1
|
Guo S, Ding R, Zhao Q, Wang X, Lv S, Ji XY. Recent Insights into the Roles of PEST-Containing Nuclear Protein. Mol Biotechnol 2025; 67:1800-1813. [PMID: 38762838 DOI: 10.1007/s12033-024-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qian Zhao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xu Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, 475004, Henan, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China.
| |
Collapse
|
2
|
Jiang KC, Zhu YH, Jiang ZL, Liu Y, Hussain W, Luo HY, Sun WH, Ji XY, Li DX. Regulation of PEST-containing nuclear proteins in cancer cells: implications for cancer biology and therapy. Front Oncol 2025; 15:1548886. [PMID: 40330830 PMCID: PMC12052563 DOI: 10.3389/fonc.2025.1548886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
The PEST-containing nuclear protein (PCNP) is a nuclear protein involved in the regulation of cell cycle progression, protein degradation, and tumorigenesis. PCNP contains a PEST sequence, a polypeptide structural motif rich in proline (P), glutamic acid (E), serine (S), and threonine (T), which serves as a proteolytic recognition signal. The degradation of specific proteins via the PEST sequence plays a crucial role in modulating signaling pathways that control cell growth, differentiation, apoptosis, and stress responses. PCNP is primarily degraded through the ubiquitin-proteasome system (UPS) and the calpain pathway, with phosphorylation of threonine and serine residues further accelerating its degradation. The ubiquitination of PCNP by the ring finger protein NIRF in an E3 ligase-dependent manner is well documented, along with its involvement in the MAPK and PI3K/AKT/mTOR signaling pathways. Additionally, PCNP is implicated in p53-mediated cell cycle arrest and apoptosis, which are essential for inhibiting tumor growth. To explore the role of PCNP in cancer, this review examines its effects on cell growth, differentiation, proliferation, and apoptosis in lung adenocarcinoma, thyroid cancer, ovarian cancer, and other malignancies derived from glandular epithelial cells. By focusing on PCNP and its regulatory mechanisms, this study provides a scientific basis for further research on the biological functions of the PEST sequence in tumor development and cancer progression.
Collapse
Affiliation(s)
- Kai-Chun Jiang
- Department of Traditional Chinese Medicine, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Yong-Hao Zhu
- School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Zhi-Liang Jiang
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Yi Liu
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wahab Hussain
- School of Stomatology, Henan University, Kaifeng, Henan, China
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Huang-Yin Luo
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Wei-Hang Sun
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Xin-Ying Ji
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Oncology, Huaxian County Hospital, Anyang, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Ding-Xi Li
- The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Yoshimoto M, Tokuda A, Eguchi A, Nozawa Y, Mori T, Yaginuma Y. Alterations of UHRF family Expression and was regulated by High Risk Type HPV16 in Uterine Cervical Cancer. Exp Cell Res 2024; 437:114018. [PMID: 38556072 DOI: 10.1016/j.yexcr.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The altered protein expression of inverted CCAAT box-binding protein of 90 kDa/ubiquitin-like with PHD and RING finger domains 1 (ICBP90/UHRF1), and Np95-like ring finger protein (NIRF)/UHRF2, which belong to the ubiquitin-like with PHD and RING finger domains (UHRF) family, is linked to tumor malignancy and the progression of various cancers. In this study, we analyzed the UHRF family expression in cervical cancers, and it's regulation by human papillomavirus (HPV). Western blotting was performed to analyze protein expression in cervical cancer cell lines. Immunohistochemical analysis were used to investigate the expression of UHRF family and MIB-1 in cervical cancer tissues. Transfection were done for analyze the relationship between UHRF family and HPVs. We showed that NIRF expression was decreased and ICBP90 expression was increased in cervical cancers compared to normal counterparts. Western blotting also showed that NIRF expression was quite low levels, but ICBP90 was high in human cervical cancer cell lines. Interestingly, ICBP90 was up regulated by high risk type HPV16 E6 and E7, but not low-risk type HPV11. On the other hand, NIRF was down regulated by high risk type HPV16 E6 but not by E7. Low risk type HPV11 E6 did not affect the NIRF expression at all. We propose that ICBP90 overexpression, and reduced NIRF expression, found in cervical cancers, is an important event of a cervical carcinogenesis, and especially ICBP90 may offer a proliferating marker and therapeutic target for treating uterine cervical cancers.
Collapse
Affiliation(s)
- Masafumi Yoshimoto
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Aoi Tokuda
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayami Eguchi
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Nozawa
- Department of Pathology, Shirakawa Kosei General Hospital, Shirakawa, Japan
| | - Tsutomu Mori
- Department of Human Lifesciences, Fukushima Medical University School of Nursing, Fukushima, Japan
| | - Yuji Yaginuma
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Sano T, Ueda K, Minakawa K, Mori T, Hashimoto Y, Koseki H, Takeishi Y, Ikeda K, Ikezoe T. Impaired Repopulating Ability of Uhrf2-/- Hematopoietic Progenitor Cells in Mice. Genes (Basel) 2023; 14:1531. [PMID: 37628583 PMCID: PMC10454722 DOI: 10.3390/genes14081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
UHRF proteins catalyze the ubiquitination of target proteins and are involved in regulating gene expression. Some studies reported a reduced expression of UHRF2 in acute leukemia cells, but the role of UHRF2 in hematopoiesis remains unknown. Here, we generated Uhrf2-/- mice to clarify the role of UHRF2 deletion in hematopoiesis. Compared to Uhrf2+/+ mice, Uhrf2-/- mice showed no differences in complete blood counts, as well as bone marrow (BM) findings and spleen weights. Proportions of cells in progenitor fractions in BM were comparable between Uhrf2+/+ mice and Uhrf2-/- mice. However, in competitive repopulation assays with BM transplants (BMT), the proportions of Uhrf2-/- cells were decreased relative to Uhrf2+/+ cells in all lineages. After the second BMT, Uhrf2-/- neutrophils were few, while 20-30% of Uhrf2-/- T cells and B cells were still detected. RNA sequencing showed downregulation of some genes associated with stem-cell function in Uhrf2-/- hematopoietic stem/progenitor cells (HSPCs). Interestingly, trimethylated histone H3 lysine 9 was increased in Uhrf2-/- HSPCs in a cleavage under targets and tagmentation assay. While UHRF2 deletion did not cause hematologic malignancy or confer a growth advantage of HSPCs, our results suggest that UHRF2 may play a role in the regulation of hematopoiesis.
Collapse
Affiliation(s)
- Takahiro Sano
- Department of Hematology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Keiji Minakawa
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tsutomu Mori
- Department of Human Life Sciences; Fukushima Medical University School of Nursing, Fukushima 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Wako 351-0198, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
5
|
Foss-Skiftesvik J, Stoltze UK, van Overeem Hansen T, Ahlborn LB, Sørensen E, Ostrowski SR, Kullegaard SMA, Laspiur AO, Melchior LC, Scheie D, Kristensen BW, Skjøth-Rasmussen J, Schmiegelow K, Wadt K, Mathiasen R. Redefining germline predisposition in children with molecularly characterized ependymoma: a population-based 20-year cohort. Acta Neuropathol Commun 2022; 10:123. [PMID: 36008825 PMCID: PMC9404601 DOI: 10.1186/s40478-022-01429-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Ependymoma is the second most common malignant brain tumor in children. The etiology is largely unknown and germline DNA sequencing studies focusing on childhood ependymoma are limited. We therefore performed germline whole-genome sequencing on a population-based cohort of children diagnosed with ependymoma in Denmark over the past 20 years (n = 43). Single nucleotide and structural germline variants in 457 cancer related genes and 2986 highly evolutionarily constrained genes were assessed in 37 children with normal tissue available for sequencing. Molecular ependymoma classification was performed using DNA methylation profiling for 39 children with available tumor tissue. Pathogenic germline variants in known cancer predisposition genes were detected in 11% (4/37; NF2, LZTR1, NF1 & TP53). However, DNA methylation profiling resulted in revision of the histopathological ependymoma diagnosis to non-ependymoma tumor types in 8% (3/39). This included the two children with pathogenic germline variants in TP53 and NF1 whose tumors were reclassified to a diffuse midline glioma and a rosette-forming glioneuronal tumor, respectively. Consequently, 50% (2/4) of children with pathogenic germline variants in fact had other tumor types. A meta-analysis combining our findings with pediatric pan-cancer germline sequencing studies showed an overall frequency of pathogenic germline variants of 3.4% (7/207) in children with ependymoma. In summary, less than 4% of childhood ependymoma is explained by genetic predisposition, virtually restricted to pathogenic variants in NF2 and NF1. For children with other cancer predisposition syndromes, diagnostic reconsideration is recommended for ependymomas without molecular classification. Additionally, LZTR1 is suggested as a novel putative ependymoma predisposition gene.
Collapse
Affiliation(s)
- Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark. .,Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Neurosurgery, Section 6031, Rigshospitalet University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark. .,The Pediatric Oncology Research Laboratory, Section 5704, Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Henrik Harpestrengs Vej 6A, 2100, Copenhagen, Denmark.
| | - Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Department of Genomic Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | - Adrian Otamendi Laspiur
- Department of Health Technology, Cancer Systems Biology and Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | | | - David Scheie
- Department of Pathology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet University Hospital, Copenhagen, Denmark.,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Rashid MU, Lao Y, Spicer V, Coombs KM. Zika Virus Infection of Sertoli Cells Alters Protein Expression Involved in Activated Immune and Antiviral Response Pathways, Carbohydrate Metabolism and Cardiovascular Disease. Viruses 2022; 14:v14020377. [PMID: 35215967 PMCID: PMC8878972 DOI: 10.3390/v14020377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV), a re-emerging virus, causes congenital brain abnormalities and Guillain–Barré syndrome. It is mainly transmitted by Aedes mosquitoes, but infections are also linked to sexual transmissions. Infectious ZIKV has been isolated, and viral RNA has been detected in semen over a year after the onset of initial symptoms, but the mode of long-term persistence is not yet understood. ZIKV can proliferate in human Sertoli cells (HSerC) for several weeks in vitro, suggesting that it might be a reservoir for persistent ZIKV infection. This study determined proteomic changes in HSerC during ZIKV infections by TMT-mass spectrometry analysis. Levels of 4416 unique Sertoli cell proteins were significantly altered at 3, 5, and 7 days after ZIKV infection. The significantly altered proteins include enzymes, transcription regulators, transporters, kinases, peptidases, transmembrane receptors, cytokines, ion channels, and growth factors. Many of these proteins are involved in pathways associated with antiviral response, antigen presentation, and immune cell activation. Several immune response pathway proteins were significantly activated during infection, e.g., interferon signaling, T cell receptor signaling, IL-8 signaling, and Th1 signaling. The altered protein levels were linked to predicted activation of immune response in HSerC, which was predicted to suppress ZIKV infection. ZIKV infection also affected the levels of critical regulators of gluconeogenesis and glycolysis pathways such as phosphoglycerate mutase, phosphoglycerate kinase, and enolase. Interestingly, many significantly altered proteins were associated with cardiac hypertrophy, which may induce heart failure in infected patients. In summary, our research contributes to a better understanding of ZIKV replication dynamics and infection in Sertoli cells.
Collapse
Affiliation(s)
- Mahamud-ur Rashid
- Department of Medical Microbiology and Infectious Diseases, The University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
- Correspondence:
| | - Ying Lao
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
| | - Victor Spicer
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, The University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
- Children’s Hospital Research Institute of Manitoba, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
7
|
Khan NH, Chen HJ, Fan Y, Surfaraz M, Ahammad MD, Qin YZ, Shahid M, Virk R, Jiang E, Wu DD, Ji XY. Biology of PEST‐Containing Nuclear Protein: A Potential Molecular Target for Cancer Research. Front Oncol 2022; 12:784597. [PMID: 35186732 PMCID: PMC8855108 DOI: 10.3389/fonc.2022.784597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in vital cellular processes like cell proliferation and mediates tumorigenesis. PCNP is a short-living, small nuclear protein of only 178 amino acids with two remarkable PEST sequences that are rich in proline (P), glutamic acid (E), serine (S), and threonine (T). The current understanding of PCNP reveals that PCNP has the ability to interact with cell cycle regulatory proteins; tumor suppressors (p53 and pRB), and promoters (cyclin E and cyclin D) to determine the fate of tissues to facilitate the process of either apoptosis or cell proliferation. In many preclinical studies, it has been evaluated that PCNP expression has associations with the development and progression of various cancers like neuroblastoma, lung adenocarcinoma, and ovarian cancer. Based on these depicted novel roles of PCNP in cell cycleregulation and of PCNP in tumorigenesis, it is logical to consider PCNP as a potential molecular target for cancer research. The aim of the current communication is to present an update on PCNP research and discussion on the potential role of PCNP in cancer development with challenges and opportunities perspectives. Considering the available evidence as a baseline for our statement, we anticipate that in the future, new research insights will strengthen the aim to develop PCNP-based diagnostic and therapeutic approaches that will move the PCNP from the laboratory to the cancer clinic.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Fan
- School of Life Sciences, Henan University, Kaifeng, China
| | | | - MD.Faysal Ahammad
- Key Laboratory of Natural Medicine and Immune Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Razia Virk
- Department of Bio-Sciences, University Wah, Rawalpindi, Pakistan
| | - Enshe Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Nursing and Health, Henan University, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, Henan University College of Medicine, Kaifeng, China
- *Correspondence: Enshe Jiang, ; Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
8
|
Ginnard SM, Winkler AE, Mellado Fritz C, Bluhm T, Kemmer R, Gilliam M, Butkevich N, Abdrabbo S, Bricker K, Feiler J, Miller I, Zoerman J, El-Mohri Z, Khuansanguan P, Basch M, Petzold T, Kostoff M, Konopka S, Kociba B, Gillis T, Heyl DL, Trievel RC, Albaugh BN. Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2. Proteins 2021; 90:835-847. [PMID: 34766381 DOI: 10.1002/prot.26278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 11/12/2022]
Abstract
Ubiquitin-like containing PHD and ring finger (UHRF)1 and UHRF2 are multidomain epigenetic proteins that play a critical role in bridging crosstalk between histone modifications and DNA methylation. Both proteins contain two histone reader domains, called tandem Tudor domain (TTD) and plant homeodomain (PHD), which read the modification status on histone H3 to regulate DNA methylation and gene expression. To shed light on the mechanism of histone binding by UHRF2, we have undergone a detailed molecular investigation with the TTD, PHD and TTD-PHD domains and compared the binding activity to its UHRF1 counterpart. We found that unlike UHRF1 where the PHD is the primary binding contributor, the TTD of UHRF2 has modestly higher affinity toward the H3 tail, while the PHD has a weaker binding interaction. We also demonstrated that like UHRF1, the aromatic amino acids within the TTD are important for binding to H3K9me3 and a conserved aspartic acid within the PHD forms an ionic interaction with R2 of H3. However, while the aromatic amino acids in the TTD of UHRF1 contribute to selectivity, the analogous residues in UHRF2 contribute to both selectivity and affinity. We also discovered that the PHD of UHRF2 contains a distinct asparagine in the H3R2 binding pocket that lowers the binding affinity of the PHD by reducing a potential electrostatic interaction with the H3 tail. Furthermore, we demonstrate the PHD and TTD of UHRF2 cooperate to interact with the H3 tail and that dual domain engagement with the H3 tail relies on specific amino acids. Lastly, our data indicate that the unique stretch region in the TTD of UHRF2 can decrease the melting temperature of the TTD-PHD and represents a disordered region. Thus, these subtle but important mechanistic differences are potential avenues for selectively targeting the histone binding interactions of UHRF1 and UHRF2 with small molecules.
Collapse
Affiliation(s)
- Shane M Ginnard
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Alyssa E Winkler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | | | - Tatum Bluhm
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Ray Kemmer
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Marisa Gilliam
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Nick Butkevich
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sara Abdrabbo
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Kaitlyn Bricker
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Justin Feiler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Isaak Miller
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Jenna Zoerman
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Zeineb El-Mohri
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Panida Khuansanguan
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Madyson Basch
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Timothy Petzold
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Matthew Kostoff
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sean Konopka
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Brendon Kociba
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Thomas Gillis
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Deborah L Heyl
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brittany N Albaugh
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| |
Collapse
|
9
|
Sun J, Wu K, Chen S, Jiang S, Chen Y, Duan C. UHRF2 promotes Hepatocellular Carcinoma Progression by Upregulating ErbB3/Ras/Raf Signaling Pathway. Int J Med Sci 2021; 18:3097-3105. [PMID: 34400880 PMCID: PMC8364466 DOI: 10.7150/ijms.60030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Emerging evidence revealed that UHRF2 was implicated in a variety of human diseases, especially in cancer. However, the biological function, clinical significance and underly mechanisms of UHRF2 in hepatocellular carcinoma (HCC) is largely unknown. We analyzed the expression of UHRF2 in 371 HCC tissues and 50 para-cancerous tissues of TCGA database. We found that UHRF2 was significantly upregulated in HCC tissues, which was further confirmed in HCC cells and tissues by western blot. More importantly, the level of UHRF2 was correlated with pathological grade and clinical stage, and the patients with high level of UHRF2 had lower overall survival, disease-free survival and higher recurrence rate than those with low UHRF2 level. Univariate and multivariate Cox regression analysis revealed that high level of UHRF2 might be an independent prognostic factor for HCC patients. Functional investigations suggested that ectopic expression of UHRF2 could promote the proliferation, migration and invasion of HCC cell lines, whereas knock down of UHRF2 exhibited an opposite effect. Additionally, gene set enrichment analysis indicated that ERBB signaling pathway was upregulated in patients with high level of UHRF2. Pearson correlation analysis indicated that the expression of UHRF2 was positively correlated with ErbB3 and its downstream targets SOS1, Ras and Raf-1. Furthermore, we found that overexpression of UHRF2 could upregulate the expression of ErbB3, SOS1, Ras and Raf-1. Our findings suggested that UHRF2 might accelerate HCC progression by upregulating ErbB3/Ras/Raf signaling pathway and it might serve as a diagnostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jingjie Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Kejia Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Siyuan Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Shiming Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, China
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| |
Collapse
|
10
|
Liu X, Xu B, Yang J, He L, Zhang Z, Cheng X, Yu H, Liu X, Jin T, Peng Y, Huang Y, Xia L, Wang Y, Wu J, Wu X, Liu S, Shan L, Yang X, Sun L, Liang J, Zhang Y, Shang Y. UHRF2 commissions the completion of DNA demethylation through allosteric activation by 5hmC and K33-linked ubiquitination of XRCC1. Mol Cell 2021; 81:2960-2974.e7. [PMID: 34111398 DOI: 10.1016/j.molcel.2021.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
The transition of oxidized 5-methylcytosine (5mC) intermediates into the base excision repair (BER) pipeline to complete DNA demethylation remains enigmatic. We report here that UHRF2, the only paralog of UHRF1 in mammals that fails to rescue Uhrf1-/- phenotype, is physically and functionally associated with BER complex. We show that UHRF2 is allosterically activated by 5-hydroxymethylcytosine (5hmC) and acts as a ubiquitin E3 ligase to catalyze K33-linked polyubiquitination of XRCC1. This nonproteolytic action stimulates XRCC1's interaction with the ubiquitin binding domain-bearing RAD23B, leading to the incorporation of TDG into BER complex. Integrative epigenomic analysis in mouse embryonic stem cells reveals that Uhrf2-fostered TDG-RAD23B-BER complex is functionally linked to the completion of DNA demethylation at active promoters and that Uhrf2 ablation impedes DNA demethylation on latent enhancers that undergo poised-to-active transition during neuronal commitment. Together, these observations highlight an essentiality of 5hmC-switched UHRF2 E3 ligase activity in commissioning the accomplishment of active DNA demethylation.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Zihan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Huajing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xujun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Tong Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
12
|
Dangoumau A, Marouillat S, Coelho R, Wurmser F, Brulard C, Haouari S, Laumonnier F, Corcia P, Andres CR, Blasco H, Vourc’h P. Dysregulations of Expression of Genes of the Ubiquitin/SUMO Pathways in an In Vitro Model of Amyotrophic Lateral Sclerosis Combining Oxidative Stress and SOD1 Gene Mutation. Int J Mol Sci 2021; 22:ijms22041796. [PMID: 33670299 PMCID: PMC7918082 DOI: 10.3390/ijms22041796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Protein aggregates in affected motor neurons are a hallmark of amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to their formation remain incompletely understood. Oxidative stress associated with age, the major risk factor in ALS, contributes to this neurodegeneration in ALS. We show that several genes coding for enzymes of the ubiquitin and small ubiquitin-related modifier (SUMO) pathways exhibit altered expression in motor neuronal cells exposed to oxidative stress, such as the CCNF gene mutated in ALS patients. Eleven of these genes were further studied in conditions combining oxidative stress and the expression of an ALS related mutant of the superoxide dismutase 1 (SOD1) gene. We observed a combined effect of these two environmental and genetic factors on the expression of genes, such as Uhrf2, Rbx1, Kdm2b, Ube2d2, Xaf1, and Senp1. Overall, we identified dysregulations in the expression of enzymes of the ubiquitin and SUMO pathways that may be of interest to better understand the pathophysiology of ALS and to protect motor neurons from oxidative stress and genetic alterations.
Collapse
Affiliation(s)
- Audrey Dangoumau
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Sylviane Marouillat
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Roxane Coelho
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - François Wurmser
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | | | - Shanez Haouari
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Frédéric Laumonnier
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Philippe Corcia
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Neurologie, Centre de Référence sur la SLA, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- UTTIL, CHRU de Tours, 37000 Tours, France;
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)-234-378-910
| |
Collapse
|
13
|
Zhai SZ, Guo HD, Li SQ, Zhao XS, Wang Y, Xu LP, Liu KY, Huang XJ, Chang YJ. Effects of Granulocyte Colony-Stimulating Factor on Proliferation and Apoptosis of B Cells in Bone Marrow of Healthy Donors. Transplant Proc 2020; 52:345-352. [PMID: 31918969 DOI: 10.1016/j.transproceed.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/06/2019] [Accepted: 11/02/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to investigate the effects of granulocyte colony-stimulating factor (G-CSF) on the proliferation and apoptosis of bone marrow (BM) B cells from healthy donors and its mechanism. MATERIALS AND METHODS The proliferation ability and apoptosis of BM cells from healthy donors before and after in vivo G-CSF application were determined by multiparameter flow cytometry. The gene expression of B cells was detected by RNA-Seq. In vitro experiments were performed to investigate the effects of G-CSF on the proliferation and apoptosis of BM B cells through which gene. RESULTS Treating healthy donors with G-CSF significantly decreased proliferation and increased apoptosis of BM B cells. The proliferation of CD19+CD27- B cell subgroup and CD19+CD24hiCD38hi B cell subset were also decreased. G-CSF also significantly altered proapoptotic genes, cell cycle arrest genes, and DNA replication and cell cycle genes, especially significantly increased SOCS1 expression of BM B cells. In vitro experiments showed that SOCS1 overexpression did not affect B cell proliferation ability and apoptosis. CONCLUSIONS Our results suggest that extensive effects of G-CSF on BM B cells, such as inhibiting proliferation, inducing apoptosis, and altering a series of gene expression.
Collapse
Affiliation(s)
- Shu-Zhen Zhai
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Hui-Dong Guo
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Si-Qi Li
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Xiao-Su Zhao
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Yu Wang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Lan-Ping Xu
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Kai-Yan Liu
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Xiao-Jun Huang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Ying-Jun Chang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C..
| |
Collapse
|
14
|
Afzal A, Sarfraz M, Li GL, Ji SP, Duan SF, Khan NH, Wu DD, Ji XY. Taking a holistic view of PEST-containing nuclear protein (PCNP) in cancer biology. Cancer Med 2019; 8:6335-6343. [PMID: 31487123 PMCID: PMC6797571 DOI: 10.1002/cam4.2465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polypeptide sequences enriched with proline (P), glutamic acid (E), aspartic acid (D) and serine (S)/ threonine (T) (PEST) have been reported to be the most abundant and frequently distributed at the cellular level. There is growing evidence that PEST sequences act as proteolytic recognition signals for degradation of residual proteins which is critical for activation or deactivation of regulatory proteins involved in cellular signaling pathways of cell growth, differentiation, stress responses and physiological death. A PEST containing nuclear protein (PCNP) was demonstrated as a tumor suppressor in a neuroblastoma cancer model and tumor promoter in lung adenocarcinoma cancer model. Its unique properties like ubiquitination by NIRF, co‐localization with NIRF in nucleus and tumor progression attract the attention of researchers. PCNP was reported to be ubiquitinated by ring finger protein NIRF in E3 ligase manner and as modulator of MAPK and PI3K/AKT/mTOR signaling pathways. In this review, we summarize PCNP linked DNA damage response, Post translational modifications, and transportation to address initiation, prognosis, and resistance of tumor cells in terms of cell cycle regulation, transcription and apoptosis. Hence, we demonstrate PCNP as a novel target in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.,Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Guang-Lei Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Ping Ji
- Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety (KLIBS), Henan University College of Medicine, Kaifeng, China
| |
Collapse
|
15
|
Németh CG, Röcken C, Siebert R, Wiltfang J, Ammerpohl O, Gassling V. Recurrent chromosomal and epigenetic alterations in oral squamous cell carcinoma and its putative premalignant condition oral lichen planus. PLoS One 2019; 14:e0215055. [PMID: 30964915 PMCID: PMC6456184 DOI: 10.1371/journal.pone.0215055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects about 700.000 individuals per year worldwide with oral squamous cell carcinoma (OSCC) as a major subcategory. Despite a comprehensive treatment concept including surgery, radiation, and chemotherapy the 5-year survival rate is still only about 50 percent. Chronic inflammation is one of the hallmarks of carcinogenesis. Until now, little is known about the premalignant status of oral lichen planus (OLP) and molecular alterations in OLP are still poorly characterized. Our study aims to delineate differential DNA methylation patterns in OLP, OSCC, and normal oral mucosa. By applying a bead chip approach, we identified altered chromosomal patterns characteristic for OSCC while finding no recurrent alterations in OLP. In contrast, we identified numerous alterations in the DNA methylation pattern in OLP, as compared to normal controls, that were also present in OSCC. Our data support the hypothesis that OLP is a precursor lesion of OSCC sharing multiple epigenetic alterations with OSCC.
Collapse
Affiliation(s)
- Christopher G Németh
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Volker Gassling
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Motnenko A, Liang CC, Yang D, Lopez-Martinez D, Yoshikawa Y, Zhan B, Ward KE, Tian J, Haas W, Spingardi P, Kessler BM, Kriaucionis S, Gygi SP, Cohn MA. Identification of UHRF2 as a novel DNA interstrand crosslink sensor protein. PLoS Genet 2018; 14:e1007643. [PMID: 30335751 PMCID: PMC6193622 DOI: 10.1371/journal.pgen.1007643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/17/2018] [Indexed: 02/04/2023] Open
Abstract
The Fanconi Anemia (FA) pathway is important for repairing interstrand crosslinks (ICLs) between the Watson-Crick strands of the DNA double helix. An initial and essential stage in the repair process is the detection of the ICL. Here, we report the identification of UHRF2, a paralogue of UHRF1, as an ICL sensor protein. UHRF2 is recruited to ICLs in the genome within seconds of their appearance. We show that UHRF2 cooperates with UHRF1, to ensure recruitment of FANCD2 to ICLs. A direct protein-protein interaction is formed between UHRF1 and UHRF2, and between either UHRF1 and UHRF2, and FANCD2. Importantly, we demonstrate that the essential monoubiquitination of FANCD2 is stimulated by UHRF1/UHRF2. The stimulation is mediating by a retention of FANCD2 on chromatin, allowing for its monoubiquitination by the FA core complex. Taken together, we uncover a mechanism of ICL sensing by UHRF2, leading to FANCD2 recruitment and retention at ICLs, in turn facilitating activation of FANCD2 by monoubiquitination.
Collapse
Affiliation(s)
- Anna Motnenko
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Di Yang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Yasunaga Yoshikawa
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Bao Zhan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Katherine E. Ward
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jiayang Tian
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Wilhelm Haas
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America Medicine, Kitasato University, Aomori, Japan
| | - Paolo Spingardi
- Ludwig Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America Medicine, Kitasato University, Aomori, Japan
| | - Martin A. Cohn
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Jin C, Xiong D, Li HR, Jiang JH, Qi JC, Ding JY. Loss of UHRF2 Is Associated With Non-small Cell Lung Carcinoma Progression. J Cancer 2018; 9:2994-3005. [PMID: 30210621 PMCID: PMC6134831 DOI: 10.7150/jca.25876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/09/2018] [Indexed: 01/12/2023] Open
Abstract
Recent evidence indicated ubiquitin like with PHD and ring finger domains 2 (UHRF2) was involved in various human diseases, especially in cancer, however, its roles in cancer are still in dispute. Here, we found UHRF2 expression was decreased in lung cancer tissues compared with adjacent normal tissues by referring to the Oncomine Database, which was further identified by immunoblotting and quantitative real-time polymerase chain reaction assays. Secondly, we found knockdown of UHRF2 in A549 and 95-D cell lines enhanced the capability of proliferation, invasion and migration, while forced UHRF2 expression inhibited NSCLC cells proliferation,invasion and migration. Mechanistically, dot-blot and western blot assays indicated that the level of UHRF2 was positively correlated with 5-hmC level by affecting ten-eleven translocation 2 (TET2) expression. Clinically, UHRF2 downregulation is significantly correlated with a malignant phenotype, including larger tumor size and poor differentiation. Moreover, UHRF2 downregulated correlates with shorter overall survival(OS). Conclusion: Our findings indicate that UHRF2 is a tumor suppressor in NSCLC by influence TET2 expression and serve as a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Chun Jin
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P. R. China
| | - Dian Xiong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, P. R. China
| | - Hao-Ran Li
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P. R. China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P. R. China
| | - Jian-Chao Qi
- Department of emergency surgery, Fujian Provincial Hospital, Fu Zhou, Fujian Province,350001, China
| | - Jian-Yong Ding
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
18
|
Iguchi T, Ueda M, Masuda T, Nambara S, Kidogami S, Komatsu H, Sato K, Tobo T, Ogawa Y, Hu Q, Saito T, Hirata H, Sakimura S, Uchi R, Hayashi N, Ito S, Eguchi H, Sugimachi K, Maehara Y, Mimori K. Identification of UHRF2 as a Negative Regulator of Epithelial-Mesenchymal Transition and Its Clinical Significance in Esophageal Squamous Cell Carcinoma. Oncology 2018; 95:179-187. [PMID: 29909415 DOI: 10.1159/000488860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The involvement of epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma (ESCC) has not been fully elucidated. Here, we aimed to identify EMT-related genes associated with TGF-β in ESCC and to clarify the role of these genes in the progression of ESCC. METHODS EMT-related genes associated with TGF-β expression were identified in patients with ESCC using microarray analysis and public datasets. The effects of ubiquitin-like with PHD and ring finger domains 2 (UHRF2) expression were analyzed in ESCC cell lines. Cell proliferation and invasion were measured using MTT and invasion assays, respectively. UHRF2 mRNA expression was also analyzed in 75 ESCC specimens to determine the clinical significance of UHRF2 in ESCC. RESULTS Treatment of ESCC cell lines with TGF-β increased UHRF2 expression. UHRF2 overexpression increased CDH1 (E-cadherin) expression and decreased invasive capacity. The 75 ESCC specimens were divided into the UHRF2 high-expression group (n = 61) and the UHRF2 low-expression group (n = 14). Low UHRF2 expression was significantly correlated with vascular invasion (p = 0.034) and was an independent prognostic factor for poor prognosis (p = 0.005). CONCLUSION UHRF2 may be a negative regulator of EMT and a novel prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Masami Ueda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shinya Kidogami
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hisateru Komatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yushi Ogawa
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shotaro Sakimura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Ryutaro Uchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Naoki Hayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
19
|
Lu H, Bhoopatiraju S, Wang H, Schmitz NP, Wang X, Freeman MJ, Forster CL, Verneris MR, Linden MA, Hallstrom TC. Loss of UHRF2 expression is associated with human neoplasia, promoter hypermethylation, decreased 5-hydroxymethylcytosine, and high proliferative activity. Oncotarget 2018; 7:76047-76061. [PMID: 27738314 PMCID: PMC5340178 DOI: 10.18632/oncotarget.12583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/24/2016] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) binds to 5-hydroxymethylcytosine (5hmC), a DNA base involved in tissue development, but it is unknown how their distribution compares with each other in normal and malignant human tissues. We used IHC on human tumor specimens (160 from 19 tumor types) or normal tissue to determine the expression and distribution of UHRF2, Ki-67, and 5hmC. We also examined UHRF2 expression in cord blood progenitors and compared its expression to methylation status in 6 leukemia cell lines and 15 primary human leukemias. UHRF2 is highly expressed, paralleling that of 5hmC, in most non-neoplastic, differentiated tissue with low Ki-67 defined proliferative activity. UHRF2 is expressed in common lymphoid progenitors and mature lymphocytes but not common myeloid progenitors or monocytes. In contrast, UHRF2 immunostaining in human cancer tissues revealed widespread reduction or abnormal cytoplasmic localization which correlated with a higher Ki-67 and reduced 5hmC. UHRF2 expression is reduced in some leukemia cell lines, this correlates with promoter hypermethylation, and similar UHRF2 methylation profiles are seen in primary human leukemia samples. Thus, UHRF2 and 5hmC are widely present in differentiated human tissues, and UHRF2 protein is poorly expressed or mislocalized in diverse human cancers.
Collapse
Affiliation(s)
- Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sweta Bhoopatiraju
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hongbo Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nolan P Schmitz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaohong Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew J Freeman
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael R Verneris
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Abstract
The role of DNA methylation in brain development is an intense area of research because the brain has particularly high levels of CpG and mutations in many of the proteins involved in the establishment, maintenance, interpretation, and removal of DNA methylation impact brain development and/or function. These include DNA methyltransferase (DNMT), Ten-Eleven Translocation (TET), and Methyl-CpG binding proteins (MBPs). Recent advances in sequencing breadth and depth as well the detection of different forms of methylation have greatly expanded our understanding of the diversity of DNA methylation in the brain. The contributions of DNA methylation and associated proteins to embryonic and adult neurogenesis will be examined. Particular attention will be given to the impact on adult hippocampal neurogenesis (AHN), which is a key mechanism contributing to brain plasticity, learning, memory and mood regulation. DNA methylation influences multiple aspects of neurogenesis from stem cell maintenance and proliferation, fate specification, neuronal differentiation and maturation, and synaptogenesis. In addition, DNA methylation during neurogenesis has been shown to be responsive to many extrinsic signals, both under normal conditions and during disease and injury. Finally, crosstalk between DNA methylation, Methyl-DNA binding domain (MBD) proteins such as MeCP2 and MBD1 and histone modifying complexes is used as an example to illustrate the extensive interconnection between these epigenetic regulatory systems.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Structure insights into the molecular mechanism of the interaction between UHRF2 and PCNA. Biochem Biophys Res Commun 2017; 494:575-580. [PMID: 28951215 DOI: 10.1016/j.bbrc.2017.09.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
Abstract
UHRF2 (Ubiquitin-like with PHD and ring finger domains 2) is an E3 ubiquitin ligase that plays important roles in DNA methylation, histone modifications and cell cycle regulation by interacting with multiple epigenetic or cell-cycle related proteins. Previous studied have identified PCNA (Proliferating cell nuclear antigen) as an interacting partner of UHRF2 by using the antibody microarray. However, the molecular mechanism and the function of UHRF2-PCNA interaction remains unclear. Here, we report the complex structure of PCNA and the peptide (784NEILQTLLDLFFPGYSK800) derived from UHRF2 that contains a PIP box. Structural analysis combined with mutagenesis experiments provide the molecular basis for the recognition of UHRF2 by PCNA via PIP-box.
Collapse
|
22
|
Chen XR, Sun SC, Teng SW, Li L, Bie YF, Yu H, Li DL, Chen ZY, Wang Y. Uhrf2 deletion impairs the formation of hippocampus-dependent memory by changing the structure of the dentate gyrus. Brain Struct Funct 2017; 223:609-618. [DOI: 10.1007/s00429-017-1512-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
|
23
|
Chen R, Zhang Q, Duan X, York P, Chen GD, Yin P, Zhu H, Xu M, Chen P, Wu Q, Li D, Samarut J, Xu G, Zhang P, Cao X, Li J, Wong J. The 5-Hydroxymethylcytosine (5hmC) Reader UHRF2 Is Required for Normal Levels of 5hmC in Mouse Adult Brain and Spatial Learning and Memory. J Biol Chem 2017; 292:4533-4543. [PMID: 28115522 DOI: 10.1074/jbc.m116.754580] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
UHRF2 has been implicated as a novel regulator for both DNA methylation (5mC) and hydroxymethylation (5hmC), but its physiological function and role in DNA methylation/hydroxymethylation are unknown. Here we show that in mice, UHRF2 is more abundantly expressed in the brain and a few other tissues. Uhrf2 knock-out mice are viable and fertile and exhibit no gross defect. Although there is no significant change of DNA methylation, the Uhrf2 null mice exhibit a reduction of 5hmC in the brain, including the cortex and hippocampus. Furthermore, the Uhrf2 null mice exhibit a partial impairment in spatial memory acquisition and retention. Consistent with the phenotype, gene expression profiling uncovers a role for UHRF2 in regulating neuron-related gene expression. Finally, we provide evidence that UHRF2 binds 5hmC in cells but does not appear to affect the TET1 enzymatic activity. Together, our study supports UHRF2 as a bona fide 5hmC reader and further demonstrates a role for 5hmC in neuronal function.
Collapse
Affiliation(s)
- Ruoyu Chen
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiao Zhang
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoya Duan
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Philippe York
- the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | - Guo-Dong Chen
- the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengcheng Yin
- the Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Haijun Zhu
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meichen Xu
- the Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Peilin Chen
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qihan Wu
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jacques Samarut
- the Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon 69007, France, and
| | - Guoliang Xu
- the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pumin Zhang
- the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaohua Cao
- the Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Jiwen Li
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China,
| | - Jiemin Wong
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China, .,the Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
24
|
Early human embryos are naturally aneuploid-can that be corrected? J Assist Reprod Genet 2016; 34:15-21. [PMID: 27900612 PMCID: PMC5330987 DOI: 10.1007/s10815-016-0845-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy is common and may be a natural occurrence in early human embryos. Selecting against embryos containing aneuploid cells for embryo transfer has been reported to increase clinical pregnancies per transfer in some studies, but not others. Some aneuploidy is due to misallocation of chromosomes during meiosis, in either the egg or sperm, but most aneuploidy is due to misallocation of chromosomes during mitoses after fertilization. Big questions are as follows: Why does this happen? How much aneuploidy in a preimplantation embryo is compatible with normal fetal development? Is aneuploidy increased by in vitro culture, and/or could it be prevented or corrected in the IVF lab?
Collapse
|
25
|
Zhang T, Zhao L, Zeng S, Bai L, Chen J, Zhang Z, Wang Y, Duan C. UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells. Int J Mol Med 2016; 39:126-134. [PMID: 28004105 PMCID: PMC5179198 DOI: 10.3892/ijmm.2016.2805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) is a multi-domain E3 ubiquitin ligase which is involved in epigenetic regulation and plays an essential role in tumorigenesis. However, the role of UHRF2 in histone H3 acetylation has not yet been fully elucidated and few studies have reported its role in hepatocellular carcinoma (HCC). In this study, we examined the correlation between UHRF2 and acetylated H3 in HCC. Immunohistochemistry and western blot analysis demonstrated that the levels of histone H3 lysine 9 acetylation (H3K9ac) and histone H3 lysine 14 acetylation (H3K14ac) were higher in the HCC tissues and HepG2 HCC cells compared with the adjacent non-tumor tissues and L02 normal cells. The level of UHRF2 was higher in the HCC tissues compared with the adjacent non-tumor tissues, but its expression did not exhibit a significant difference between the HepG2 HCC cells and the L02 normal cells. In addition, when comparing the HCC tissues, a higher expression of UHRF2 correlated with a lower expression of H3K9ac in the HCC tissues. The overexpression of UHRF2 increased the expression of H3K9ac in L02 normal cells (P<0.01), but decreased the expression of H3K9ac in HepG2 cancer cells (P<0.05). Moreover, immunofluorescence staining and co-immunoprecipitation assay indicated that UHRF2 co-localized and interacted with H3K9ac in L02 and HepG2 cells and the plant homeodomain (PHD) finger domain was the key domain for UHRF2 directly binding to H3K9ac. Taken together, these results suggest that UHRF2 decreases the expression of H3K9ac in HepG2 HCC cells and interacts with it through the PHD domain.
Collapse
Affiliation(s)
- Ting Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Linglin Zhao
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengyuan Zeng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lu Bai
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Junxia Chen
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yalan Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Changzhu Duan
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
26
|
Chang Y, Dai DH, Li Y, Zhang Y, Zhang M, Zhou GB, Zeng CJ. Differences in the expression of microRNAs and their predicted gene targets between cauda epididymal and ejaculated boar sperm. Theriogenology 2016; 86:2162-2171. [PMID: 27527406 DOI: 10.1016/j.theriogenology.2016.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023]
Abstract
Mammalian spermatozoa gradually mature and acquire fertility during the transition from the testis to the caput and cauda epididymis, after which they are stored at the tail of the epididymis and the ampulla of vas deferens. During ejaculation, mixing of spermatozoa with the secretions of accessory sex glands leads to their dilution and changes in their function. Although remarkable progress has been made toward the understanding of changes in spermatozoa biochemistry and function before and after ejaculation, it is unknown whether microRNAs (miRNAs) are involved in regulating the function of spermatozoa during the transition between the cauda epididymis and ejaculation. In this study, 48 miRNAs were selected for analysis on the basis of their potential involvement in spermatogenesis, sperm maturation, and quality parameters markers. The differential expression levels of these 48 miRNAs between the caudal epididymis and fresh ejaculates of boar spermatozoa were determined. We found that 15 miRNAs were significantly differentially expressed (eight downregulated and seven upregulated) between boar cauda epididymal and fresh spermatozoa. Five miRNAs hypothesized to be involved in sperm apoptosis were further tested to demonstrate their influence over the expression of their target mRNAs using quantitative reverse-transcription polymerase chain reaction. Together, our findings suggest that these differentially expressed miRNAs are associated with the functional regulation of spermatozoa between cauda epididymis and ejaculation.
Collapse
Affiliation(s)
- Yu Chang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ding-Hui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yuan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Guang-Bin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Chang-Jun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China.
| |
Collapse
|
27
|
Ludwig AK, Zhang P, Cardoso MC. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Front Genet 2016; 7:115. [PMID: 27446199 PMCID: PMC4914596 DOI: 10.3389/fgene.2016.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cytosine base modifications in mammals underwent a recent expansion with the addition of several naturally occurring further modifications of methylcytosine in the last years. This expansion was accompanied by the identification of the respective enzymes and proteins reading and translating the different modifications into chromatin higher order organization as well as genome activity and stability, leading to the hypothesis of a cytosine code. Here, we summarize the current state-of-the-art on DNA modifications, the enzyme families setting the cytosine modifications and the protein families reading and translating the different modifications with emphasis on the mouse protein homologs. Throughout this review, we focus on functional and mechanistic studies performed on mammalian cells, corresponding mouse models and associated human diseases.
Collapse
Affiliation(s)
- Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - M C Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| |
Collapse
|
28
|
Lai M, Liang L, Chen J, Qiu N, Ge S, Ji S, Shi T, Zhen B, Liu M, Ding C, Wang Y, Qin J. Multidimensional Proteomics Reveals a Role of UHRF2 in the Regulation of Epithelial-Mesenchymal Transition (EMT). Mol Cell Proteomics 2016; 15:2263-78. [PMID: 27114453 DOI: 10.1074/mcp.m115.057448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 01/07/2023] Open
Abstract
UHRF1 is best known for its positive role in the maintenance of DNMT1-mediated DNA methylation and is implicated in a variety of tumor processes. In this paper, we provided evidence to demonstrate a role of UHRF2 in cell motility and invasion through the regulation of the epithelial-mesenchymal transition (EMT) process by acting as a transcriptional co-regulator of the EMT-transcription factors (TFs). We ectopically expressed UHRF2 in gastric cancer cell lines and performed multidimensional proteomics analyses. Proteome profiling analysis suggested a role of UHRF2 in repression of cell-cell adhesion; analysis of proteome-wide TF DNA binding activities revealed the up-regulation of many EMT-TFs in UHRF2-overexpressing cells. These data suggest that UHRF2 is a regulator of cell motility and the EMT program. Indeed, cell invasion experiments demonstrated that silencing of UHRF2 in aggressive cells impaired their abilities of migration and invasion in vitro Further ChIP-seq identified UHRF2 genomic binding motifs that coincide with several TF binding motifs including EMT-TFs, and the binding of UHRF2 to CDH1 promoter was validated by ChIP-qPCR. Moreover, the interactome analysis with IP-MS uncovered the interaction of UHRF2 with TFs including TCF7L2 and several protein complexes that regulate chromatin remodeling and histone modifications, suggesting that UHRF2 is a transcription co-regulator for TFs such as TCF7L2 to regulate the EMT process. Taken together, our study identified a role of UHRF2 in EMT and tumor metastasis and demonstrated an effective approach to obtain clues of UHRF2 function without prior knowledge through combining evidence from multidimensional proteomics analyses.
Collapse
Affiliation(s)
- Mi Lai
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Lizhu Liang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Jiwei Chen
- §Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, China
| | - Naiqi Qiu
- §Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, China
| | - Sai Ge
- ¶Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuhui Ji
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Tieliu Shi
- §Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, China
| | - Bei Zhen
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Mingwei Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Chen Ding
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Yi Wang
- ‖Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jun Qin
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (Beijing); National Engineering Research Center for Protein Drugs, Beijing 102206, China; ‖Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
29
|
Pan F, Weeks O, Yang FC, Xu M. The TET2 interactors and their links to hematological malignancies. IUBMB Life 2015; 67:438-45. [PMID: 26099018 DOI: 10.1002/iub.1389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Ten-eleven translocation (TET) family proteins are dioxygenases that oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in DNA, early steps of active DNA demethylation. TET2, the second member of TET protein family, is frequently mutated in patients with hematological malignancies, leading to aberrant DNA methylation profiling and decreased 5hmC levels. Located in the nucleus and acting as a DNA-modifying enzyme, TET2 is thought to exert its function via TET2-containing protein complexes. Identifying the interactome network of TET2 likely holds the key to uncover the mechanisms by which TET2 exerts its function in cells. Here, we review recent literature on TET2 interactors and discuss their possible roles in TET2 loss-mediated dysregulation of hematopoiesis and pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Feng Pan
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ophelia Weeks
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mingjiang Xu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Chromatin methylation and cardiovascular aging. J Mol Cell Cardiol 2015; 83:21-31. [DOI: 10.1016/j.yjmcc.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022]
|
31
|
Qian G, Hu B, Zhou D, Xuan Y, Bai L, Duan C. NIRF, a Novel Ubiquitin Ligase, Inhibits Hepatitis B Virus Replication Through Effect on HBV Core Protein and H3 Histones. DNA Cell Biol 2015; 34:327-32. [PMID: 25664994 DOI: 10.1089/dna.2014.2714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Np95/ICBP90-like RING finger protein (NIRF), a novel E3 ubiquitin ligase, has been shown to interact with HBc and promote its degradation. This study investigated the effects of NIRF on replication of hepatitis B virus (HBV) and the mechanisms. We have shown that NIRF inhibits replication of HBV DNA and secretion of HBsAg and HBeAg in HepG2 cells transfected with pAAV-HBV1.3. NIRF also inhibits the replication and secretion of HBV in a mouse model that expressed HBV. NIRF reduces acetylation of HBV cccDNA-bound H3 histones. These results showed that NIRF is involved in the HBV replication cycle not only through direct interaction with HBc but also reduces acetylation of HBV cccDNA-bound H3 histones.
Collapse
Affiliation(s)
- Guanhua Qian
- 1 Department of Cell Biology and Medical Genetics, Chongqing Medical University , Chongqing, China
| | | | | | | | | | | |
Collapse
|
32
|
Moreira FC, Assumpção M, Hamoy IG, Darnet S, Burbano R, Khayat A, Gonçalves AN, Alencar DO, Cruz A, Magalhães L, Araújo Jr. W, Silva A, Santos S, Demachki S, Assumpção P, Ribeiro-dos-Santos Â. MiRNA expression profile for the human gastric antrum region using ultra-deep sequencing. PLoS One 2014; 9:e92300. [PMID: 24647245 PMCID: PMC3960242 DOI: 10.1371/journal.pone.0092300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/20/2014] [Indexed: 12/25/2022] Open
Abstract
Background MicroRNAs are small non-coding nucleotide sequences that regulate gene expression. These structures are fundamental to several biological processes, including cell proliferation, development, differentiation and apoptosis. Identifying the expression profile of microRNAs in healthy human gastric antrum mucosa may help elucidate the miRNA regulatory mechanisms of the human stomach. Methodology/Principal Findings A small RNA library of stomach antrum tissue was sequenced using high-throughput SOLiD sequencing technology. The total read count for the gastric mucosa antrum region was greater than 618,000. After filtering and aligning using with MirBase, 148 mature miRNAs were identified in the gastric antrum tissue, totaling 3,181 quality reads; 63.5% (2,021) of the reads were concentrated in the eight most highly expressed miRNAs (hsa-mir-145, hsa-mir-29a, hsa-mir-29c, hsa-mir-21, hsa-mir-451a, hsa-mir-192, hsa-mir-191 and hsa-mir-148a). RT-PCR validated the expression profiles of seven of these highly expressed miRNAs and confirmed the sequencing results obtained using the SOLiD platform. Conclusions/Significance In comparison with other tissues, the antrum’s expression profile was unique with respect to the most highly expressed miRNAs, suggesting that this expression profile is specific to stomach antrum tissue. The current study provides a starting point for a more comprehensive understanding of the role of miRNAs in the regulation of the molecular processes of the human stomach.
Collapse
Affiliation(s)
| | - Monica Assumpção
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| | - Igor G. Hamoy
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Universidade Federal Rural da Amazônia, Capanema, PA, Brasil
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Rommel Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
| | - André Khayat
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
| | | | - Dayse O. Alencar
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Aline Cruz
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Secretaria Estadual de Saúde do Estado do Pará, Belém, PA, Brasil
| | - Leandro Magalhães
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Wilson Araújo Jr.
- Centro Regional de Hemoterapia, Faculdade Medicina Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Sidney Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
| | - Samia Demachki
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - Paulo Assumpção
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| | - Ândrea Ribeiro-dos-Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
- * E-mail:
| |
Collapse
|
33
|
Wu TF, Zhang W, Su ZP, Chen SS, Chen GL, Wei YX, Sun T, Xie XS, Li B, Zhou YX, Du ZW. UHRF2 mRNA expression is low in malignant glioma but silencing inhibits the growth of U251 glioma cells in vitro. Asian Pac J Cancer Prev 2013; 13:5137-42. [PMID: 23244124 DOI: 10.7314/apjcp.2012.13.10.5137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
UHRF2 is a member of the ubiquitin plant homeo domain RING finger family, which has been proven to be frequently up-regulated in colorectal cancer cells and play a role as an oncogene in breast cancer cells. However, the role of UHRF2 in glioma cells remains unclear. In this study, we performed real-time quantitative PCR on 32 pathologically confirmed glioma samples (grade I, 4 cases; grade II, 11 cases; grade III, 10 cases; and grade IV, 7 cases; according to the 2007 WHO classification system) and four glioma cell lines (A172, U251, U373, and U87). The expression of UHRF2 mRNA was significantly lower in the grade III and grade IV groups compared with the noncancerous brain tissue group, whereas its expression was high in A172, U251, and U373 glioma cell lines. An in vitro assay was performed to investigate the functions of UHRF2. Using a lentivirus-based RNA interference (RNAi) approach, we down-regulated UHRF2 expression in the U251 glioma cell line. This down- regulation led to the inhibition of cell proliferation, an increase in cell apoptosis, and a change of cell cycle distribution, in which S stage cells decreased and G2/M stage cells increased. Our results suggest that UHRF2 may be closely related to tumorigenesis and the development of gliomas.
Collapse
Affiliation(s)
- Ting-Feng Wu
- Neurosurgery and Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oh Y, Chung KC. UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131. J Biol Chem 2013; 288:9102-11. [PMID: 23404503 DOI: 10.1074/jbc.m112.438234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO), a member of the ubiquitin-related protein family, is covalently conjugated to lysine residues of its substrates in a process referred to as SUMOylation. SUMOylation occurs through a series of enzymatic reactions analogous to that of the ubiquitination pathway, resulting in modification of the biochemical and functional properties of substrates. To date, four mammalian SUMO isoforms, a single heterodimeric SUMO-activating E1 enzyme SAE1/SAE2, a single SUMO-conjugating E2 enzyme ubiquitin-conjugating enzyme E2I (UBC9), and a few subgroups of SUMO E3 ligases have been identified. Several SUMO E3 ligases such as topoisomerase I binding, arginine/serine-rich (TOPORS), TNF receptor-associated factor 7 (TRAF7), and tripartite motif containing 27 (TRIM27) have dual functions as ubiquitin E3 ligases. Here, we demonstrate that the ubiquitin E3 ligase UHRF2 also acts as a SUMO E3 ligase. UHRF2 effectively enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. In addition, the SUMO E3 activity of UHRF2 on ZNF131 depends on the presence of SET and RING finger-associated and nuclear localization signal-containing region domains, whereas the critical ubiquitin E3 activity RING domain is dispensable. Our findings suggest that UHRF2 has independent functional domains and regulatory mechanisms for these two distinct enzymatic activities.
Collapse
Affiliation(s)
- Yohan Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
35
|
Bai L, Wang X, Jin F, Yang Y, Qian G, Duan C. UHRF2, another E3 ubiquitin ligase for p53. Biochem Biophys Res Commun 2012; 425:908-11. [PMID: 22902639 DOI: 10.1016/j.bbrc.2012.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 01/04/2023]
Abstract
UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.
Collapse
Affiliation(s)
- Lu Bai
- Department of Cell Biology and Medical Genetics, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
36
|
Focus on…ubiquitin-related tumor suppressors. FEBS Lett 2012; 586:1561. [DOI: 10.1016/j.febslet.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|