCID: PMC8344061 DOI: 10.31661/gmj.v8i0.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background: THAP11 is a recently discovered pluripotency factor and described as an important gene that involved in embryonic stem cells self-renewal and embryo development, which works independently with other known pluripotency factors. We aimed to overexpressed the THAP11 gene in primary fibroblast cells to determine the effects of the THAP11 on these cells. Materials and Methods: The THAP11 gene was amplified using PCR followed by ligation into pCDH vector and lentiviral particle production in HEK293T cells by using psPAX2 and pMD2.G helper vectors. The human fibroblast cells were transduced using viral particles and after confirmation overexpression, the key pluripotency factors were estimated using real-time PCR and changes in proliferation rate was measured by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT) test. Results: The overexpression of THAP11 in fibroblast cells leads to increase the expression level of Sox2, Oct4, Nanog and Klf4 as key pluripotency genes and a decrease in proliferation rate according to MTT results. Conclusion: Our results confirm that we are faced with a molecule with double features, which could be involved in pluripotency and proliferation suppressor simultaneously. It seems that the roles of THAP11 in pluripotency are so complex and attributed to other regulatory molecules.
Collapse
Affiliation(s)
- Saeid Ziaei
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Correspondence to: Mostafa Rezaei-Tavirani, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Telephone Number: +98 (21) 22714248 Email Address:
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Stem Cell Technology Research Center, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
11
|
Chen CP, Sang Y, Liu L, Feng ZQ, Liang Z, Pei X. THAP7 promotes cell proliferation by regulating the G1/S phase transition via epigenetically silencing p21 in lung adenocarcinoma. Onco Targets Ther 2019; 12:5651-5660. [PMID: 31372002 PMCID: PMC6634299 DOI: 10.2147/ott.s208908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. The THanatos-Associated Proteins (THAP) family plays an essential role in multiple cancers. However, the role of THAP7 in cancers has remained elusive. METHODS THAP7 expression status in LUAD tissues was analysed by using the Oncomine database and qRT-PCR, and its expression level in LUAD cell lines was detected by qRT-PCR and Western blotting. The role of THAP7 in LUAD cells was determined by proliferation, colony formation, and cell cycle analyses. In vivo role of THAP7 was studied on xenograft models. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were used to determine the activity and acetylation of the p21 promoter. RESULTS THAP7 expression was increased in LUAD tissues and cell lines. Moreover, the high expression of THAP7 was correlated with poor prognosis. The overexpression of THAP7 accelerated the G1/S phase transition and promoted tumour growth both in vitro and in vivo. A mechanistic study revealed that THAP7 reduced the acetylation of histone H3 on the p21 promoter to suppress p21 transcription. CONCLUSION For the first time, we demonstrated the function of THAP7 in LUAD, and our findings suggested that THAP7 may be a potential molecular therapy target in LUAD.
Collapse
Affiliation(s)
- Cai-Ping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, People’s Republic of China
| | - Yi Sang
- Department of Center Laboratory, Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330008, People’s Republic of China
| | - Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, Jiangxi330029, People’s Republic of China
| | - Zhi-Qi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, People’s Republic of China
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong519000, People’s Republic of China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong519000, People’s Republic of China
| |
Collapse
|
12
|
Bioinformatics analysis of Ronin gene and their potential role in pluripotency control. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Chow HY, Dong B, Valencia CA, Zeng CT, Koch JN, Prudnikova TY, Chernoff J. Group I Paks are essential for epithelial- mesenchymal transition in an Apc-driven model of colorectal cancer. Nat Commun 2018; 9:3473. [PMID: 30150766 PMCID: PMC6110733 DOI: 10.1038/s41467-018-05935-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/02/2018] [Indexed: 02/05/2023] Open
Abstract
p21-activated kinases (Paks) play an important role in oncogenic signaling pathways and have been considered as potential therapeutic targets in various cancers. Most studies of Pak function employ gene knock-out or knock-down methods, but these approaches result in loss of both enzymatic and scaffolding properties of these proteins, and thus may not reflect the effects of small molecule inhibitors. Here we use a transgenic mouse model in which a specific peptide inhibitor of Group I Paks is conditionally expressed in response to Cre recombinase. Using this model, we show that inhibition of endogenous Paks impedes the transition of adenoma to carcinoma in an Apc-driven mouse model of colorectal cancer. These effects are mediated by inhibition of Wnt signaling through reduced β-catenin activity as well as suppression of an epithelial-mesenchymal transition program mediated by miR-200 and Snai1. These results highlight the potential therapeutic role of Pak1 inhibitors in colorectal cancer.
Collapse
Affiliation(s)
- H Y Chow
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - B Dong
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
| | - C A Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - C T Zeng
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
| | - J N Koch
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - T Y Prudnikova
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
14
|
Guo J, Jia R. Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor. J Cell Physiol 2018; 234:33-41. [PMID: 30132844 DOI: 10.1002/jcp.26873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
A lot of evidence has been found on the link between tumorigenesis and the aberrant expression of splicing factors. A number of splicing factors have been reported to be either oncogenic or overexpressed in cancer cells. However, splicing factors can also play negative roles in tumorigenesis. In the current review, we focus on splicing factor poly(rC)-binding protein 1 (PCBP1), a novel tumor suppressor that is characterized by downregulation in many cancer types and shows inhibition of tumor formation and metastasis. Notably, the messenger RNA levels of PCBP1 are not significantly decreased in most cancer types. In fact, PCBP1 protein is often degraded or shows a loss-of-function through phosphorylation in cancer cells. PCBP1 is highly homologous to its family member, PCBP2. Interestingly, PCBP2 appears to be an oncogenic splicing factor. A growing body of evidence has shown that PCBP1 regulates alternative splicing, translation, and RNA stability of many cancer-related genes. Taking together, PCBP1 has distinctive tumor suppressive functions, and increasing PCBP1 expression may represent a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jihua Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Shi H, Li H, Yuan R, Guan W, Zhang X, Zhang S, Zhang W, Tong F, Li L, Song Z, Wang C, Yang S, Wang H. PCBP1 depletion promotes tumorigenesis through attenuation of p27 Kip1 mRNA stability and translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:187. [PMID: 30086790 PMCID: PMC6081911 DOI: 10.1186/s13046-018-0840-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022]
Abstract
Background Poly C Binding Protein 1 (PCBP1) is an RNA-binding protein that binds and regulates translational activity of subsets of cellular mRNAs. Depletion of PCBP1 is implicated in various carcinomas, but the underlying mechanism in tumorigenesis remains elusive. Methods We performed a transcriptome-wide screen to identify novel bounding mRNA of PCBP1. The bind regions between PCBP1 with target mRNA were investigated by using point mutation and luciferase assay. Cell proliferation, cell cycle, tumorigenesis and cell apoptosis were also evaluated in ovary and colon cancer cell lines. The mechanism that PCBP1 affects p27 was analyzed by mRNA stability and ribosome profiling assays. We analyzed PCBP1 and p27 expression in ovary, colon and renal tumor samples and adjacent non-tumor tissues using RT-PCR, Western Blotting and immunohistochemistry. The prognostic significance of PCBP1 and p27 also analyzed using online databases. Results We identified cell cycle inhibitor p27Kip1 (p27) as a novel PCBP1-bound transcript. We then demonstrated that binding of PCBP1 to p27 3’UTR via its KH1 domain mainly stabilizes p27 mRNA, while enhances its translation to fuel p27 expression, prior to p27 protein degradation. The upregulated p27 consequently inhibits cell proliferation, cell cycle progression and tumorigenesis, whereas promotes cell apoptosis under paclitaxel treatment. Conversely, knockdown of PCBP1 in turn compromises p27 mRNA stability, leading to lower p27 level and tumorigenesis in vivo. Moreover, forced depletion of p27 counteracts the tumor suppressive ability of PCBP1 in the same PCBP1 over-expressing cells. Physiologically, we showed that decreases of both p27 mRNA and its protein expressions are well correlated to PCBP1 depletion in ovary, colon and renal tumor samples, independent of the p27 ubiquitin ligase Skp2 level. Correlation of PCBP1 with p27 is also found in the tamoxifen, doxorubincin and lapatinib resistant breast cancer cells of GEO database. Conclusion Our results thereby indicate that loss of PCBP1 expression firstly attenuates p27 expression at post-transcriptional level, and subsequently promotes carcinogenesis. PCBP1 could be used as a diagnostic marker to cancer patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0840-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongshun Shi
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Ronghua Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Fang Tong
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Li Li
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Zhihong Song
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Changwei Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China. .,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
17
|
Jiang P, Li Z, Tian F, Li X, Yang J. Fyn/heterogeneous nuclear ribonucleoprotein E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. Int J Oncol 2017; 51:169-183. [PMID: 28560430 PMCID: PMC5467783 DOI: 10.3892/ijo.2017.4018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is characterized by a dense desmoplastic reaction in which extracellular matrix proteins accumulate and surround tumor cells. Integrins and their related signaling molecules are associated with progression of pancreatic cancer. In the present study, the association between the metastasis of pancreatic cancer and the expression of hnRNP E1 and integrin β1 was evaluated. In vitro and in vivo experiments were designed to study the mechanism underlying the regulation of integrin β1 splicing by the Fyn/hnRNP E1 spliceosome. Expression of hnRNP E1 and integrin β1A were associated with metastasis of pancreatic cancer. Inhibition of Fyn activity upregulated the expression of P21-activated kinase 1 and promoted the phosphorylation and nuclear localization of hnRNP E1, leading to the construction of a spliceosome complex that affected the alterative splicing of integrin β1. In the hnRNP E1 spliceosome complex, hnRNP A1 and serine/arginine-rich splicing factor 1 were responsible for binding to the pre-mRNA of integrin β1. Suppression of Fyn activity and/or overexpression of hnRNP E1 decreased the metastasis of pancreatic cancer cells. In pancreatic cancer, the present study demonstrated a novel mechanism by which Fyn/hnRNP E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. hnRNP E1 and integrin β1A are associated with the metastasis of pancreatic cancer and may be novel molecular targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaowu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
18
|
Espinoza-Lewis RA, Yang Q, Liu J, Huang ZP, Hu X, Chen D, Wang DZ. Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts. J Biol Chem 2017; 292:9540-9550. [PMID: 28381556 DOI: 10.1074/jbc.m116.773671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Indexed: 11/06/2022] Open
Abstract
Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3'-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.
Collapse
Affiliation(s)
- Ramón A Espinoza-Lewis
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Qiumei Yang
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 6111130, China
| | - Jianming Liu
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Zhan-Peng Huang
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Xiaoyun Hu
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 6111130, China
| | - Da-Zhi Wang
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
19
|
MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1. Tumour Biol 2016; 37:15221-15228. [PMID: 27683057 DOI: 10.1007/s13277-016-5347-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence, it is imperative to determine reliable biomarkers of lung cancer prognosis. MicroRNA-490-3p has been previously reported to be a positive prognostic biomarker for hepatocellular cancer. However, its role in human lung cancer has not yet been elucidated. Here, we report that hsa-miR-490-3p expression is significantly higher in human lung cancer tissue specimens and cell line. Gain- and loss-of-function studies of hsa-miR-490-3p showed that it regulates cell proliferation and is required for induction of in vitro migration and invasion-the latter being a hallmark of epithelial to mesenchymal transition. In situ analysis revealed that hsa-miR-490-3p targets poly r(C)-binding protein 1 (PCBP1), which has been previously shown to be a negative regulator of lung cancer metastasis. Reporter assays confirmed PCBP1 as a bona fide target of miR-490-3p, and metagenomic analysis revealed an inverse relation between expression of miR-490-3p and PCBP1 in metastatic lung cancer patients. In fact, PCBP1 expression, as detected by immunohistochemistry, was undetectable in advanced stages of lung cancer patients' brain and lymph node tissues. Xenograft tail vein colonization assays proved that high expression of miR-490-3p is a prerequisite for metastatic progression of lung cancer. Our results suggest that hsa-miR-490-3p might be a potential biomarker for lung cancer prognosis. In addition, we can also conclude that the lung cancer cells have evolved refractory mechanisms to downregulate the expression of the metastatic inhibitor, PCBP1.
Collapse
|
20
|
Poly r(C) binding protein is post-transcriptionally repressed by MiR-490-3p to potentiate squamous cell carcinoma. Tumour Biol 2016; 37:14773-14778. [DOI: 10.1007/s13277-016-5234-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
|
21
|
The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization. J Struct Biol 2016; 194:337-46. [DOI: 10.1016/j.jsb.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/15/2022]
|
22
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 745] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
23
|
Ji X, Park JW, Bahrami-Samani E, Lin L, Duncan-Lewis C, Pherribo G, Xing Y, Liebhaber SA. αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome. Nucleic Acids Res 2016; 44:2283-97. [PMID: 26896798 PMCID: PMC4797308 DOI: 10.1093/nar/gkw088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a robust generator of mammalian transcriptome complexity. Splice site specification is controlled by interactions of cis-acting determinants on a transcript with specific RNA binding proteins. These interactions are frequently localized to the intronic U-rich polypyrimidine tracts (PPT) located 5′ to the majority of splice acceptor junctions. αCPs (also referred to as polyC-binding proteins (PCBPs) and hnRNPEs) comprise a subset of KH-domain proteins with high affinity and specificity for C-rich polypyrimidine motifs. Here, we demonstrate that αCPs promote the splicing of a defined subset of cassette exons via binding to a C-rich subset of polypyrimidine tracts located 5′ to the αCP-enhanced exonic segments. This enhancement of splice acceptor activity is linked to interactions of αCPs with the U2 snRNP complex and may be mediated by cooperative interactions with the canonical polypyrimidine tract binding protein, U2AF65. Analysis of αCP-targeted exons predicts a substantial impact on fundamental cell functions. These findings lead us to conclude that the αCPs play a direct and global role in modulating the splicing activity and inclusion of an array of cassette exons, thus driving a novel pathway of splice site regulation within the mammalian transcriptome.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Duncan-Lewis
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon Pherribo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Zhou M, Tong X. Downregulated Poly-C binding protein-1 is a novel predictor associated with poor prognosis in Acute Myeloid Leukemia. Diagn Pathol 2015; 10:147. [PMID: 26293996 PMCID: PMC4546103 DOI: 10.1186/s13000-015-0377-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
Background Depletion of Poly-C binding protein-1(PCBP1) is implicated in various human malignancies. However, the underlying biological effect of PCBP1 in cancers, including acute myeloid leukemia (AML), still remains elusive. The purpose of this study was to examine the expression and clinical outcome of PCBP1in acute myeloid leukemia. Methods Bone marrow fluids of 88 newly diagnosed AML patients were sampled, and the PCBP1 mRNA expression level was evaluated using quantitative RT-PCR. The association between PCBP1 expression and clinicopathological features or the survival status of the patients was assessed by Chi-square test and Kaplan-Meier method. Results Comparing newly diagnosed AML patients to normal healthy donors, PCBP1 expression was significantly decreased in AML patients (P < 0.001). Conversely, PCBP1 expression had accordingly recovered back to normal in patients with complete remission (P < 0.001). Clinical feature analyses showed that PCBP1 expression was negatively correlated with white blood cell count (P = 0.024). In addition, patients with low PCBP1 expression had poor disease-free survival (11.8 % vs. 45.3 %; P = 0.01) and overall survival (18.2 % vs. 42.4 %; P = 0.032), respectively. Conclusions Taken together, our results showed for the first time that expression of PCBP1 was down-regulated in newly diagnosed AML patients and might be an independent prognostic marker in AML and should to be further investigated.
Collapse
Affiliation(s)
- Meifeng Zhou
- Department of Hematology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Xiuzhen Tong
- Department of Hematology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
25
|
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015; 161:1187-1201. [PMID: 26000487 PMCID: PMC4441768 DOI: 10.1016/j.cell.2015.04.044] [Citation(s) in RCA: 2281] [Impact Index Per Article: 228.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/23/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linas Mazutis
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA 02138, USA; Vilnius University Institute of Biotechnology, Vilnius LT-02241, Lithuania
| | - Ilke Akartuna
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA 02138, USA
| | - Naren Tallapragada
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adrian Veres
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Victor Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David A Weitz
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA 02138, USA.
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Abstract
POLH (DNA polymerase η), a target of p53 tumour suppressor, plays a key role in TLS (translesion DNA synthesis). Loss of POLH is responsible for the human cancer-prone syndrome XPV (xeroderma pigmentosum variant). Owing to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In the present study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding PCBP1 [poly(rC)-binding protein 1]. We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to the POLH 3'-UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3'-UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Taken together, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability.
Collapse
|
27
|
Yin RH, Li Y, Yang F, Zhan YQ, Yu M, Ge CH, Xu WX, Tang LJ, Wang XH, Chen B, Yang Y, Li JJ, Li CY, Yang XM. Expansion of the polyQ repeats in THAP11 forms intranuclear aggregation and causes cell G0/G1 arrest. Cell Biol Int 2014; 38:757-67. [PMID: 24677642 DOI: 10.1002/cbin.10255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
Polyglutamine diseases are a group of neurodegenerative disorders caused by expansion of a CAG repeat that encodes polyglutamine in each respective disease gene. The transcription factor THAP11, a member of THAP family, is involved in cell growth, ES cell pluripotency and embryogenesis. Previous studies suggest that THAP11 protein contains a 29-residue repeat polyglutamine motif and the number of polyglutamine ranges from 20 to 41 in Indian population. We have investigated the CAG numbers at the THAP11 locus in normal individuals and neurodegenerative disease patients of Chinese Han population and a 38Q expansion (THAP11(38Q)) was found in patients. Using fluorescence confocal-based cell imaging, THAP11(38Q) protein formed intranuclear inclusions easier than THAP11(29Q) in PC12 cells. Enhanced toxicity was investigated in THAP11(38Q)-expressing cells by growth inhibition and G0/G1 arrest. CREB-mediated transcription activity was inhibited by THAP11(38Q). The transcription factor, TBP, coactivator CBP, and chaperon protein, HSP70, could be recruited to THAP11(38Q). These results indicate that expansion of the polyglutamine in THAP11 forms intracellular aggregation and is toxic in PC12 cells, suggesting a putative role of THAP11 in polyglutamine disease.
Collapse
Affiliation(s)
- Rong-Hua Yin
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhou J, Cai J, Huang Z, Ding H, Wang J, Jia J, Zhao Y, Huang D, Wang Z. Proteomic identification of target proteins following Drosha knockdown in cervical cancer. Oncol Rep 2013; 30:2229-37. [PMID: 23969986 DOI: 10.3892/or.2013.2672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/26/2013] [Indexed: 11/06/2022] Open
Abstract
The nuclear microRNA (miRNA) processing enzyme Drosha is upregulated in cervical cancer, and its overexpression is related to an invasive tumour phenotype. However, the mechanisms that underlie this effect remain poorly understood. The aim of this study was to identify the potential targets of Drosha in cervical cancer. Here, we demonstrated that Drosha knockdown (Drosha-KD) inhibited proliferation, colony formation and the migration of cervical cancer cells in vitro. A global upregulation of proteins in Drosha-KD cells was revealed by two-dimensional gel electrophoresis (2-DE). Eighteen proteins were identified by liquid chromatography and tandem mass spectrometry technology (LC-MS/MS) from 21 selected protein spots that exhibited significant alterations in Drosha-KD cells. The majority of the identified proteins have been previously associated with tumour formation. The downregulation of tubulin 5β in Drosha-KD cervical cancer cells was further confirmed by western blotting. Our results suggest that Drosha affects the biological activity of cervical cancer cells by regulating the expression of numerous tumour-associated proteins.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics and Gynecology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gervais V, Campagne S, Durand J, Muller I, Milon A. NMR studies of a new family of DNA binding proteins: the THAP proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 56:3-15. [PMID: 23306615 DOI: 10.1007/s10858-012-9699-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.
Collapse
Affiliation(s)
- Virginie Gervais
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP64182, 31077, Toulouse, France.
| | | | | | | | | |
Collapse
|