1
|
Cross MCG, Aboulnaga E, TerAvest MA. A small number of point mutations confer formate tolerance in Shewanella oneidensis. Appl Environ Microbiol 2025; 91:e0196824. [PMID: 40207971 DOI: 10.1128/aem.01968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/18/2025] [Indexed: 04/11/2025] Open
Abstract
Microbial electrosynthesis (MES) is a sustainable approach to chemical production from CO2 and clean electricity. However, limitations in electron transfer efficiency and gaps in understanding of electron transfer pathways in MES systems prevent full realization of this technology. Shewanella oneidensis could serve as an MES biocatalyst because it has a well-studied, efficient transmembrane electron transfer pathway. A key first step in MES in this organism could be CO2 reduction to formate. However, we report that wild-type S. oneidensis does not tolerate high levels of formate. In this work, we created and characterized formate-tolerant strains of S. oneidensis for further engineering and future use in MES systems through adaptive laboratory evolution. Two different point mutations in a gene encoding a predicted sodium-dependent bicarbonate transporter and a DUF2721-containing protein separately confer formate tolerance to S. oneidensis. The mutations were further evaluated to understand their role in improving formate tolerance. We also show that the wild-type and mutant versions of the putative sodium-dependent bicarbonate transporter improve formate tolerance of Zymomonas mobilis, indicating the potential of transferring this formate tolerance phenotype to other organisms. IMPORTANCE Shewanella oneidensis is a bacterium with a well-studied, efficient extracellular electron transfer pathway. This capability could make this organism a suitable host for microbial electrosynthesis using CO2 or formate as feedstocks. However, we report here that formate is toxic to S. oneidensis, limiting the potential for its use in these systems. In this work, we evolve several strains of S. oneidensis that have improved formate tolerance, and we investigate some mutations that confer this phenotype. The phenotype is confirmed to be attributed to several single point mutations by transferring the wild-type and mutant versions of each gene to the wild-type strain. Finally, the formate tolerance mechanism of one variant is studied using structural modeling and expression in another host. This study, therefore, presents a simple method for conferring formate tolerance to bacterial hosts.
Collapse
Affiliation(s)
- Megan C Gruenberg Cross
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Elhussiny Aboulnaga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Michaela A TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Ren H, Ninomiya K. Acetate-mediated two-stage microbial production of poly[(R)-3-hydroxybutyrate] (PHB) from CO 2 and H 2 using a synthetic medium free of vitamins and cysteine. J Biosci Bioeng 2025:S1389-1723(25)00084-2. [PMID: 40368746 DOI: 10.1016/j.jbiosc.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
The objective of this study is to use the thermophilic acetogen Thermoanaerobacter kivui and a vitamin- and cysteine-free synthetic medium for an acetate-mediated two-stage microbial production of the biodegradable polymer poly[(R)-3-hydroxybutyrate] (PHB) from CO2 and H2. In the first stage, T. kivui could produce 10 g/L acetate within 14 days during anaerobic chemoautotrophic culture with substrate gas (H2:CO2 = 80:20) using cysteine-free DSMZ 171 medium (originally vitamin-free) in the presence of the pH neutralizer CaCO3. In the second stage, the acetate-containing spent medium obtained from the vitamin- and cysteine-free chemoautotrophic culture of T. kivui could be used for the aerobic culture of Cupriavidus necator for PHB production. Specifically, C. necator consumed all of the 5 g/L acetate in the spent medium of T. kivui for 36 h. The cell concentration of C. necator reached 1.2 g/L after 30 h of culture. The PHB content of C. necator reached 38 % (=0.46 g-PHB/L). The PHB yield was 0.11 g-PHB/g-acetate used. The present study can contribute to a sustainable production of bioplastic PHB from CO2 and H2 without vitamins and amino acids and without the risk of flammability problems caused by combustible gases (mixture of H2, O2, CO2).
Collapse
Affiliation(s)
- Huan Ren
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuaki Ninomiya
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
3
|
Zhai Y, Chen L, Ma L, Duan Y, Chen W, Long L, Wang G, Shi A, Chen G, Li D. Fluorescent protein-based anaerobic reporter for construction of promoter libraries in Clostridium autoethanogenum. Int J Biol Macromol 2025; 310:143155. [PMID: 40268006 DOI: 10.1016/j.ijbiomac.2025.143155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Clostridium autoethanogenum, a key organism for syngas fermentation, has great industrial potential as an anaerobic microbe. However, tools for monitoring and characterizing gene expression, such as fluorescent protein-based anaerobic reporters (FPARs), and promoter libraries for regulating expression intensity, are lacking. In this study, we developed a fluorescent protein-based anaerobic reporter (FPAR) tailored for C. autoethanogenum. The FPAR enabled intuitive and precise assessment of promoter activity, facilitating the creation of libraries of constitutive promoters with varying expression strengths, as well as lactose-inducible promoter libraries. The strongest constitutive promoter exhibited approximately 7.5-fold greater activity than the weakest, while the strongest inducible promoter demonstrated a 10-fold increase compared to the weakest. This work not only establishes an efficient FPAR system for C. autoethanogenum, but also provides key genetic elements for advancing metabolic engineering and optimizing industrial processes involving this microbe.
Collapse
Affiliation(s)
- Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liucheng Long
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guanglei Wang
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Aijia Shi
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
4
|
Gamlin J, Caird R, Sachdeva N, Miao Y, Walecka-Hutchison C, Mahendra S, K De Long S. Developing a microbial community structure index (MCSI) as an approach to evaluate and optimize bioremediation performance. Biodegradation 2024; 35:993-1006. [PMID: 39017970 DOI: 10.1007/s10532-024-10093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Much attention is placed on organohalide-respiring bacteria (OHRB), such as Dehalococcoides, during the design and performance monitoring of chlorinated solvent bioremediation systems. However, many OHRB cannot function effectively without the support of a diverse group of other microbial community members (MCMs), who play key roles fermenting organic matter into more readily useable electron donors, producing corrinoids such as vitamin B12, or facilitating other important metabolic processes or biochemical reactions. While it is known that certain MCMs support dechlorination, a metric considering their contribution to bioremediation performance has yet to be proposed. Advances in molecular biology tools offer an opportunity to better understand the presence and activity of specific microbes, and their relation to bioremediation performance. In this paper, we test the hypothesis that a specific microbial consortium identified within 16S ribosomal ribonucleic acid (rRNA) gene next generation sequencing (NGS) data can be predictive of contaminant degradation rates. Field-based data from multiple contaminated sites indicate that increasing relative abundance of specific MCMs correlates with increasing first-order degradation rates. Based on these results, we present a framework for computing a simplified metric using NGS data, the Microbial Community Structure Index, to evaluate the adequacy of the microbial ecosystem during assessment of bioremediation performance.
Collapse
Affiliation(s)
- Jeff Gamlin
- GSI Environmental Inc, 13949 West Colfax Ave, Suite 210, Lakewood, CO, 80401, USA.
| | - Renee Caird
- Jacobs, 120 St. James Ave, Boston, MA, 02116, USA
| | - Neha Sachdeva
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| |
Collapse
|
5
|
Zhao J, Ma H, Gao M, Qian D, Wang Q, Shiung Lam S. Advancements in medium chain fatty acids production through chain elongation: Key mechanisms and innovative solutions for overcoming rate-limiting steps. BIORESOURCE TECHNOLOGY 2024; 408:131133. [PMID: 39033828 DOI: 10.1016/j.biortech.2024.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The depletion of fossil fuels has prompted an urgent search for alternative chemicals from renewable sources. Current technology in medium chain fatty acids (MCFAs) production though chain elongation (CE) is becoming increasingly sustainable, hence the motivation for this review, which provides the detailed description, insights and analysis of the metabolic pathways, substrates type, inoculum and fermentation process. The main rate-limiting steps of microbial MCFAs production were comprehensively revealed and the corresponding innovative solutions were also critically evaluated. Innovative strategies such as substrate pretreatment, electrochemical regulation, product separation, fermentation parameter optimization, and electroactive additives have shown significant advantages in overcoming the rate-limiting steps. Furthermore, novel regulatory strategies such as quorum sensing and electronic bifurcation are expected to further increase the MCFAs yield. Finally, the techno-economic analysis was carried out, and the future research focuses were also put forward.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Dayi Qian
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
6
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Zhang JZ, Li YZ, Xi ZN, Gao HP, Zhang Q, Liu LC, Li FL, Ma XQ. Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals. Front Bioeng Biotechnol 2024; 12:1395540. [PMID: 39055341 PMCID: PMC11269201 DOI: 10.3389/fbioe.2024.1395540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Acetogenic bacteria (acetogens) are a class of microorganisms with conserved Wood-Ljungdahl pathway that can utilize CO and CO2/H2 as carbon source for autotrophic growth and convert these substrates to acetate and ethanol. Acetogens have great potential for the sustainable production of biofuels and bulk biochemicals using C1 gases (CO and CO2) from industrial syngas and waste gases, which play an important role in achieving carbon neutrality. In recent years, with the development and improvement of gene editing methods, the metabolic engineering of acetogens is making rapid progress. With introduction of heterogeneous metabolic pathways, acetogens can improve the production capacity of native products or obtain the ability to synthesize non-native products. This paper reviews the recent application of metabolic engineering in acetogens. In addition, the challenges of metabolic engineering in acetogens are indicated, and strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Jun-Zhe Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Zhen Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ning Xi
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hui-Peng Gao
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Quan Zhang
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Li-Cheng Liu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Fu-Li Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xiao-Qing Ma
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
8
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
9
|
Nam SH, Ye DY, Hwang HG, Jung GY. Convergent Synthesis of Two Heterogeneous Fluxes from Glucose and Acetate for High-Yield Citramalate Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5797-5804. [PMID: 38465388 DOI: 10.1021/acs.jafc.3c09466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biological production of citramalate has garnered attention due to its wide application for food additives and pharmaceuticals, although improvement of yield is known to be challenging. When glucose is used as the sole carbon source, carbon loss through decarboxylation steps for providing acetyl-CoA from pyruvate is inevitable. To avoid this, we engineered a strain to co-utilize glucose and cost-effective acetate while preventing carbon loss for enhancing citramalate production. The production pathway diverged to independently supply the precursors required for the synthesis of citramalate from glucose and acetate, respectively. Moreover, the phosphotransferase system was inactivated and the acetate assimilation pathway and the substrate ratio were optimized to enable the simultaneous and efficient utilization of both carbon sources. This yielded results (5.0 g/L, 0.87 mol/mol) surpassing the yield and titer of the control strain utilizing glucose as the sole carbon source in flask cultures, demonstrating an economically efficient strain redesign strategy for synthesizing various products.
Collapse
Affiliation(s)
- Sung Hyun Nam
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
10
|
Gorter de Vries PJ, Mol V, Sonnenschein N, Jensen TØ, Nielsen AT. Probing efficient microbial CO 2 utilisation through metabolic and process modelling. Microb Biotechnol 2024; 17:e14414. [PMID: 38380934 PMCID: PMC10880515 DOI: 10.1111/1751-7915.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
Acetogenic gas fermentation is increasingly studied as a promising technology to upcycle carbon-rich waste gasses. Currently the product range is limited, and production yields, rates and titres for a number of interesting products do not allow for economically viable processes. By pairing process modelling and host-agnostic metabolic modelling, we compare fermentation conditions and various products to optimise the processes. The models were then used in a simulation of an industrial-scale bubble column reactor. We find that increased temperatures favour gas transfer rates, particularly for the valuable and limiting H2 , while furthermore predicting an optimal feed composition of 9:1 mol H2 to mol CO2 . Metabolically, the increased non-growth associated maintenance requirements of thermophiles favours the formation of catabolic products. To assess the expansion of the product portfolio beyond acetate, both a product volatility analysis and a metabolic pathway model were implemented. In-situ recovery of volatile products is shown to be within range for acetone but challenging due to the extensive evaporation of water, while the direct production of more valuable compounds by acetogens is metabolically unfavourable compared to acetate and ethanol. We discuss alternative approaches to overcome these challenges to utilise acetogenic CO2 fixation to produce a wider range of carbon negative chemicals.
Collapse
Affiliation(s)
- Philip J. Gorter de Vries
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Viviënne Mol
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | - Torbjørn Ølshøj Jensen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- AgainSøborgDenmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
11
|
Sarmikasoglou E, Sumadong P, Roesch LF, Halima S, Hikita C, Watanabe T, Faciola A. Effects of monensin and cashew nut-shell extract on bacterial community composition in a dual-flow continuous culture system. Transl Anim Sci 2023; 8:txad148. [PMID: 38221956 PMCID: PMC10787353 DOI: 10.1093/tas/txad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 μM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.
Collapse
Affiliation(s)
- Efstathios Sarmikasoglou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Phussorn Sumadong
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
- Department of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Luiz Fernando Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32603 FL, USA
| | - Sultana Halima
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Chie Hikita
- Product Development Department, SDS Biotech K.K., Tokyo 101-0022, Japan
| | - Tomonori Watanabe
- Product Development Department, SDS Biotech K.K., Tokyo 101-0022, Japan
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| |
Collapse
|
12
|
François JM. Progress advances in the production of bio-sourced methionine and its hydroxyl analogues. Biotechnol Adv 2023; 69:108259. [PMID: 37734648 DOI: 10.1016/j.biotechadv.2023.108259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The essential sulphur-containing amino acid, methionine, is becoming a mass-commodity product with an annual production that exceeded 1,500,000 tons in 2018. This amino acid is today almost exclusively produced by chemical process from fossil resources. The environmental problems caused by this industrial process, and the expected scarcity of oil resources in the coming years, have recently accelerated the development of bioprocesses for producing methionine from renewable carbon feedstock. After a brief description of the chemical process and the techno-economic context that still justify the production of methionine by petrochemical processes, this review will present the current state of the art of biobased alternatives aiming at a sustainable production of this amino acid and its hydroxyl analogues from renewable carbon feedstock. In particular, this review will focus on three bio-based processes, namely a purely fermentative process based on the metabolic engineering of the natural methionine pathway, a mixed process combining the production of the O-acetyl/O-succinyl homoserine intermediate of this pathway by fermentation followed by an enzyme-based conversion of this intermediate into L-methionine and lately, a hybrid process in which the non-natural chemical synthon, 2,4-dihydroxybutyric acid, obtained by fermentation of sugars is converted by chemo-catalysis into hydroxyl methionine analogues. The industrial potential of these three bioprocesses, as well as the major technical and economic obstacles that remain to be overcome to reach industrial maturity are discussed. This review concludes by bringing up the assets of these bioprocesses to meet the challenge of the "green transition", with the accomplishment of the objective "zero carbon" by 2050 and how they can be part of a model of Bioeconomy enhancing local resources.
Collapse
Affiliation(s)
- Jean Marie François
- Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, 31077 Toulouse, France; Toulouse White Biotechnology, UMS INRAE-INSA-CNRS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| |
Collapse
|
13
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, Minteer SD. Bioelectrocatalytic Synthesis: Concepts and Applications. Angew Chem Int Ed Engl 2023; 62:e202307780. [PMID: 37428529 DOI: 10.1002/anie.202307780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily Carroll
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Ye L, Hou Y, Hu W, Wang H, Yang R, Zhang Q, Feng Q, Zheng X, Yao G, Hao H. Repressed Blautia-acetate immunological axis underlies breast cancer progression promoted by chronic stress. Nat Commun 2023; 14:6160. [PMID: 37789028 PMCID: PMC10547687 DOI: 10.1038/s41467-023-41817-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Chronic stress is a known risk factor for breast cancer, yet the underlying mechanisms are unclear. This study explores the potential involvement of microbial and metabolic signals in chronic stress-promoted breast cancer progression, revealing that reduced abundances of Blautia and its metabolite acetate may contribute to this process. Treatment with Blautia and acetate increases antitumor responses of CD8+ T cells and reverses stress-promoted breast cancer progression in female mice. Patients with depression exhibit lower abundances of Blautia and acetate, and breast cancer female patients with depression display lower abundances of acetate, decreased numbers of tumor-infiltrating CD8+ T cells, and an increased risk of metastasis. These results suggest that Blautia-derived acetate plays a crucial role in modulating the immune response to breast cancer, and its reduction may contribute to chronic stress-promoted cancer progression. Our findings advance the understanding of microbial and metabolic signals implicated in cancer in patients with depression and may provide therapeutic options for female patients with breast cancer and depression.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, 518000, China
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongmei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruopeng Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qihan Zhang
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiaoli Feng
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Laura M, Jo P. No acetogen is equal: Strongly different H 2 thresholds reflect diverse bioenergetics in acetogenic bacteria. Environ Microbiol 2023; 25:2032-2040. [PMID: 37209014 DOI: 10.1111/1462-2920.16429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Acetogens share the capacity to convert H2 and CO2 into acetate for energy conservation (ATP synthesis). This reaction is attractive for applications, such as gas fermentation and microbial electrosynthesis. Different H2 partial pressures prevail in these distinctive applications (low concentrations during microbial electrosynthesis [<40 Pa] vs. high concentrations with gas fermentation [>9%]). Strain selection thus requires understanding of how different acetogens perform under different H2 partial pressures. Here, we determined the H2 threshold (H2 partial pressure at which acetogenesis halts) for eight different acetogenic strains under comparable conditions. We found a three orders of magnitude difference between the lowest and highest H2 threshold (6 ± 2 Pa for Sporomusa ovata vs. 1990 ± 67 Pa for Clostridium autoethanogenum), while Acetobacterium strains had intermediate H2 thresholds. We used these H2 thresholds to estimate ATP gains, which ranged from 0.16 to 1.01 mol ATP per mol acetate (S. ovata vs. C. autoethanogenum). The experimental H2 thresholds thus suggest strong differences in the bioenergetics of acetogenic strains and possibly also in their growth yields and kinetics. We conclude that no acetogen is equal and that a good understanding of their differences is essential to select the most optimal strain for different biotechnological applications.
Collapse
Affiliation(s)
- Munoz Laura
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Philips Jo
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Sieborg MU, Ottosen LDM, Kofoed MVW. Enhanced process control of trickle-bed reactors for biomethanation by vertical profiling directed by hydrogen microsensor monitoring. BIORESOURCE TECHNOLOGY 2023:129242. [PMID: 37263445 DOI: 10.1016/j.biortech.2023.129242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Biomethanation is an emerging Power-to-X technology enabling CO2 valorisation to produce biomethane using renewable H2. A promising reactor for facilitating biomethanation is the trickle bed reactor (TBR), however, these bioreactors are conventionally operated with a black-box approach, where the system is solely described by the input and output characteristics. This study employed a novel approach for process surveillance of internal dynamics in TBRs by installing multiple H2 microsensors along its vertical axis. The H2 microsensor monitoring was demonstrated for 135 days in a TBR integrated into a full-scale biogas plant. Despite achieving an overall CH4 productivity of 12.6 L L-1 d-1, the vertical positioning of microsensors revealed a clear zonation with CH4 productivity zones reaching 54.8 L L-1 d-1 and enabled early warning detection of deteriorating process performance days before detecting it in the product gas. Thus, vertically positioned microsensors present a promising solution for securing process stability.
Collapse
Affiliation(s)
- Mads Ujarak Sieborg
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark
| | - Lars Ditlev Mørck Ottosen
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark; The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, DK-8000, Denmark
| | - Michael Vedel Wegener Kofoed
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N., Denmark; The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, DK-8000, Denmark.
| |
Collapse
|
17
|
Takemura K, Kato J, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Morita T, Murakami K, Nakashimada Y. Enhancing acetone production from H 2 and CO 2 using supplemental electron acceptors in an engineered Moorella thermoacetica. J Biosci Bioeng 2023:S1389-1723(23)00112-3. [PMID: 37100649 DOI: 10.1016/j.jbiosc.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023]
Abstract
Acetogens grow autotrophically and use hydrogen (H2) as the energy source to fix carbon dioxide (CO2). This feature can be applied to gas fermentation, contributing to a circular economy. A challenge is the gain of cellular energy from H2 oxidation, which is substantially low, especially when acetate formation coupled with ATP production is diverted to other chemicals in engineered strains. Indeed, an engineered strain of the thermophilic acetogen Moorella thermoacetica that produces acetone lost autotrophic growth on H2 and CO2. We aimed to recover autotrophic growth and enhance acetone production, in which ATP production was assumed to be a limiting factor, by supplementing with electron acceptors. Among the four selected electron acceptors, thiosulfate and dimethyl sulfoxide (DMSO) enhanced both bacterial growth and acetone titers. DMSO was the most effective and was further analyzed. We showed that DMSO supplementation enhanced intracellular ATP levels, leading to increased acetone production. Although DMSO is an organic compound, it functions as an electron acceptor, not a carbon source. Thus, supplying electron acceptors is a potential strategy to complement the low ATP production caused by metabolic engineering and to improve chemical production from H2 and CO2.
Collapse
Affiliation(s)
- Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Iwasaki
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Akinori Matsushika
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan; National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
18
|
Xu J, Wang J, Ma C, Wei Z, Zhai Y, Tian N, Zhu Z, Xue M, Li D. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnol Adv 2023; 63:108096. [PMID: 36621726 DOI: 10.1016/j.biotechadv.2023.108096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Food scarcity and environmental deterioration are two major problems that human populations currently face. Fortunately, the disruptive innovation of raw food materials has been stimulated by the rapid evolution of biomanufacturing. Therefore, it is expected that the new trends in technology will not only alter the natural resource-dependent food production systems and the traditional way of life but also reduce and assimilate the greenhouse gases released into the atmosphere. This review article summarizes the metabolic pathways associated with C1 gas conversion and the production of single-cell protein for animal feed. Moreover, the protein function, worldwide authorization, market access, and methods to overcome challenges in C1 gas assimilation microbial cell factory construction are also provided. With widespread attention and increasing policy support, the production of C1 gas protein will bring more opportunities and make tremendous contributions to our sustainable future.
Collapse
Affiliation(s)
- Jian Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Jie Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Haihe Laboratory of Synthetic Biology, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zuoxi Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Yida Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Na Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China.
| |
Collapse
|
19
|
Ricci L, Seifert A, Bernacchi S, Fino D, Pirri CF, Re A. Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production. Microb Biotechnol 2023; 16:218-237. [PMID: 36464980 PMCID: PMC9871533 DOI: 10.1111/1751-7915.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2022] Open
Abstract
Carbon dioxide (CO2 ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H2 -dependent CO2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double-stage biotechnological production processes that use CO2 as sole carbon feedstock and H2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two-stage scheme foresees, in the first stage, the catalytic transformation of CO2 into C1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.
Collapse
Affiliation(s)
- Luca Ricci
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | | | | | - Debora Fino
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Candido Fabrizio Pirri
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Angela Re
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| |
Collapse
|
20
|
Liu T, Hu X, Chen P, Zhang R, Zhang S, Chang W, Wang J, Wang S. Effect of partially hydrolyzed guar gum on the composition and metabolic function of the intestinal flora of healthy mice. J Food Biochem 2022; 46:e14508. [PMID: 36332190 DOI: 10.1111/jfbc.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, has shown beneficial physiological effects in various disease models and is used as a prebiotic to regulate intestinal function. However, its role in healthy states remains unclear. The purpose of this study was to investigate the effects of PHGG on gut flora composition and predict metabolic function in healthy mice. Our study showed that PHGG supplementation had significant duration-dependent effects on the composition and function of the intestinal flora of healthy mice. In specific, although the long-term supplementation of PHGG may increase the abundance of some beneficial bacterial species and promote beneficial phenotypes, it may also cause increased body weight and decreased abundance and diversity of gut microorganisms. Therefore, the long-term use of PHGG as a nutritional product still requires further investigation. PRACTICAL APPLICATIONS: As the importance of the gut microbiota has become more widely recognized, interventions that modulate the microbiome and its interaction with the host have gained much attention. While the capability of some prebiotics has largely been shown to have many beneficial effects, the evidence leaves much desirable, and microbiota regulation is explored differently in healthy or diseased states. Currently, the scientific community and regulatory authorities are beginning to pay attention to these unregulated and over-the-counter products claiming to possess probiotic and prebiotic properties. Studies exploring the rationality of these prebiotics as nutraceuticals for use in health states are essential. This study focuses on the effects of PHGG, a prebiotic, on intestinal flora, metabolism, and function when used in a healthy state over a long period. It is helpful to have a clearer understanding of the effect of PHGG on intestinal flora and the possible mechanisms of action to exert effects, which are indicative for the future application of PHGG as a nutraceutical or therapeutic agent..
Collapse
Affiliation(s)
- Tong Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Hu
- Department of Environmental Health, Naval Medical University, Shanghai, People's Republic of China
| | - Peng Chen
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Renlingzi Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenjun Chang
- Department of Environmental Health, Naval Medical University, Shanghai, People's Republic of China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Baumschabl M, Ata Ö, Mitic BM, Lutz L, Gassler T, Troyer C, Hann S, Mattanovich D. Conversion of CO 2 into organic acids by engineered autotrophic yeast. Proc Natl Acad Sci U S A 2022; 119:e2211827119. [PMID: 36383601 PMCID: PMC9704707 DOI: 10.1073/pnas.2211827119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/13/2022] [Indexed: 10/23/2023] Open
Abstract
The increase of CO2 emissions due to human activity is one of the preeminent reasons for the present climate crisis. In addition, considering the increasing demand for renewable resources, the upcycling of CO2 as a feedstock gains an extensive importance to establish CO2-neutral or CO2-negative industrial processes independent of agricultural resources. Here we assess whether synthetic autotrophic Komagataella phaffii (Pichia pastoris) can be used as a platform for value-added chemicals using CO2 as a feedstock by integrating the heterologous genes for lactic and itaconic acid synthesis. 13C labeling experiments proved that the resulting strains are able to produce organic acids via the assimilation of CO2 as a sole carbon source. Further engineering attempts to prevent the lactic acid consumption increased the titers to 600 mg L-1, while balancing the expression of key genes and modifying screening conditions led to 2 g L-1 itaconic acid. Bioreactor cultivations suggest that a fine-tuning on CO2 uptake and oxygen demand of the cells is essential to reach a higher productivity. We believe that through further metabolic and process engineering, the resulting engineered strain can become a promising host for the production of value-added bulk chemicals by microbial assimilation of CO2, to support sustainability of industrial bioprocesses.
Collapse
Affiliation(s)
- Michael Baumschabl
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Özge Ata
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Bernd M. Mitic
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Lisa Lutz
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Thomas Gassler
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Present address: Institute of Microbiology, ETH Zurich, Zurich, 8093, Switzerland
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Stephan Hann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| |
Collapse
|
22
|
Narisetty V, Prabhu AA, Bommareddy RR, Cox R, Agrawal D, Misra A, Haider MA, Bhatnagar A, Pandey A, Kumar V. Development of Hypertolerant Strain of Yarrowia lipolytica Accumulating Succinic Acid Using High Levels of Acetate. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:10858-10869. [PMID: 36035440 PMCID: PMC9400109 DOI: 10.1021/acssuschemeng.2c02408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/16/2022] [Indexed: 05/26/2023]
Abstract
Acetate is emerging as a promising feedstock for biorefineries as it can serve as an alternate carbon source for microbial cell factories. In this study, we expressed acetyl-CoA synthase in Yarrowia lipolytica PSA02004PP, and the recombinant strain grew on acetate as the sole carbon source and accumulated succinic acid or succinate (SA). Unlike traditional feedstocks, acetate is a toxic substrate for microorganisms; therefore, the recombinant strain was further subjected to adaptive laboratory evolution to alleviate toxicity and improve tolerance against acetate. At high acetate concentrations, the adapted strain Y. lipolytica ACS 5.0 grew rapidly and accumulated lipids and SA. Bioreactor cultivation of ACS 5.0 with 22.5 g/L acetate in a batch mode resulted in a maximum cell OD600 of 9.2, with lipid and SA accumulation being 0.84 and 5.1 g/L, respectively. However, its fed-batch cultivation yielded a cell OD600 of 23.5, SA titer of 6.5 g/L, and lipid production of 1.5 g/L with an acetate uptake rate of 0.2 g/L h, about 2.86 times higher than the parent strain. Cofermentation of acetate and glucose significantly enhanced the SA titer and lipid accumulation to 12.2 and 1.8 g/L, respectively, with marginal increment in cell growth (OD600: 26.7). Furthermore, metabolic flux analysis has drawn insights into utilizing acetate for the production of metabolites that are downstream to acetyl-CoA. To the best of our knowledge, this is the first report on SA production from acetate by Y. lipolytica and demonstrates a path for direct valorization of sugar-rich biomass hydrolysates with elevated acetate levels to SA.
Collapse
Affiliation(s)
- Vivek Narisetty
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
| | - Ashish A. Prabhu
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
| | - Rajesh Reddy Bommareddy
- Department
of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1
8ST, United Kingdom
| | - Rylan Cox
- School
of Aerospace, Transport and Manufacturing, Cranfield University, Wharley
End MK43 0AL, United Kingdom
| | - Deepti Agrawal
- Biochemistry
and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Ashish Misra
- Department
of Biochemical Engineering& Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - M. Ali Haider
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Amit Bhatnagar
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Pandey
- Centre
for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
- Centre
for Energy and Environmental Sustainability, Lucknow 226 029, India
- Sustainability
Cluster, School of Engineering, University
of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Vinod Kumar
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
23
|
Hengsbach JN, Sabel-Becker B, Ulber R, Holtmann D. Microbial electrosynthesis of methane and acetate—comparison of pure and mixed cultures. Appl Microbiol Biotechnol 2022; 106:4427-4443. [PMID: 35763070 PMCID: PMC9259517 DOI: 10.1007/s00253-022-12031-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Abstract The electrochemical process of microbial electrosynthesis (MES) is used to drive the metabolism of electroactive microorganisms for the production of valuable chemicals and fuels. MES combines the advantages of electrochemistry, engineering, and microbiology and offers alternative production processes based on renewable raw materials and regenerative energies. In addition to the reactor concept and electrode design, the biocatalysts used have a significant influence on the performance of MES. Thus, pure and mixed cultures can be used as biocatalysts. By using mixed cultures, interactions between organisms, such as the direct interspecies electron transfer (DIET) or syntrophic interactions, influence the performance in terms of productivity and the product range of MES. This review focuses on the comparison of pure and mixed cultures in microbial electrosynthesis. The performance indicators, such as productivities and coulombic efficiencies (CEs), for both procedural methods are discussed. Typical products in MES are methane and acetate, therefore these processes are the focus of this review. In general, most studies used mixed cultures as biocatalyst, as more advanced performance of mixed cultures has been seen for both products. When comparing pure and mixed cultures in equivalent experimental setups a 3-fold higher methane and a nearly 2-fold higher acetate production rate can be achieved in mixed cultures. However, studies of pure culture MES for methane production have shown some improvement through reactor optimization and operational mode reaching similar performance indicators as mixed culture MES. Overall, the review gives an overview of the advantages and disadvantages of using pure or mixed cultures in MES. Key points • Undefined mixed cultures dominate as inoculums for the MES of methane and acetate, which comprise a high potential of improvement • Under similar conditions, mixed cultures outperform pure cultures in MES • Understanding the role of single species in mixed culture MES is essential for future industrial applications
Collapse
Affiliation(s)
- Jan-Niklas Hengsbach
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, Technical University Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Björn Sabel-Becker
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, 35390, Giessen, Germany
| | - Roland Ulber
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, Technical University Kaiserslautern, 67663, Kaiserslautern, Germany.
| | - Dirk Holtmann
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, 35390, Giessen, Germany
| |
Collapse
|
24
|
Chaikitkaew S, In-chan S, Singkhala A, Tukanghan W, Mamimin C, Reungsang A, Birkeland NK, O-Thong S. Clostridium thailandense sp. nov., a novel CO2-reducing acetogenic bacterium isolated from peatland soil. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some species of the genus
Clostridium
are efficient acetate producers and have been deemed useful for upgrading industrial biogas. An acetogenic, strictly anaerobic, Gram-stain-positive, subterminal endospore-forming bacterium designated strain PL3T was isolated from peatland soil enrichments with H2 and CO2. Cells of strain PL3T were 0.8–1.0×4.0–10.0 µm in size and rod-shaped. Growth of strain PL3T occurred at pH 6.0–7.5 (optimum, pH 7.0), at 20–40 °C (optimum, 30 °C) and with 0–1.5 % (w/v) NaCl (optimum, 0.5%). Biochemical analyses revealed that strain PL3T metabolized lactose, maltose, raffinose, rhamnose, lactic acid, sorbitol, arabinose and glycerol. Acetic acid was the predominant metabolite under anaerobic respiration with H2/CO2. The major cellular fatty acids were C16 : 0, C16 : 1
cis 9 and C17 : 0 cyc. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, aminolipid and aminophospholipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PL3T belongs to the genus
Clostridium
with the highest sequence similarity to
Clostridium aciditolerans
DSM 17425T (98.6 %) followed by
Clostridium nitrophenolicum
(97.8 %). The genomic DNA G+C content of strain PL3T was 31.1 mol%.The genomic in silico DNA–DNA hybridization value between strain PL3T and
C. aciditolerans
DSM 17425T was 25.1 %, with an average nucleotide identity of 80.2 %. Based on phenotypic, chemotaxonomic and phylogenetic differences, strain PL3T was suggested to represent a novel species of the genus
Clostridium
, for which the name Clostridium thailandense sp. nov. is proposed. The type strain is PL3T (=DSM 111812T=TISTR 2984T).
Collapse
Affiliation(s)
- Srisuda Chaikitkaew
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
- Biotechnology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand
| | - Supattra In-chan
- Biotechnology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand
| | - Apinya Singkhala
- Biotechnology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand
| | - Wisarut Tukanghan
- Biotechnology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand
| | - Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nils-Kåre Birkeland
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla 90000, Thailand
| |
Collapse
|
25
|
Hong Y, Zeng AP. Biosynthesis Based on One-Carbon Mixotrophy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:351-371. [DOI: 10.1007/10_2021_198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Cheng S, Liu Z, Varrone C, Zhou A, He Z, Li H, Zhang J, Liu W, Yue X. Elucidating the microbial ecological mechanisms on the electro-fermentation of caproate production from acetate via ethanol-driven chain elongation. ENVIRONMENTAL RESEARCH 2022; 203:111875. [PMID: 34403665 DOI: 10.1016/j.envres.2021.111875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Electro-fermentation (EF) is an attractive way to implement the chain elongation (CE) process, by controlling the fermentation environment and reducing the dosage of external electron donors (EDs). However, besides the coexistence performance of external EDs and electrode, applications of EF technology on the fermentation broth containing both EDs and electron acceptors during CE process, are all still limited. The current study investigated the contribution of EF to caproate production, under different acetate: ethanol ratios (RA/E). The effect of multiple EDs, both from ethanol and the bio-cathode, on caproate production, was also assessed. A proof-of-concept, based on experimental data, was presented for the EF-mediated ethanol-driven CE process. Experimental results showed that ethanol, together with the additional electron donors from the bio-cathode, was beneficial for the stable caproate production. The caproate concentration increased with the decrease of RA/E, while the bio-cathode further contributed to 10.7%-26.1 % increase of caproate concentration. Meanwhile, the hydrogen partial pressure tended to 0.10 ± 0.01 bar in all controlled EF reactors, thus favoring caproate production. This was attributed to the increased availability EDs, i.e., hydrogen and ethanol, generated by the electrode and electrochemically active bacteria (EAB), which might create multiple additional pathways to achieve caproate production. Molecular ecological networks analysis of the key microbiomes further revealed underlying cooperative relationships, beneficial to the chain elongation process. The genus Clostridium_sensu_stricto, as the dominant microbial community, was positively related to acetogens, EAB and fermenters.
Collapse
Affiliation(s)
- Shuanglan Cheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Copenhagen, Denmark
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Zhangwei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jiaguang Zhang
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 51805, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
27
|
Jain S, Katsyv A, Basen M, Müller V. The monofunctional CO dehydrogenase CooS is essential for growth of Thermoanaerobacter kivui on carbon monoxide. Extremophiles 2021; 26:4. [PMID: 34919167 PMCID: PMC8683389 DOI: 10.1007/s00792-021-01251-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Thermoanaerobacter kivui is a thermophilic acetogen that can grow on carbon monoxide as sole carbon and energy source. To identify the gene(s) involved in CO oxidation, the genome sequence was analyzed. Two genes potentially encoding CO dehydrogenases were identified. One, cooS, potentially encodes a monofunctional CO dehydrogenase, whereas another, acsA, potentially encodes the CODH component of the CODH/ACS complex. Both genes were cloned, a His-tag encoding sequence was added, and the proteins were produced from a plasmid in T. kivui. His-AcsA copurified by affinity chromatography with AcsB, the acetyl-CoA synthase of the CO dehydrogenase/acetyl CoA synthase complex. His-CooS copurified with CooF1, a small iron-sulfur center containing protein likely involved in electron transport. Both protein complexes had CO:ferredoxin oxidoreductase as well as CO:methyl viologen oxidoreductase activity, but the activity of CooSF1 was 15-times and 231-times lower, respectively. To underline the importance of CooS, the gene was deleted in the CO-adapted strain. Interestingly, the ∆cooS deletion mutant did not grow on CO anymore. These experiments clearly demonstrated that CooS is essential for growth of T. kivui on CO. This is in line with the hypothesis that CooS is the CO-oxidizing enzyme in cells growing on CO.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Alexander Katsyv
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, 18059, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
28
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
29
|
Fuentes L, Palomo-Briones R, de Jesús Montoya-Rosales J, Braga L, Castelló E, Vesga A, Tapia-Venegas E, Razo-Flores E, Ecthebehere C. Knowing the enemy: homoacetogens in hydrogen production reactors. Appl Microbiol Biotechnol 2021; 105:8989-9002. [PMID: 34716461 DOI: 10.1007/s00253-021-11656-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
One of the bottlenecks of the hydrogen production by dark fermentation is the low yields obtained because of the homoacetogenesis persistence, a metabolic pathway where H2 and CO2 are consumed to produce acetate. The central reactions of H2 production and homoacetogenesis are catalyzed by enzyme hydrogenase and the formyltetrahydrofolate synthetase, respectively. In this work, genes encoding for the formyltetrahydrofolate synthetase (fthfs) and hydrogenase (hydA) were used to investigate the diversity of homoacetogens as well as their phylogenetic relationships through quantitative PCR (qPCR) and next-generation amplicon sequencing. A total of 70 samples from 19 different H2-producing bioreactors with different configurations and operating conditions were analyzed. Quantification through qPCR showed that the abundance of fthfs and hydA was strongly associated with the type of substrate, organic loading rate, and H2 production performance. In particular, fthfs sequencing revealed that homoacetogens diversity was low with one or two dominant homoacetogens in each sample. Clostridium carboxivorans was detected in the reactors fed with agave hydrolisates; Acetobacterium woodii dominated in systems fed with glucose; Blautia coccoides and unclassified Sporoanaerobacter species were present in reactors fed with cheese whey; finally, Eubacterium limosum and Selenomonas sp. were co-dominant in reactors fed with glycerol. Altogether, quantification and sequencing analysis revealed that the occurrence of homoacetogenesis could take place due to (1) metabolic changes of H2-producing bacteria towards homoacetogenesis or (2) the displacement of H2-producing bacteria by homoacetogens. Overall, it was demonstrated that the fthfs gene was a suitable marker to investigate homoacetogens in H2-producing reactors. KEY POINTS: • qPCR and sequencing analysis revealed two homoacetogenesis phenomena. • fthfs gene was a suitable marker to investigate homoacetogens in H2 reactors.
Collapse
Affiliation(s)
- Laura Fuentes
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay
| | - Rodolfo Palomo-Briones
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - José de Jesús Montoya-Rosales
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Lucía Braga
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Elena Castelló
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Alejandra Vesga
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2085, Valparaíso, Av. Brasil, Chile
| | - Estela Tapia-Venegas
- Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha Av, Leopoldo Carvallo 270, Valparaíso, Chile
| | - Elías Razo-Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Claudia Ecthebehere
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay.
| |
Collapse
|
30
|
Arslan K, Veiga MC, Kennes C. Autotrophic (C 1-gas) versus heterotrophic (fructose) accumulation of acetic acid and ethanol in Clostridium aceticum. BIORESOURCE TECHNOLOGY 2021; 337:125485. [PMID: 34320764 DOI: 10.1016/j.biortech.2021.125485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The influence of the carbon source on the metabolism and growth of Clostridium aceticum was investigated, supplying either CO or fructose as sole carbon source. The acid and solvent production patterns were determined under either autotrophic or heterotrophic conditions, elucidating the effect of pH on the substrate's bioconversion pattern. The highest maximum specific growth rate was observed with CO, under the organism's optimal growth conditions, reaching 0.052 h-1 and an acetic acid concentration of 18 g·L-1. The production of 4.4 g·L-1 ethanol was also possible, after medium acidification, during CO bioconversion. Conversely, formic acid inhibition was observed during fructose fermentation under optimal growth conditions. In the latter experiments, it was not possible to stimulate solvent production when growing C. aceticum on fructose, despite applying the same medium acidification strategy as with CO, showing the selective effect of the carbon source (autotrophic vs heterotrophic) on the metabolic pattern and solventogenesis.
Collapse
Affiliation(s)
- Kübra Arslan
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
31
|
Aoki R, Onuki M, Hattori K, Ito M, Yamada T, Kamikado K, Kim YG, Nakamoto N, Kimura I, Clarke JM, Kanai T, Hase K. Commensal microbe-derived acetate suppresses NAFLD/NASH development via hepatic FFAR2 signalling in mice. MICROBIOME 2021; 9:188. [PMID: 34530928 PMCID: PMC8447789 DOI: 10.1186/s40168-021-01125-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 07/06/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Non-alcoholic liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, and it can progress to non-alcoholic steatohepatitis (NASH). Alterations in the gut microbiome have been implicated in the development of NAFLD/NASH, although the underlying mechanisms remain unclear. RESULTS We found that the consumption of the prebiotic inulin markedly ameliorated the phenotype of NAFLD/NASH, including hepatic steatosis and fibrosis, in mice. Inulin consumption resulted in global changes in the gut microbiome, including concomitant enrichment of the genera Bacteroides and Blautia, and increased concentrations of short-chain fatty acids, particularly acetate, in the gut lumen and portal blood. The consumption of acetate-releasing resistant starch protected against NAFLD development. Colonisation by Bacteroides acidifaciens and Blautia producta in germ-free mice resulted in synergetic effects on acetate production from inulin. Furthermore, the absence of free fatty acid receptor 2 (FFAR2), an acetate receptor, abolished the protective effect of inulin, as indicated by the more severe liver hypertrophy, hypercholesterolaemia and inflammation. These effects can be attributed to an exacerbation of insulin resistance in the liver, but not in muscle or adipose tissue. CONCLUSION These findings demonstrated that the commensal microbiome-acetate-FFAR2 molecular circuit improves insulin sensitivity in the liver and prevents the development of NAFLD/NASH. Video abstract.
Collapse
Affiliation(s)
- Ryo Aoki
- Department of Gastroenterology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, 555-8502, Japan
| | - Masayoshi Onuki
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Koya Hattori
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Masato Ito
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Takahiro Yamada
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Kohei Kamikado
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, 555-8502, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Nobuhiro Nakamoto
- Department of Gastroenterology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Julie M Clarke
- CSIRO Health and Biosecurity, Adelaide, South Australia, 5000, Australia
| | - Takanori Kanai
- Department of Gastroenterology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan.
- International Research and Development Centre for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, 108-8639, Japan.
| |
Collapse
|
32
|
The longitudinal and cross-sectional heterogeneity of the intestinal microbiota. Curr Opin Microbiol 2021; 63:221-230. [PMID: 34428628 DOI: 10.1016/j.mib.2021.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
A central goal of microbiome research is to understand the factors that balance gut-associated microbial communities, thereby creating longitudinal and cross-sectional heterogeneity in their composition and density. Whereas the diet dictates taxa dominance, microbial communities are linked intimately to host physiology through digestive and absorptive functions that generate longitudinal heterogeneity in nutrient availability. Additionally, the host differentially controls the access to electron acceptors along the longitudinal axis of the intestine to drive the development of microbial communities that are dominated by facultatively anaerobic bacteria in the small intestine or obligately anaerobic bacteria in the large intestine. By secreting mucus and antimicrobials, the host further constructs microhabitats that generate cross-sectional heterogeneity in the colonic microbiota composition. Here we will review how understanding the host factors involved in generating longitudinal and cross-sectional microbiota heterogeneity helps define physiological states that are characteristic of or appropriate to a homeostatic microbiome.
Collapse
|
33
|
Kremp F, Müller V. Methanol and methyl group conversion in acetogenic bacteria: biochemistry, physiology and application. FEMS Microbiol Rev 2021; 45:5903270. [PMID: 32901799 DOI: 10.1093/femsre/fuaa040] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
The production of bulk chemicals mostly depends on exhausting petroleum sources and leads to emission of greenhouse gases. Within the last decades the urgent need for alternative sources has increased and the development of bio-based processes received new attention. To avoid the competition between the use of sugars as food or fuel, other feedstocks with high availability and low cost are needed, which brought acetogenic bacteria into focus. This group of anaerobic organisms uses mixtures of CO2, CO and H2 for the production of mostly acetate and ethanol. Also methanol, a cheap and abundant bulk chemical produced from methane, is a suitable substrate for acetogenic bacteria. In methylotrophic acetogens the methyl group is transferred to the Wood-Ljungdahl pathway, a pathway to reduce CO2 to acetate via a series of C1-intermediates bound to tetrahydrofolic acid. Here we describe the biochemistry and bioenergetics of methanol conversion in the biotechnologically interesting group of anaerobic, acetogenic bacteria. Further, the bioenergetics of biochemical production from methanol is discussed.
Collapse
Affiliation(s)
- Florian Kremp
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
34
|
Propionate Production from Carbon Monoxide by Synthetic Cocultures of Acetobacterium wieringae and Propionigenic Bacteria. Appl Environ Microbiol 2021; 87:e0283920. [PMID: 33990298 PMCID: PMC8231444 DOI: 10.1128/aem.02839-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gas fermentation is a promising way to convert CO-rich gases to chemicals. We studied the use of synthetic cocultures composed of carboxydotrophic and propionigenic bacteria to convert CO to propionate. So far, isolated carboxydotrophs cannot directly ferment CO to propionate, and therefore, this cocultivation approach was investigated. Four distinct synthetic cocultures were constructed, consisting of Acetobacterium wieringae (DSM 1911T) and Pelobacter propionicus (DSM 2379T), Ac. wieringae (DSM 1911T) and Anaerotignum neopropionicum (DSM 3847T), Ac. wieringae strain JM and P. propionicus (DSM 2379T), and Ac. wieringae strain JM and An. neopropionicum (DSM 3847T). Propionate was produced by all the cocultures, with the highest titer (∼24 mM) being measured in the coculture composed of Ac. wieringae strain JM and An. neopropionicum, which also produced isovalerate (∼4 mM), butyrate (∼1 mM), and isobutyrate (0.3 mM). This coculture was further studied using proteogenomics. As expected, enzymes involved in the Wood-Ljungdahl pathway in Ac. wieringae strain JM, which are responsible for the conversion of CO to ethanol and acetate, were detected; the proteome of An. neopropionicum confirmed the conversion of ethanol to propionate via the acrylate pathway. In addition, proteins related to amino acid metabolism and stress response were highly abundant during cocultivation, which raises the hypothesis that amino acids are exchanged by the two microorganisms, accompanied by isovalerate and isobutyrate production. This highlights the importance of explicitly looking at fortuitous microbial interactions during cocultivation to fully understand coculture behavior. IMPORTANCE Syngas fermentation has great potential for the sustainable production of chemicals from wastes (via prior gasification) and flue gases containing CO/CO2. Research efforts need to be directed toward expanding the product portfolio of gas fermentation, which is currently limited to mainly acetate and ethanol. This study provides the basis for a microbial process to produce propionate from CO using synthetic cocultures composed of acetogenic and propionigenic bacteria and elucidates the metabolic pathways involved. Furthermore, based on proteomics results, we hypothesize that the two bacterial species engage in an interaction that results in amino acid exchange, which subsequently promotes isovalerate and isobutyrate production. These findings provide a new understanding of gas fermentation and a coculturing strategy for expanding the product spectrum of microbial conversion of CO/CO2.
Collapse
|
35
|
Debabov VG. Acetogens: Biochemistry, Bioenergetics, Genetics, and Biotechnological Potential. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
36
|
Lai CY, Zhou L, Yuan Z, Guo J. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. WATER RESEARCH 2021; 197:117120. [PMID: 33862393 DOI: 10.1016/j.watres.2021.117120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
As a clean and renewable energy, biogas is an important alternative to fossil fuels. However, the high carbon dioxide (CO2) content in biogas limits its value as a fuel. 'Biogas upgrading' is an advanced process which removes CO2 from biogas, thereby converting biogas to biomethane, which has a higher commercial value. Microbial technologies offer a sustainable and cost-effective way to upgrade biogas, removing CO2 using hydrogen (H2) as electron donor, generated by surplus electricity from renewable wind or solar energy. Hydrogenotrophic methanogens can be applied to convert CO2 with H2 to methane (CH4), or alternatively, homoacetogens can convert both CO2 and H2 into value-added chemicals. Here, we comprehensively review the current state of biogas generation and utilization, and describe the advances in biological, H2-dependent biogas upgrading technologies, with particular attention to key challenges associated with the processes, e.g., metabolic limitations, low H2 transfer rate, and finite CO2 conversion rate. We also highlight several new strategies for overcoming technical barriers to achieve efficient CO2 conversion, including process optimization to eliminate metabolic limitation, novel reactor designs to improve H2 transfer rate and utilization efficiency, and employing advanced genetic engineering tools to generate more efficient microorganisms. The insights offered in this review will promote further exploration into microbial, H2-driven biogas upgrading, towards addressing the global energy crisis and climate change associated with use of fossil fuels.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Linjie Zhou
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
37
|
Kim Y, Lama S, Agrawal D, Kumar V, Park S. Acetate as a potential feedstock for the production of value-added chemicals: Metabolism and applications. Biotechnol Adv 2021; 49:107736. [PMID: 33781888 DOI: 10.1016/j.biotechadv.2021.107736] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Acetate is regarded as a promising carbon feedstock in biological production owing to its possible derivation from C1 gases such as CO, CO2 and methane. To best use of acetate, comprehensive understanding of acetate metabolisms from genes and enzymes to pathways and regulations is needed. This review aims to provide an overview on the potential of acetate as carbon feedstock for industrial biotechnology. Biochemical, microbial and biotechnological aspects of acetate metabolism are described. Especially, the current state-of-the art in the production of value-added chemicals from acetate is summarized. Challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Yeonhee Kim
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Suman Lama
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK430AL, United Kingdom.
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
38
|
Murali N, Srinivas K, Ahring BK. Increasing the Production of Volatile Fatty Acids from Corn Stover Using Bioaugmentation of a Mixed Rumen Culture with Homoacetogenic Bacteria. Microorganisms 2021; 9:337. [PMID: 33567655 PMCID: PMC7914532 DOI: 10.3390/microorganisms9020337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Volatile fatty acids (VFA) are industrially versatile chemicals and have a major market. Although currently produced from petrochemicals, chemical industries are moving towards more bio-based VFA produced from abundant, cheap and renewable sources such as lignocellulosic biomass. In this study, we examined the effect of bioaugmentation with homoacetogenic bacteria for increasing VFA production in lignocellulose fermentation process. The central hypothesis of this study was that inhibition of methanogenesis in an in vitro rumen bioreactor fed with lignocellulosic biomass hydrolysate increases the hydrogen partial pressure, which can be redirected towards increased VFA production, particularly acetic acid, through targeted bioaugmentation with known homoacetogenic bacteria. In this study, methanogenesis during ruminal fermentation of wet exploded corn stover was initially inhibited with 10 mM of 2-bromoethanesulfonate (BES), followed by bioaugmentation with either Acetitomaculum ruminis and Acetobacterium woodii in two separate bioreactors. During the inhibition phase, we found that addition of BES decreased the acetic acid yield by 24%, while increasing headspace hydrogen from 1% to 60%. After bioaugmentation, the headspace hydrogen was consumed in both bioreactors and the concentration of acetic acids increased 45% when A. ruminis was added and 70% with A. woodii added. This paper demonstrates that mixed microbial fermentation can be manipulated to increase VFA production through bioaugmentation.
Collapse
Affiliation(s)
- Nanditha Murali
- Department of Chemical Engineering, Voiland College of Engineering and Architecture, Washington State University, Pullman, WA 99163, USA; (N.M.); (K.S.)
- Bio-Products, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
| | - Keerthi Srinivas
- Department of Chemical Engineering, Voiland College of Engineering and Architecture, Washington State University, Pullman, WA 99163, USA; (N.M.); (K.S.)
- Bio-Products, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
| | - Birgitte K. Ahring
- Department of Chemical Engineering, Voiland College of Engineering and Architecture, Washington State University, Pullman, WA 99163, USA; (N.M.); (K.S.)
- Bio-Products, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
39
|
Cohen SE, Brignole EJ, Wittenborn EC, Can M, Thompson S, Ragsdale SW, Drennan CL. Negative-Stain Electron Microscopy Reveals Dramatic Structural Rearrangements in Ni-Fe-S-Dependent Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. Structure 2021; 29:43-49.e3. [PMID: 32937101 PMCID: PMC7796957 DOI: 10.1016/j.str.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The Ni-Fe-S-containing A-cluster of acetyl-coenzyme A (CoA) synthase (ACS) assembles acetyl-CoA from carbon monoxide (CO), a methyl group (CH3+), and CoA. To accomplish this feat, ACS must bind CoA and interact with two other proteins that contribute the CO and CH3+, respectively: CO dehydrogenase (CODH) and corrinoid Fe-S protein (CFeSP). Previous structural data show that, in the model acetogen Moorella thermoacetica, domain 1 of ACS binds to CODH such that a 70-Å-long internal channel is created that allows CO to travel from CODH to the A-cluster. The A-cluster is largely buried and is inaccessible to CFeSP for methylation. Here we use electron microscopy to capture multiple snapshots of ACS that reveal previously uncharacterized domain motion, forming extended and hyperextended structural states. In these structural states, the A-cluster is accessible for methylation by CFeSP.
Collapse
Affiliation(s)
- Steven E Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward J Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth C Wittenborn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Samuel Thompson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1.
| |
Collapse
|
40
|
Katsyv A, Müller V. Overcoming Energetic Barriers in Acetogenic C1 Conversion. Front Bioeng Biotechnol 2020; 8:621166. [PMID: 33425882 PMCID: PMC7793690 DOI: 10.3389/fbioe.2020.621166] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Srivastava P, Marjo C, Gerami A, Jones Z, Rahman S. Surface Analysis of Coal Indicating Neutral Red Enhances the Precursor Steps of Methanogenesis. Front Microbiol 2020; 11:586917. [PMID: 33240241 PMCID: PMC7680738 DOI: 10.3389/fmicb.2020.586917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Artificially stimulated, high-yield microbial production of methane from coal is a challenging problem that continues to generate research interest. Decomposition of organic matter and production of methane from coal are the results of multiple redox reactions carried out by different communities of bacteria and archaea. Recent work by our group (Beckmann et al., 2015) demonstrated that the presence of the redox-mediating molecule neutral red, in its crystalline form on a coal surface, can increase methane production. However, hydrolysis and the acetogenesis of the coal surface are essential precursor steps for methane production by archaea. Acetogenesis is the preparation phase of methanogenesis because methanogens can only assimilate acetate, CO2 and H2 among the products formed during this process. In the present study, the surface chemical analysis of neutral red treated coal using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) demonstrate that the acetate production and resulting oxidation of the coal only occurred at few nanometers into the coal surface (at the nanoscale <5 nm). We observed that in the presence of neutral red and groundwater microbes, acetate signals in coal surface chemistry increased. This is the first evidence suggesting that neutral red enhances the biological conversion of coal into acetate. Microscopy demonstrated that neutral red crystals were co-localize with cells at the surface of coal in groundwater. This is consistent with neutral red crystals serving as a redox hub, concentrating and distributing reducing equivalents amongst the microbial community. In this study, the chemical changes of neutral red treated coal indicated that neutral red doubles the concentration of acetate over the control (coal without neutral red), emphasizing the importance of maximizing the fracture surface coverage of this redox mediator. Overall, results suggested that, neutral red not only can benefit acetoclastic methanogens, but also the fermentative and acetogenic bacteria involved in generating acetate.
Collapse
Affiliation(s)
- Priyanka Srivastava
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Christopher Marjo
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Alireza Gerami
- School of Minerals and Mining, University of New South Wales, Sydney, NSW, Australia
| | - Zackary Jones
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Sheik Rahman
- School of Minerals and Mining, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. Int J Mol Sci 2020; 21:ijms21207639. [PMID: 33076477 PMCID: PMC7589590 DOI: 10.3390/ijms21207639] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.
Collapse
|
43
|
Vees CA, Neuendorf CS, Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020; 47:753-787. [PMID: 32894379 PMCID: PMC7658081 DOI: 10.1007/s10295-020-02296-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christian Simon Neuendorf
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
44
|
Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. Competition for Hydrogen Prevents Coexistence of Human Gastrointestinal Hydrogenotrophs in Continuous Culture. Front Microbiol 2020; 11:1073. [PMID: 32547517 PMCID: PMC7272605 DOI: 10.3389/fmicb.2020.01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/29/2020] [Indexed: 01/24/2023] Open
Abstract
Understanding the metabolic dynamics of the human gastrointestinal tract (GIT) microbiota is of growing importance as research continues to link the microbiome to host health status. Microbial strains that metabolize hydrogen have been associated with a variety of both positive and negative host nutritional and health outcomes, but limited data exists for their competition in the GIT. To enable greater insight into the behaviour of these microbes, a mathematical model was developed for the metabolism and growth of the three major hydrogenotrophic groups: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens. In batch culture simulations with abundant sulphate and hydrogen, the SRB outcompeted the methanogen for hydrogen due to having a half-saturation constant 106 times lower than that of the methanogen. The acetogen, with a high model threshold for hydrogen uptake of around 70 mM, was the least competitive. Under high lactate and zero sulphate conditions, hydrogen exchange between the SRB and the methanogen was the dominant interaction. The methanogen grew at 70% the rate of the SRB, with negligible acetogen growth. In continuous culture simulations, both the SRB and the methanogen were washed out at dilution rates above 0.15 h−1 regardless of substrate availability, whereas the acetogen could survive under abundant hydrogen conditions. Specific combinations of conditions were required for survival of more than one hydrogenotroph in continuous culture, and survival of all three was not possible. The stringency of these requirements and the inability of the model to simulate survival of all three hydrogenotrophs in continuous culture demonstrates that factors outside of those modelled are vital to allow hydrogenotroph coexistence in the GIT.
Collapse
Affiliation(s)
- Nick W Smith
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Ruakura Research Centre, Hamilton, New Zealand.,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Paul R Shorten
- Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
45
|
Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE. Microbial electrosynthesis from CO 2: Challenges, opportunities and perspectives in the context of circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122863. [PMID: 32019708 DOI: 10.1016/j.biortech.2020.122863] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Recycling CO2 into organic products through microbial electrosynthesis (MES) is attractive from the perspective of circular bioeconomy. However, several challenges need to be addressed before scaling-up MES systems. In this review, recent advances in electrode materials, microbe-catalyzed CO2 reduction and MES energy consumption are discussed in detail. Anode materials are briefly reviewed first, with several strategies proposed to reduce the energy input for electron generation and enhance MES bioeconomy. This was followed by discussions on MES cathode materials and configurations for enhanced chemolithoautotroph growth and CO2 reduction. Various chemolithoautotrophs, effective for CO2 reduction and diverse bioproduct formation, on MES cathode were also discussed. Finally, research efforts on developing cost-effective process for bioproduct extraction from MES are presented. Future perspectives to improve product formation and reduce energy cost are discussed to realize the application of the MES as a chemical production platform in the context of building a circular economy.
Collapse
Affiliation(s)
- Bin Bian
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Suman Bajracharya
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Jiajie Xu
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Deepak Pant
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, Mol 2400, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| | - Pascal E Saikaly
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia.
| |
Collapse
|
46
|
Mathematical modelling supports the existence of a threshold hydrogen concentration and media-dependent yields in the growth of a reductive acetogen. Bioprocess Biosyst Eng 2020; 43:885-894. [PMID: 31982985 PMCID: PMC7125072 DOI: 10.1007/s00449-020-02285-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
The bacterial production of acetate via reductive acetogenesis along the Wood–Ljungdahl metabolic pathway is an important source of this molecule in several environments, ranging from industrial bioreactors to the human gastrointestinal tract. Here, we contributed to the study of reductive acetogens by considering mathematical modelling techniques for the prediction of bacterial growth and acetate production. We found that the incorporation of a hydrogen uptake concentration threshold into the models improves their predictions and we calculated this threshold as 86.2 mM (95% confidence interval 6.1–132.6 mM). Monod kinetics and first-order kinetics models, with the inclusion of two candidate threshold terms or reversible Michaelis–Menten kinetics, were compared to experimental data and the optimal formulation for predicting both growth and metabolism was found. The models were then used to compare the efficacy of two growth media for acetogens. We found that the recently described general acetogen medium was superior to the DSMZ medium in terms of unbiased estimation of acetogen growth and investigated the contribution of yeast extract concentration to acetate production and bacterial growth in culture. The models and their predictions will be useful to those studying both industrially and environmentally relevant reductive acetogenesis and allow for straightforward adaptation to similar cases with different organisms.
Collapse
|
47
|
François JM, Lachaux C, Morin N. Synthetic Biology Applied to Carbon Conservative and Carbon Dioxide Recycling Pathways. Front Bioeng Biotechnol 2020; 7:446. [PMID: 31998710 PMCID: PMC6966089 DOI: 10.3389/fbioe.2019.00446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022] Open
Abstract
The global warming conjugated with our reliance to petrol derived processes and products have raised strong concern about the future of our planet, asking urgently to find sustainable substitute solutions to decrease this reliance and annihilate this climate change mainly due to excess of CO2 emission. In this regard, the exploitation of microorganisms as microbial cell factories able to convert non-edible but renewable carbon sources into biofuels and commodity chemicals appears as an attractive solution. However, there is still a long way to go to make this solution economically viable and to introduce the use of microorganisms as one of the motor of the forthcoming bio-based economy. In this review, we address a scientific issue that must be challenged in order to improve the value of microbial organisms as cell factories. This issue is related to the capability of microbial systems to optimize carbon conservation during their metabolic processes. This initiative, which can be addressed nowadays using the advances in Synthetic Biology, should lead to an increase in products yield per carbon assimilated which is a key performance indice in biotechnological processes, as well as to indirectly contribute to a reduction of CO2 emission.
Collapse
Affiliation(s)
- Jean Marie François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.,Toulouse White Biotechnology Center (TWB), Ramonville-Saint-Agne, France
| | - Cléa Lachaux
- Toulouse White Biotechnology Center (TWB), Ramonville-Saint-Agne, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.,Toulouse White Biotechnology Center (TWB), Ramonville-Saint-Agne, France
| |
Collapse
|
48
|
Fang X, Kalathil S, Reisner E. Semi-biological approaches to solar-to-chemical conversion. Chem Soc Rev 2020; 49:4926-4952. [DOI: 10.1039/c9cs00496c] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides an overview of the cross-disciplinary field of semi-artificial photosynthesis, which combines strengths of biocatalysis and artificial photosynthesis to develop new concepts and approaches for solar-to-chemical conversion.
Collapse
Affiliation(s)
- Xin Fang
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Shafeer Kalathil
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
49
|
Beck MH, Flaiz M, Bengelsdorf FR, Dürre P. Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii. Appl Microbiol Biotechnol 2019; 104:687-699. [DOI: 10.1007/s00253-019-10248-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023]
|
50
|
Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts 2019. [DOI: 10.3390/catal9110962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium sp. is a genus of anaerobic bacteria capable of metabolizing several substrates (monoglycerides, diglycerides, glycerol, carbon monoxide, cellulose, and more), into valuable products. Biofuels, such as ethanol and butanol, and several chemicals, such as acetone, 1,3-propanediol, and butyric acid, can be produced by these organisms through fermentation processes. Among the most well-known species, Clostridium carboxidivorans, C. ragsdalei, and C. ljungdahlii can be highlighted for their ability to use gaseous feedstocks (as syngas), obtained from the gasification or pyrolysis of waste material, to produce ethanol and butanol. C. beijerinckii is an important species for the production of isopropanol and butanol, with the advantage of using hydrolysate lignocellulosic material, which is produced in large amounts by first-generation ethanol industries. High yields of 1,3 propanediol by C. butyricum are reported with the use of another by-product from fuel industries, glycerol. In this context, several Clostridium wild species are good candidates to be used as biocatalysts in biochemical or hybrid processes. In this review, literature data showing the technical viability of these processes are presented, evidencing the opportunity to investigate them in a biorefinery context.
Collapse
|