1
|
Zhang WJ, Yue KL, Wang JZ, Zhang Y. Association between heat shock factor protein 4 methylation and colorectal cancer risk and potential molecular mechanisms: A bioinformatics study. World J Gastrointest Oncol 2023; 15:2150-2168. [PMID: 38173437 PMCID: PMC10758642 DOI: 10.4251/wjgo.v15.i12.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND We previously demonstrated that heat shock factor protein 4 (HSF4) facilitates colorectal cancer (CRC) progression. DNA methylation, a major modifier of gene expression and stability, is involved in CRC development and outcome. AIM To investigate the correlation between HSF4 methylation and CRC risk, and to uncover the underlying molecular mechanisms. METHODS Differences in β values of HSF4 methylation loci in multiple malignancies and their correlation with HSF4 mRNA expression were analyzed based on Shiny Methylation Analysis Resource Tool. HSF4 methylation-related genes were identified by LinkedOmics in CRC, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network of HSF4 methylation-related genes was constructed by String database and MCODE algorithm. RESULTS A total of 19 CpG methylation loci were identified in HSF4, and their β values were significantly increased in CRC tissues and exhibited a positive correlation with HSF4 mRNA expression. Unfortunately, the prognostic and diagnostic performance of these CpG loci in CRC patients was mediocre. In CRC, there were 1694 HSF4 methylation-related genes; 1468 of which displayed positive and 226 negative associations, and they were involved in regulating phenotypes such as immune, inflammatory, and metabolic reprogramming. EGFR, RELA, STAT3, FCGR3A, POLR2K, and AXIN1 are hub genes among the HSF4 methylation-related genes. CONCLUSION HSF4 is highly methylated in CRC, but there is no significant correlation between it and the prognosis and diagnosis of CRC. HSF4 methylation may serve as one of the ways in which HSF4 mediates the CRC process.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- Department of Medical Oncology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Ke-Lin Yue
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Jing-Zhai Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Yu Zhang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| |
Collapse
|
2
|
Guo Y, Gao M, Yao Y, Li J, Chen X, Wang X, Chen Z, Yuan Y, Ma W. Prognostic value of CSN5 in patients with digestive system cancers: a systematic review and meta-analysis. BMC Cancer 2022; 22:812. [PMID: 35870903 PMCID: PMC9308938 DOI: 10.1186/s12885-022-09867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Despite the understanding of the COP9 signalosome subunit 5 (CSN5) in tumor genesis, there is no conclusive evidence on its value to predict the survival and prognosis of digestive system tumor patients. Hence this study aimed to evaluate the impact of CSN5 levels on the survival and clinicopathological parameters of digestive system neoplasm patients.
Methods
First, a comprehensive search was conducted in four databases. We utilized the Hazard Ratio (HR) with a 95% confidence interval (CI) to evaluate the prognostic value of CSN5 for the overall survival (OS) and recurrence-free survival (RFS) of patients. Then, we estimated the connection between CSN5 and the clinicopathological parameters based on the Odds Ratio (OR) with the corresponding 95% CI.
Results
This meta-analysis included 22 studies and 2193 patients diagnosed with digestive system tumors. High expression of CSN5 was correlated to poorer OS (HR = 2.28, 95% CI: 1.71–3.03; p < 0.00001). Additionally, high CSN5 levels were correlated with worse invasion depth (OR = 0.49, 95% CI: 0.25–0.96, p = 0.04), positive lymphatic metastasis (OR = 0.28, 95% CI: 0.16–0.47, p = 0.00001), positive distant metastasis (OR = 0.32, 95% CI: 0.13–0.76, p = 0.01) and poorer differentiation degree (OR = 0.34, 95% CI: 0.19–0.60, p = 0.0003). However, we did not detect a correlation between CSN5 expression and age, gender, tumor stage, tumor size or vascular invasion. Furthermore, no significant publication bias was detected.
Conclusion
This meta-analysis demonstrated that the overexpression of CSN5 level might foresee poorer OS in digestive system cancer patients. Additionally, CSN5 levels might be related to the prognosis of digestive system tumors.
Collapse
|
3
|
Zhang H, He P, Zhou Q, Lu Y, Lu B. The potential oncogenic and MLN4924-resistant effects of CSN5 on cervical cancer cells. Cancer Cell Int 2021; 21:369. [PMID: 34247597 PMCID: PMC8273998 DOI: 10.1186/s12935-021-02078-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023] Open
Abstract
Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping He
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Zhou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, and Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
4
|
Kang E, Seo J, Yoon H, Cho S. The Post-Translational Regulation of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Cancer Metastasis. Int J Mol Sci 2021; 22:3591. [PMID: 33808323 PMCID: PMC8037257 DOI: 10.3390/ijms22073591] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is generally observed in normal embryogenesis and wound healing. However, this process can occur in cancer cells and lead to metastasis. The contribution of EMT in both development and pathology has been studied widely. This transition requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (E.K.); (J.S.); (H.Y.)
| |
Collapse
|
5
|
Shi D, Mu S, Hu B, Zhang S, Liu J, Zhang Z, Shao Z. Prognostic role of c-Jun activation domain-binding protein-1 in cancer: A systematic review and meta-analysis. J Cell Mol Med 2021; 25:2750-2763. [PMID: 33550701 PMCID: PMC7957274 DOI: 10.1111/jcmm.16334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
c-Jun activation domain-binding protein-1 (Jab1) is aberrantly overexpressed in multiple cancers and plays an oncogenic role in cancer progression. We examined the association between Jab1 expression and prognosis in patients with cancer by conducting a meta-analysis. A comprehensive search strategy was performed using the PubMed, Web of Science, Ovid and EMBASE in July 2020. Eligible studies were enrolled according to definite criteria. Twenty-seven studies involving 2609 patients were enrolled in this meta-analysis. A significant association between high Jab1 expression and poor overall survival (pooled hazard ratio [HR] 2.344, 95% confidence interval [CI]: 2.037-2.696) was observed. Subgroup analyses of the type of cancer, sample size, follow-up period, Jab1 detection method and preoperative treatment did not alter the significance. On pooling data from Cox multivariate analyses, high Jab1 expression was found to be an independent prognostic indicator for overall survival. In addition, high Jab1 expression was found to be associated with advanced clinicopathological features such as clinical stage, lymphatic metastasis, histological grade and distant metastasis in cancers. Our meta-analysis is the first to demonstrate that high Jab1 expression may be a promising indicator of poor prognosis and has an independent prognostic value for overall survival in patients with cancer.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shidai Mu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Nishimoto A, Takemoto Y, Saito T, Kurazumi H, Tanaka T, Harada E, Shirasawa B, Hamano K. Nuclear β-catenin expression is positively regulated by JAB1 in human colorectal cancer cells. Biochem Biophys Res Commun 2020; 533:548-552. [PMID: 32977947 DOI: 10.1016/j.bbrc.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/29/2022]
Abstract
Wnt/β-catenin signaling is important for development and progression of colorectal cancer (CRC). The degradation complex for β-catenin is functionally impaired in CRC cells, thereby resulting in the accumulation of β-catenin and its translocation into the nucleus. Nuclear β-catenin interacts with and co-activates T cell factor4 (TCF4), resulting in β-catenin/TCF4-dependent transcription. Therefore, nuclear β-catenin has been categorized as the main driving force in the tumorigenesis of CRC. Recent studies reveal that Jun activation domain-binding protein 1 (JAB1) enhances the degradation of seven in absentia homolog-1 (SIAH-1), a putative E3 ubiquitin ligase of β-catenin, and positively regulates the expression of total β-catenin in human CRC cells. An another recent study also shows that nuclear β-catenin is ubiquitinated and degraded by an E3 ubiquitin ligase, tripartite motif-containing protein 33 (TRIM33). However, the regulatory mechanism for the expression of nuclear β-catenin remains to be fully understood. In this study, we have demonstrated that JAB1 positively regulates the expression of nuclear β-catenin, c-MYC as a β-catenin/TCF4 target, and cell cycle regulators, such as Ki-67 and topoisomerase IIα, in human CRC cells. Taken together, these results suggest that JAB1 is considered as a promising target for novel CRC therapy.
Collapse
Affiliation(s)
- Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Medical Education, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Yoshihiro Takemoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiro Saito
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroshi Kurazumi
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiki Tanaka
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Eijiro Harada
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Bungo Shirasawa
- Department of Medical Education, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
7
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
8
|
Huang Q, Liu H, Zeng J, Li W, Zhang S, Zhang L, Song S, Zhou T, Sutovsky M, Sutovsky P, Pardi R, Hess RA, Zhang Z. COP9 signalosome complex subunit 5, an IFT20 binding partner, is essential to maintain male germ cell survival and acrosome biogenesis†. Biol Reprod 2020; 102:233-247. [PMID: 31373619 PMCID: PMC7443350 DOI: 10.1093/biolre/ioz154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/10/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Intraflagellar transport protein 20 (IFT20) is essential for spermatogenesis in mice. We discovered that COPS5 was a major binding partner of IFT20. COPS5 is the fifth component of the constitutive photomorphogenic-9 signalosome (COP9), which is involved in protein ubiquitination and degradation. COPS5 is highly abundant in mouse testis. Mice deficiency in COPS5 specifically in male germ cells showed dramatically reduced sperm numbers and were infertile. Testis weight was about one third compared to control adult mice, and germ cells underwent significant apoptosis at a premeiotic stage. Testicular poly (ADP-ribose) polymerase-1, a protein that helps cells to maintain viability, was dramatically decreased, and Caspase-3, a critical executioner of apoptosis, was increased in the mutant mice. Expression level of FANK1, a known COPS5 binding partner, and a key germ cell apoptosis regulator was also reduced. An acrosome marker, lectin PNA, was nearly absent in the few surviving spermatids, and expression level of sperm acrosome associated 1, another acrosomal component was significantly reduced. IFT20 expression level was significantly reduced in the Cops5 knockout mice, and it was no longer present in the acrosome, but remained in the Golgi apparatus of spermatocytes. In the conditional Ift20 mutant mice, COPS5 localization and testicular expression levels were not changed. COP9 has been shown to be involved in multiple signal pathways, particularly functioning as a co-factor for protein ubiquitination. COPS5 is believed to maintain normal spermatogenesis through multiple mechanisms, including maintaining male germ cell survival and acrosome biogenesis, possibly by modulating protein ubiquitination.
Collapse
Affiliation(s)
- Qian Huang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Hong Liu
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zeng
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Shiyang Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Ling Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shizhen Song
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, and Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Peter Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, and Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ruggero Pardi
- School of Medicine and Scientific Institute, San Raffaele University, Milan, Italy
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics/Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
9
|
Chemogenomic study of gemcitabine using Saccharomyces cerevisiae as model cell-molecular insights about chemoresistance. Braz J Microbiol 2019; 51:489-496. [PMID: 31515725 DOI: 10.1007/s42770-019-00154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Gemcitabine (GEM) is the drug used as first line to treat pancreatic cancer, one of the most devastating human tumors. This peculiar type of tumor develops resistance to several drugs, including GEM, due to its desmoplastic reaction and other features. The GEM chemoresistance has been investigated at molecular level aiming to find a pathway whose inhibition or activation should overcome it. Through next-generation sequencing was performed a chemogenomic assay of GEM using Saccharomyces cerevisiae as model cell and the results showed that more than 40% of genes related to GEM response in yeast possess unknown or dubious function. We choose two yeast mutants to individually validate the fitness defect results observed by chemogenomic assay, Δhmt1 and Δcsi1, and it was found that in addition to some already described pathways involved in GEM resistance, cells deficient in deneddylation enzyme Cop9 Signalosome Interactor 1 (Csi1p) presented a high sensitivity to GEM. This was confirmed by individual growth analyses of Δcsi1 cells exposed to GEM, and this phenotype was reverted with CSI1 complementation gene. Csi1p is a well-characterized homolog equivalent to human Csn6 subunit of COP9 signalosome (CSN) involved in deneddylation process. We highlighted too that epigenetic alterations, such as methylation mediated by protein arginine methyltransferase 1, play an important role in regulating gemcitabine treatment resistance. Our results point out new unexplored molecular pathways that can be used to overcome GEM resistance: the inhibition of CSN and the arginine methyltransferase activities.
Collapse
|
10
|
Nam AR, Kim JW, Park JE, Bang JH, Jin MH, Oh DY, Bang YJ. Jab1 Silencing Inhibits Proliferation and Sensitizes to Cisplatin in Biliary Tract Cancer. Cancer Res Treat 2019; 51:886-900. [PMID: 30282449 PMCID: PMC6639236 DOI: 10.4143/crt.2018.375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Jab1 is a coactivator of c-Jun that enhances the transcriptional function of c-Jun. Jab1 is frequently overexpressed in various cancers and is associatedwith poor prognosis of cancer patients. Thus, Jab1 could be a potential therapeutic target in cancer. However, the role of Jab1 in biliary tract cancer (BTC) has not been studied. MATERIALS AND METHODS We performed in vitro and in vivo experiments to evaluate the therapeutic potential ofJab1 inhibition in BTC. RESULTS Among 8 BTC cell lines, many showed higher Jab1 expression levels. In addition, Jab1 silencing by siRNA increased p27 expression levels. SNU478 and HuCCT-1 cells exhibited profound Jab1 knockdown and increased p27 expression by Jab1-specific siRNA transfection. Jab1 silencing induced anti-proliferative and anti-migratory effects and resulted in G1 cell cycle arrest in SNU478 and HuCCT-1 cells. In addition, Jab1 silencing potentiated the anti-proliferative and anti-migratory effects of cisplatin by increasing DNA damage. Interestingly,Jab1 knockdown increased PTEN protein half-life, resulting in increased PTEN expression. In the HuCCT-1 mouse xenograft model, stable knockdown of Jab1 by shRNA also showed anti-proliferative effects in vivo, with decreased Ki-67 expression and AKT phosphorylation and increased Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and p27 expression. CONCLUSION Jab1 knockdown demonstrated anti-proliferative and anti-migratory effects in BTC cells by increasing DNA damage and stabilizing PTEN, resulting in G1 cell cycle arrest. In addition, Jab1 silencing potentiated the anti-proliferative effects of cisplatin. Our data suggest that Jab1 may be a potential therapeutic target in BTC that is worthy of further investigations.
Collapse
Affiliation(s)
- Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Guo Z, Wang Y, Zhao Y, Shu Y, Liu Z, Zhou H, Wang H, Zhang W. The pivotal oncogenic role of Jab1/CSN5 and its therapeutic implications in human cancer. Gene 2018; 687:219-227. [PMID: 30468907 DOI: 10.1016/j.gene.2018.11.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
Abstract
Jab1/CSN5 is a conserved multifunctional protein involved in ubiquitin-mediated protein degradation. Deregulation of Jab1/CSN5 can exert dramatic effects on diverse cellular functions, including DNA repair, cell cycle control, apoptosis, angiogenesis, and signal transduction, all of which are critical for tumor development. Although increasing evidence has demonstrated that Jab1/CSN5 was overexpressed in a variety of human cancers and usually correlated with poor prognosis, little was known about the underlying regulatory principles that coordinated its function. In this review, we highlight recent advances of the oncogenic role of Jab1/CSN5 and its potential as a therapeutic target for anticancer intervention.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
12
|
Liu G, Claret FX, Zhou F, Pan Y. Jab1/COPS5 as a Novel Biomarker for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Human Cancer. Front Pharmacol 2018; 9:135. [PMID: 29535627 PMCID: PMC5835092 DOI: 10.3389/fphar.2018.00135] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
C-Jun activation domain-binding protein-1 (Jab1) involves in controlling cellular proliferation, cell cycle, apoptosis, affecting a series of pathways, as well as regulating genomic instability and DNA damage response (DDR). Jab1/COPS5 dysregulation contributes to oncogenesis by deactivating several tumor suppressors and activating oncogenes. Jab1 overexpression was found in many tumor types, illuminating its important role in cancer initiation, progression, and prognosis. Jab1/COPS5 has spurred a strong research interest in developing inhibitors of oncogenes/oncoproteins for cancer therapy. In this paper, we present evidences demonstrating the importance of Jab1/COPS5 overexpression in several cancer types and recent advances in dissecting the Jab1/COPS5 upstream and downstream signaling pathways. By conducting ingenuity pathway analysis (IPA) based on the Ingenuity Knowledge Base, we investigated signaling network that interacts with Jab1/COPS5. The data confirmed the important role of Jab1/COPS5 in tumorigenesis, demonstrating the potential of Jab1/COPS5 to be used as a biomarker for cancer patients, and further support that Jab1/COPS5 may serve as a potential therapeutic target in different cancers.
Collapse
Affiliation(s)
- Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Francois X. Claret
- Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Li PH, Wang L, Pan YJ, Sang MM, Zheng JN, Pei DS. Suppression of Jab1 expression inhibits proliferation and promotes apoptosis of AMC-HN-8 cells. Oncol Lett 2018; 15:5137-5142. [PMID: 29552148 DOI: 10.3892/ol.2018.7963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
c-Jun activation domain-binding protein-1 (Jab1) is a multifunctional protein involved in cell proliferation and apoptosis, DNA damage and repair and genome stability. In a number of types of human carcinoma, the abnormal expression of Jab1 is associated with poor prognosis, suggesting that Jab1 serves a vital function in tumorigenesis. However, the functional effects and the underlying molecular mechanisms of Jab1 in laryngeal squamous cell carcinoma (LSCC) progression remain poorly understood. The results of the present study demonstrate that downregulating Jab1 expression promotes LSCC apoptosis while inhibiting the proliferation of LSCC cells. Furthermore, Jab1 inhibition results in decreased protein kinase B phosphorylation accompanied by increased caspase-3 cleavage and p53 expression. It has been identified that the increased expression of Jab1 is markedly associated with LSCC progression, therefore Jab1 may be used as a novel target for the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Pei-Hua Li
- Department of Otorhinolaryngology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lin Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yao-Jie Pan
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Oncology, The Affiliated Yancheng Hospital of Medicine School of Southeast University, Yancheng, Jiangsu 224001, P.R. China
| | - Miao-Miao Sang
- Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Nian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
14
|
Zhou R, Shao Z, Liu J, Zhan W, Gao Q, Pan Z, Wu L, Xu L, Ding Y, Zhao L. COPS5 and LASP1 synergistically interact to downregulate 14-3-3σ expression and promote colorectal cancer progression via activating PI3K/AKT pathway. Int J Cancer 2017; 142:1853-1864. [PMID: 29226323 DOI: 10.1002/ijc.31206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/25/2017] [Accepted: 11/30/2017] [Indexed: 02/01/2023]
Abstract
Overexpression of LIM and SH3 protein 1 (LASP1) is required for colorectal cancer (CRC) development and progression. Here, C-Jun activation domain-binding protein-1 (Jab1), also known as COP9 signalosome subunit 5 (COPS5), was verified as a new LASP1-interacting protein through yeast two-hybrid assay. The role of COPS5 in LASP1-mediated CRC progression remains unknown. GST pull-down assay indicated that the SH3 domain of LASP1 could directly bind to MPN domain of COPS5. In vitro gain- and loss-of-function analyses revealed the stimulatory role of COPS5 on CRC cell proliferation, migration and invasion. Endogenous overexpression of COPS5 could also enhance the homing capacity of CRC cells in vivo. Further analysis showed that COPS5 and LASP1 synergistically interact to stimulate the ubiquitination and degradation of 14-3-3σ and promote colorectal cancer progression via PI3K/Akt dependent signaling pathway. Clinically, the expression of COPS5 was studied in CRC tissues and it is associated with CRC differentiation, metastasis and poor prognosis. The colocalization of LASP1 and COPS5 was demonstrated in both nonmetastatic and metastatic CRC tissues. A positive correlation was found between the expression of LASP1 and COPS5 while a negative correlation existed between 14-3-3σ and COPS5/LASP1 in most CRC samples. A combination of COPS5 and LASP1 tends to be an independent prognostic indicator for CRC patients, and this is also suitable for CRC without lymph node metastasis. The current research has further advanced our understanding on the complicated molecular mechanism underlying LASP1-mediated CRC progression, which hopefully will contribute to the development of novel diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyun Shao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Nephrology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Jian Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanqi Zhan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingzu Gao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihua Pan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Lv H, Wu X, Ma G, Sun L, Meng J, Song X, Zhang J. An integrated bioinformatical analysis of miR-19a target genes in multiple myeloma. Exp Ther Med 2017; 14:4711-4720. [PMID: 29201171 PMCID: PMC5704339 DOI: 10.3892/etm.2017.5173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/19/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNA (miR)-19a, as an oncomiR, has been studied in several types of cancer; however, its role in the development and progression of multiple myeloma (MM) remains unclear. The present study used a bioinformatics approach to investigate the involvement of miR-19a in MM. miR-19a targets were predicted using target prediction programs, followed by screening for differentially expressed genes in MM. The function of these genes was then annotated using gene ontology term enrichment, signaling pathway enrichment and protein-protein interaction (PPI) analysis. In addition, natural language processing (NLP) was performed to identify genes associated with MM. A total of 715 putative targets of miR-19a were identified in the present study, of which 40 were experimentally validated. A total of 121 genes were identified to be differentially expressed in MM, including 80 upregulated genes and 41 downregulated genes. Among the differentially expressed genes, ras homolog family member B, clathrin heavy chain, prosaposin and protein phosphatase 6 regulatory subunit 2 were predicted target genes of miR-19a. The results of NLP revealed that 2 of the differentially expressed genes, Y-box binding protein 1 and TP53 regulated inhibitor of apoptosis 1, were reported to be associated with MM. In addition, 41 target genes of miR-19a were identified to be associated with the development and progression of MM. These results may aid in understanding the molecular mechanisms of miR-19a in the development and progression of MM. In addition, the results of the present study indicate that targets genes of miR-19a are potential candidate biomarkers for MM.
Collapse
Affiliation(s)
- Hongyan Lv
- Department of Hematology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xianda Wu
- Department of Hematology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Guiru Ma
- Department of Hematology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Lixia Sun
- Department of Hematology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jianbo Meng
- Department of Hematology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaoning Song
- Department of Hematology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jinqiao Zhang
- Department of Hematology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
16
|
Suisse A, He D, Legent K, Treisman JE. COP9 signalosome subunits protect Capicua from MAPK-dependent and -independent mechanisms of degradation. Development 2017; 144:2673-2682. [PMID: 28619822 DOI: 10.1242/dev.148767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022]
Abstract
The COP9 signalosome removes Nedd8 modifications from the Cullin subunits of ubiquitin ligase complexes, reducing their activity. Here, we show that mutations in the Drosophila COP9 signalosome subunit 1b (CSN1b) gene increase the activity of ubiquitin ligases that contain Cullin 1. Analysis of CSN1b mutant phenotypes revealed a requirement for the COP9 signalosome to prevent ectopic expression of Epidermal growth factor receptor (EGFR) target genes. It does so by protecting Capicua, a transcriptional repressor of EGFR target genes, from EGFR pathway-dependent ubiquitylation by a Cullin 1/SKP1-related A/Archipelago E3 ligase and subsequent proteasomal degradation. The CSN1b subunit also maintains basal Capicua levels by protecting it from a separate mechanism of degradation that is independent of EGFR signaling. As a suppressor of tumor growth and metastasis, Capicua may be an important target of the COP9 signalosome in cancer.
Collapse
Affiliation(s)
- Annabelle Suisse
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - DanQing He
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Kevin Legent
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica E Treisman
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
17
|
Jumpertz S, Hennes T, Asare Y, Schütz AK, Bernhagen J. CSN5/JAB1 suppresses the WNT inhibitor DKK1 in colorectal cancer cells. Cell Signal 2017; 34:38-46. [DOI: 10.1016/j.cellsig.2017.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/18/2016] [Accepted: 02/12/2017] [Indexed: 11/29/2022]
|
18
|
Wicker CA, Izumi T. Analysis of RNA expression of normal and cancer tissues reveals high correlation of COP9 gene expression with respiratory chain complex components. BMC Genomics 2016; 17:983. [PMID: 27903243 PMCID: PMC5131501 DOI: 10.1186/s12864-016-3313-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The COP9 signalosome, composed of eight subunits, is implicated in cancer genetics with its deneddylase activity to modulate cellular concentration of oncogenic proteins such as IkB and TGFβ. However, its function in the normal cell physiology remains elusive. Primarily focusing on gene expression data of the normal tissues of the head and neck, the cancer genome atlas (TCGA) database was used to identify groups of genes that were expressed synergistically with the COP9 genes, particularly with the COPS5 (CSN5), which possesses the catalytic activity of COP9. RESULTS Expressions of seven of the COP9 genes (COPS2, COPS3, COPS4, COPS5, COPS6, COPS7A, and COPS8) were found to be highly synergistic in the normal tissues. In contrast, the tumor tissues decreased the coordinated expression pattern of COP9 genes. Pathway analysis revealed a high coordination of the expression of the COPS5 and the other COP9 genes with mitochondria-related functional pathways, including genes encoding the respiratory chain complex. CONCLUSIONS The results indicate that mRNA expression data for the matched normal tissues available in TCGA are statistically reliable, and are highly useful to assess novel associations of genes with functional pathways in normal physiology as well as in the cancer tissues. This study revealed the significant correlation between the expressions of the COP9 genes and those related to the mitochondrial activity.
Collapse
Affiliation(s)
- Christina A Wicker
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 V.A. Dr, Lexington, KY, 40536, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 V.A. Dr, Lexington, KY, 40536, USA.
| |
Collapse
|
19
|
Zhu Y, Qiu Z, Zhang X, Qian F, Wang B, Wang L, Shi H, Yu R. Jab1 promotes glioma cell proliferation by regulating Siah1/β-catenin pathway. J Neurooncol 2016; 131:31-39. [DOI: 10.1007/s11060-016-2279-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/03/2016] [Indexed: 11/30/2022]
|
20
|
Abstract
Deubiquitinases are deubiquitinating enzymes (DUBs), which remove ubiquitin from proteins, thus regulating their proteasomal degradation, localization and activity. Here, we discuss DUBs as anti-cancer drug targets.
Collapse
|
21
|
Lian M, Zhang Y, Shen Q, Xing J, Lu X, Huang D, Cao P, Shen S, Zheng K, Zhang J, Chen J, Wang Y, Feng G, Feng X. JAB1 accelerates odontogenic differentiation of dental pulp stem cells. J Mol Histol 2016; 47:317-24. [DOI: 10.1007/s10735-016-9672-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023]
|
22
|
Suppression of CSN5 promotes the apoptosis of gastric cancer cells through regulating p53-related apoptotic pathways. Bioorg Med Chem Lett 2015; 25:2897-901. [DOI: 10.1016/j.bmcl.2015.05.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/04/2015] [Accepted: 05/22/2015] [Indexed: 02/04/2023]
|
23
|
Xiao C, Wang L, Zhu L, Zhang C, Zhou J. Secreted frizzled‑related protein 2 is epigenetically silenced and functions as a tumor suppressor in oral squamous cell carcinoma. Mol Med Rep 2014; 10:2293-8. [PMID: 25189527 PMCID: PMC4214353 DOI: 10.3892/mmr.2014.2542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022] Open
Abstract
The role of epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) and its functions in the development of oral squamous cell carcinoma (OSCC) remain to be elucidated. The present study demonstrated that SFRP2 mRNA was detected in 97.96% of tumor-adjacent normal tissues, while its expression was only detected in 16.33% of the tumor samples. In addition, the loss of SFRP2 expression was associated with hypermethylation of its promoter. As expected, the overexpression of SFRP2 in OSCC cell lines (Tca8113) suppressed cell proliferation and arrested the cell cycle in the G1 phase. Overexpression of SFRP2 also effectively repressed tumor growth in xenograft animals. Mechanistic investigations revealed that SFRP2 inhibited the development of OSCC in vitro and in vivo through an increase in the expression levels of glycogen synthase kinase-3β and a decrease in the expression level of cyclin D1, a direct read-out gene of active Wnt signaling. In addition, an increase in the expression of β-catenin was observed in the Tca8113/SFRP2 cells and in the animal models overexpressing SFRP2. Therefore, the results of the present study provide insight into the role of SFRP2 as a functional tumor suppressor in the development of OSCC through inhibition of the Wnt signaling pathway. Further studies on the precise mechanisms underlying the inhibition of Wnt signaling by SFRP2 and its association with β-catenin are required.
Collapse
Affiliation(s)
- Can Xiao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lili Wang
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lifang Zhu
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chenping Zhang
- Department of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Jianhua Zhou
- Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
24
|
Jumpertz S, Hennes T, Asare Y, Vervoorts J, Bernhagen J, Schütz AK. The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells. Cell Signal 2014; 26:2051-9. [PMID: 24882689 DOI: 10.1016/j.cellsig.2014.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023]
Abstract
COP9 signalosome subunit 5 (CSN5) plays a decisive role in cellular processes such as cell cycle regulation and apoptosis via promoting protein degradation, gene transcription, and nuclear export. CSN5 regulates cullin-RING-E3 ligase (CRL) activity through its deNEDDylase function. It is overexpressed in several tumor entities, but its role in colorectal cancer (CRC) is poorly understood. Wnt/β-catenin signaling is aberrant in most CRC cells, resulting in increased levels of oncogenic β-catenin and thus tumor progression. Under physiological conditions, β-catenin levels are tightly regulated by continuous proteasomal degradation. We recently showed that knockdown of CSN5 in model and CRC cells results in decreased (phospho)-β-catenin levels. Reduced β-catenin levels were associated with an attenuated proliferation rate of different CRC cell types after CSN5 knockdown. The canonical Wnt pathway involves degradation of β-catenin by a β-TrCP1-containing E3 ligase, but is mostly non-functional in CRC cells. We thus hypothesized that alternative β-catenin degradation mediated by SIAH-1 (seven in absentia homolog-1), is responsible for the effect of CSN5 on β-catenin signaling in CRC cells. We found that SIAH-1 plays an essential role in β-catenin degradation in HCT116 CRC cells and that CSN5 affects β-catenin target gene expression in these cells. Of note, CSN5 affected SIAH-1 mRNA and SIAH-1 protein levels. Moreover, β-catenin and SIAH-1 form protein complexes with CSN5 in HCT116 cells. Lastly, we demonstrate that CSN5 promotes SIAH-1 degradation in HCT116 and SW480 cells and that this is associated with its deNEDDylase activity. In conclusion, we have identified a CSN5/β-catenin/SIAH-1 interaction network that might control β-catenin degradation in CRC cells.
Collapse
Affiliation(s)
- Sandra Jumpertz
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Thomas Hennes
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Yaw Asare
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Anke K Schütz
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
25
|
Wang H, Dey D, Carrera I, Minond D, Bianchi E, Xu S, Lakshmana MK. COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid β peptide generation by stabilizing RanBP9 protein levels. J Biol Chem 2013; 288:26668-77. [PMID: 23926111 DOI: 10.1074/jbc.m113.476689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increased processing of amyloid precursor protein (APP) and accumulation of neurotoxic amyloid β peptide (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease (AD). Therefore, the identification of molecules that regulate Aβ generation is crucial for future therapeutic approaches for AD. We demonstrated previously that RanBP9 regulates Aβ generation in a number of cell lines and primary neuronal cultures by forming tripartite protein complexes with APP, low-density lipoprotein-related protein, and BACE1, consequently leading to increased amyloid plaque burden in the brain. RanBP9 is a scaffold protein that exists and functions in multiprotein complexes. To identify other proteins that may bind RanBP9 and regulate Aβ levels, we used a two-hybrid analysis against a human brain cDNA library and identified COPS5 as a novel RanBP9-interacting protein. This interaction was confirmed by coimmunoprecipitation experiments in both neuronal and non-neuronal cells and mouse brain. Colocalization of COPS5 and RanBP9 in the same subcellular compartments further supported the interaction of both proteins. Furthermore, like RanBP9, COPS5 robustly increased Aβ generation, followed by increased soluble APP-β (sAPP-β) and decreased soluble-APP-α (sAPP-α) levels. Most importantly, down-regulation of COPS5 by siRNAs reduced Aβ generation, implying that endogenous COPS5 regulates Aβ generation. Finally, COPS5 levels were increased significantly in AD brains and APΔE9 transgenic mice, and overexpression of COPS5 strongly increased RanBP9 protein levels by increasing its half-life. Taken together, these results suggest that COPS5 increases Aβ generation by increasing RanBP9 levels. Thus, COPS5 is a novel RanBP9-binding protein that increases APP processing and Aβ generation by stabilizing RanBP9 protein levels.
Collapse
|