1
|
Yang Y, Sakurai M. Advances in Detection Methods for A-to-I RNA Editing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70014. [PMID: 40223708 PMCID: PMC11995373 DOI: 10.1002/wrna.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a key post-transcriptional modification that influences gene expression and various cellular processes. Advances in sequencing technologies have greatly contributed to the identification of A-to-I editing sites, providing insights into their distribution across coding and non-coding regions. These developments have facilitated the discovery of functionally relevant editing events and have advanced the understanding of their biological roles. This review presents the evolution of methodologies for RNA editing detection and examines recent advances, including chemically-assisted, enzyme-assisted, and quantitative approaches. By evaluating these techniques, we aim to help researchers select the most effective tools for investigating RNA editing and its broader implications in health and disease.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| | - Masayuki Sakurai
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| |
Collapse
|
2
|
Chen L, Hui L, Li J. The multifaceted role of insulin-like growth factor binding protein 7. Front Cell Dev Biol 2024; 12:1420862. [PMID: 39081862 PMCID: PMC11286461 DOI: 10.3389/fcell.2024.1420862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Insulin-like growth factor binding protein 7 (IGFBP7) serves as a crucial extracellular matrix protein, exerting pivotal roles in both physiological and pathological processes. This comprehensive review meticulously delineates the structural attributes of IGFBP7, juxtaposing them with other members within the IGFBP families, and delves into the expression patterns across various tissues. Furthermore, the review thoroughly examines the multifaceted functions of IGFBP7, encompassing its regulatory effects on cell proliferation, apoptosis, and migration, elucidating the underlying mechanistic pathways. Moreover, it underscores the compelling roles in tumor progression, acute kidney injury, and reproductive processes. By rigorously elucidating the diverse functionalities and regulatory networks of IGFBP7 across various physiological and pathological contexts, this review aims to furnish a robust theoretical framework and delineate future research trajectories for leveraging IGFBP7 in disease diagnosis, therapeutic interventions, and pharmaceutical innovations.
Collapse
Affiliation(s)
| | | | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Paremskaia AI, Kogan AA, Murashkina A, Naumova DA, Satish A, Abramov IS, Feoktistova SG, Mityaeva ON, Deviatkin AA, Volchkov PY. Codon-optimization in gene therapy: promises, prospects and challenges. Front Bioeng Biotechnol 2024; 12:1371596. [PMID: 38605988 PMCID: PMC11007035 DOI: 10.3389/fbioe.2024.1371596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Codon optimization has evolved to enhance protein expression efficiency by exploiting the genetic code's redundancy, allowing for multiple codon options for a single amino acid. Initially observed in E. coli, optimal codon usage correlates with high gene expression, which has propelled applications expanding from basic research to biopharmaceuticals and vaccine development. The method is especially valuable for adjusting immune responses in gene therapies and has the potenial to create tissue-specific therapies. However, challenges persist, such as the risk of unintended effects on protein function and the complexity of evaluating optimization effectiveness. Despite these issues, codon optimization is crucial in advancing gene therapeutics. This study provides a comprehensive review of the current metrics for codon-optimization, and its practical usage in research and clinical applications, in the context of gene therapy.
Collapse
Affiliation(s)
- Anastasiia Iu Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anna A. Kogan
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anastasiia Murashkina
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Daria A. Naumova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anakha Satish
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Ivan S. Abramov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| | - Sofya G. Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Olga N. Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Andrei A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Pavel Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| |
Collapse
|
4
|
Szabo B, Mandl TC, Woldrich B, Diensthuber G, Martin D, Jantsch MF, Licht K. RNA Pol II-dependent transcription efficiency fine-tunes A-to-I editing levels. Genome Res 2024; 34:231-242. [PMID: 38471738 PMCID: PMC10984384 DOI: 10.1101/gr.277686.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.
Collapse
Affiliation(s)
- Brigitta Szabo
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Therese C Mandl
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard Woldrich
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gregor Diensthuber
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - David Martin
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Cuddleston WH, Fan X, Sloofman L, Liang L, Mossotto E, Moore K, Zipkowitz S, Wang M, Zhang B, Wang J, Sestan N, Devlin B, Roeder K, Sanders SJ, Buxbaum JD, Breen MS. Spatiotemporal and genetic regulation of A-to-I editing throughout human brain development. Cell Rep 2022; 41:111585. [PMID: 36323256 PMCID: PMC9704047 DOI: 10.1016/j.celrep.2022.111585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Posttranscriptional RNA modifications by adenosine-to-inosine (A-to-I) editing are abundant in the brain, yet elucidating functional sites remains challenging. To bridge this gap, we investigate spatiotemporal and genetically regulated A-to-I editing sites across prenatal and postnatal stages of human brain development. More than 10,000 spatiotemporally regulated A-to-I sites were identified that occur predominately in 3' UTRs and introns, as well as 37 sites that recode amino acids in protein coding regions with precise changes in editing levels across development. Hyper-edited transcripts are also enriched in the aging brain and stabilize RNA secondary structures. These features are conserved in murine and non-human primate models of neurodevelopment. Finally, thousands of cis-editing quantitative trait loci (edQTLs) were identified with unique regulatory effects during prenatal and postnatal development. Collectively, this work offers a resolved atlas linking spatiotemporal variation in editing levels to genetic regulatory effects throughout distinct stages of brain maturation.
Collapse
Affiliation(s)
- Winston H Cuddleston
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuanjia Fan
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsay Liang
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Enrico Mossotto
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kendall Moore
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Zipkowitz
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Kathryn Roeder
- Carnegie Mellon University, Statistics & Data Science Department, Pittsburgh, PA 15213, USA
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Reference Genes across Nine Brain Areas of Wild Type and Prader-Willi Syndrome Mice: Assessing Differences in Igfbp7, Pcsk1, Nhlh2 and Nlgn3 Expression. Int J Mol Sci 2022; 23:ijms23158729. [PMID: 35955861 PMCID: PMC9369261 DOI: 10.3390/ijms23158729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.
Collapse
|
7
|
Novel Regulators of the IGF System in Cancer. Biomolecules 2021; 11:biom11020273. [PMID: 33673232 PMCID: PMC7918569 DOI: 10.3390/biom11020273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activation of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia.
Collapse
|
8
|
Plonski NM, Johnson E, Frederick M, Mercer H, Fraizer G, Meindl R, Casadesus G, Piontkivska H. Automated Isoform Diversity Detector (AIDD): a pipeline for investigating transcriptome diversity of RNA-seq data. BMC Bioinformatics 2020; 21:578. [PMID: 33375933 PMCID: PMC7772930 DOI: 10.1186/s12859-020-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Background As the number of RNA-seq datasets that become available to explore transcriptome diversity increases, so does the need for easy-to-use comprehensive computational workflows. Many available tools facilitate analyses of one of the two major mechanisms of transcriptome diversity, namely, differential expression of isoforms due to alternative splicing, while the second major mechanism—RNA editing due to post-transcriptional changes of individual nucleotides—remains under-appreciated. Both these mechanisms play an essential role in physiological and diseases processes, including cancer and neurological disorders. However, elucidation of RNA editing events at transcriptome-wide level requires increasingly complex computational tools, in turn resulting in a steep entrance barrier for labs who are interested in high-throughput variant calling applications on a large scale but lack the manpower and/or computational expertise. Results Here we present an easy-to-use, fully automated, computational pipeline (Automated Isoform Diversity Detector, AIDD) that contains open source tools for various tasks needed to map transcriptome diversity, including RNA editing events. To facilitate reproducibility and avoid system dependencies, the pipeline is contained within a pre-configured VirtualBox environment. The analytical tasks and format conversions are accomplished via a set of automated scripts that enable the user to go from a set of raw data, such as fastq files, to publication-ready results and figures in one step. A publicly available dataset of Zika virus-infected neural progenitor cells is used to illustrate AIDD’s capabilities. Conclusions AIDD pipeline offers a user-friendly interface for comprehensive and reproducible RNA-seq analyses. Among unique features of AIDD are its ability to infer RNA editing patterns, including ADAR editing, and inclusion of Guttman scale patterns for time series analysis of such editing landscapes. AIDD-based results show importance of diversity of ADAR isoforms, key RNA editing enzymes linked with the innate immune system and viral infections. These findings offer insights into the potential role of ADAR editing dysregulation in the disease mechanisms, including those of congenital Zika syndrome. Because of its automated all-inclusive features, AIDD pipeline enables even a novice user to easily explore common mechanisms of transcriptome diversity, including RNA editing landscapes.
Collapse
Affiliation(s)
- Noel-Marie Plonski
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA
| | - Emily Johnson
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA
| | - Madeline Frederick
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA
| | - Heather Mercer
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,University of Mount Union, 1972 Clark Ave, Alliance, OH, 44601, USA
| | - Gail Fraizer
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA
| | - Richard Meindl
- School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA.,Department of Anthropology, Kent State University, Kent, OH, 44242, USA
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA.,Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.,Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA. .,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA. .,Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
9
|
Lo Giudice C, Silvestris DA, Roth SH, Eisenberg E, Pesole G, Gallo A, Picardi E. Quantifying RNA Editing in Deep Transcriptome Datasets. Front Genet 2020; 11:194. [PMID: 32211029 PMCID: PMC7069340 DOI: 10.3389/fgene.2020.00194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Massive transcriptome sequencing through the RNAseq technology has enabled quantitative transcriptome-wide investigation of co-/post-transcriptional mechanisms such as alternative splicing and RNA editing. The latter is abundant in human transcriptomes in which million adenosines are deaminated into inosines by the ADAR enzymes. RNA editing modulates the innate immune response and its deregulation has been associated with different human diseases including autoimmune and inflammatory pathologies, neurodegenerative and psychiatric disorders, and tumors. Accurate profiling of RNA editing using deep transcriptome data is still a challenge, and the results depend strongly on processing and alignment steps taken. Accurate calling of the inosinome repertoire, however, is required to reliably quantify RNA editing and, in turn, investigate its biological and functional role across multiple samples. Using real RNAseq data, we demonstrate the impact of different bioinformatics steps on RNA editing detection and describe the main metrics to quantify its level of activity.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù," Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
10
|
Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M, Näslund E, Kumar C, Verdeguer F, Straniero S, Hultenby K, Björkström NK, Ellis E, Rydén M, Kutter C, Hurrell T, Lauschke VM, Boucher J, Tomčala A, Krejčová G, Bajgar A, Aouadi M. Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat Metab 2019; 1:445-459. [PMID: 32694874 DOI: 10.1038/s42255-019-0044-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
Abstract
Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor-binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Cecilia Morgantini
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jennifer Jager
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
- Université Nice Côte d'Azur, INSERM U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Xidan Li
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Laura Levi
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Valerio Azzimato
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - André Sulen
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Emelie Barreby
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Connie Xu
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark, Odense University Hospital and Danish Diabetes Academy, Odense, Denmark
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Chanchal Kumar
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
- Translational Sciences, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Francisco Verdeguer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Sara Straniero
- Metabolism Unit C2:94, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ellis
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Mikael Rydén
- Unit of Endocrinology, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Tracey Hurrell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Jeremie Boucher
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
| | - Aleš Tomčala
- Laboratory of Evolutionary Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gabriela Krejčová
- Faculty of Science, University of South Bohemia, and Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Faculty of Science, University of South Bohemia, and Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Myriam Aouadi
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
11
|
Shallev L, Kopel E, Feiglin A, Leichner GS, Avni D, Sidi Y, Eisenberg E, Barzilai A, Levanon EY, Greenberger S. Decreased A-to-I RNA editing as a source of keratinocytes' dsRNA in psoriasis. RNA (NEW YORK, N.Y.) 2018; 24:828-840. [PMID: 29592874 PMCID: PMC5959251 DOI: 10.1261/rna.064659.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/26/2018] [Indexed: 05/30/2023]
Abstract
Recognition of dsRNA molecules activates the MDA5-MAVS pathway and plays a critical role in stimulating type-I interferon responses in psoriasis. However, the source of the dsRNA accumulation in psoriatic keratinocytes remains largely unknown. A-to-I RNA editing is a common co- or post-transcriptional modification that diversifies adenosine in dsRNA, and leads to unwinding of dsRNA structures. Thus, impaired RNA editing activity can result in an increased load of endogenous dsRNAs. Here we provide a transcriptome-wide analysis of RNA editing across dozens of psoriasis patients, and we demonstrate a global editing reduction in psoriatic lesions. In addition to the global alteration, we also detect editing changes in functional recoding sites located in the IGFBP7, COPA, and FLNA genes. Accretion of dsRNA activates autoimmune responses, and therefore the results presented here, linking for the first time an autoimmune disease to reduction in global editing level, are relevant to a wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Lea Shallev
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Kopel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ariel Feiglin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gil S Leichner
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Avni
- Department of Medicine C, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Yechezkel Sidi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Medicine C, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Barzilai
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Shoshana Greenberger
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer 52621, Israel
| |
Collapse
|
12
|
Daniel C, Widmark A, Rigardt D, Öhman M. Editing inducer elements increases A-to-I editing efficiency in the mammalian transcriptome. Genome Biol 2017; 18:195. [PMID: 29061182 PMCID: PMC5654063 DOI: 10.1186/s13059-017-1324-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Adenosine to inosine (A-to-I) RNA editing has been shown to be an essential event that plays a significant role in neuronal function, as well as innate immunity, in mammals. It requires a structure that is largely double-stranded for catalysis but little is known about what determines editing efficiency and specificity in vivo. We have previously shown that some editing sites require adjacent long stem loop structures acting as editing inducer elements (EIEs) for efficient editing. RESULTS The glutamate receptor subunit A2 is edited at the Q/R site in almost 100% of all transcripts. We show that efficient editing at the Q/R site requires an EIE in the downstream intron, separated by an internal loop. Also, other efficiently edited sites are flanked by conserved, highly structured EIEs and we propose that this is a general requisite for efficient editing, while sites with low levels of editing lack EIEs. This phenomenon is not limited to mRNA, as non-coding primary miRNAs also use EIEs to recruit ADAR to specific sites. CONCLUSIONS We propose a model where two regions of dsRNA are required for efficient editing: first, an RNA stem that recruits ADAR and increases the local concentration of the enzyme, then a shorter, less stable duplex that is ideal for efficient and specific catalysis. This discovery changes the way we define and determine a substrate for A-to-I editing. This will be important in the discovery of novel editing sites, as well as explaining cases of altered editing in relation to disease.
Collapse
Affiliation(s)
- Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Ditte Rigardt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| |
Collapse
|
13
|
Mano SS, Uto K, Ebara M. Material-induced Senescence (MIS): Fluidity Induces Senescent Type Cell Death of Lung Cancer Cells via Insulin-Like Growth Factor Binding Protein 5. Theranostics 2017; 7:4658-4670. [PMID: 29187894 PMCID: PMC5706090 DOI: 10.7150/thno.20582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022] Open
Abstract
Objective: We propose here material-induced senescence (MIS) as a new therapeutic concept that limits cancer progression by stable cell cycle arrest. This study examined for the first time the effect of material fluidity on cellular senescence in lung carcinoma using poly(ε-caprolactone-co-D, L-lactide) (P(CL-co-DLLA)) with tunable elasticity and fluidity. Methods: The fluidity was varied by chemically crosslinking the polymer networks: the crosslinked P(CL-co-DLLA) shows solid-like properties with a stiffness of 260 kPa, while the non-crosslinked polymer exists in a quasi-liquid state with loss and storage moduli of 33 kPa and 11 kPa, respectively. Results: We found that cancer cells growing on the non-crosslinked, fluidic substrate undergo a non-apoptotic form of cell death and the cell cycle was accumulated in a G0/G1 phase. Next, we investigated the expression of biomarkers that are associated with cancer pathways. The cancer cells on the fluidic substrate expressed several biomarkers associated with senescence such as insulin-like growth factor binding protein 5 (IGFBP5). This result indicates that when cancer cells sense fluidity in their surroundings, the cells express IGFBP5, which in turn triggers the expression of tumor suppressor protein 53 and initiates cell cycle arrest at the G1 phase followed by cellular senescence. Furthermore, the cancer cells on the fluidic substrate maintained their epithelial phenotype, suggesting that the cancer cells do not undergo epithelial to mesenchymal transition. Conclusion: By considering these results as the fundamental information for MIS, our system could be applied to induce senescence in treatment-resistant cancers such as metastatic cancer or cancer stem cells.
Collapse
Affiliation(s)
- Sharmy Saimon Mano
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Koichiro Uto
- International Center for Young Scientist (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
14
|
Chen YB, Liao XY, Zhang JB, Wang F, Qin HD, Zhang L, Shugart YY, Zeng YX, Jia WH. ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. Int J Oncol 2016; 50:622-630. [PMID: 28035363 DOI: 10.3892/ijo.2016.3823] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most aggressive cancers, is characterized by heterogeneous genetic and epigenetic changes. Recently, A-to-I RNA editing, catalyzed by adenosine deaminases acting on RNA (ADARs), was found to be aberrantly regulated during tumorigenesis. We previously reported that ADAR2 was downregulated in ESCC but its role was unclear. Thus, we report here that overexpression of ADAR2 can induce apoptosis in ESCC cell lines and inhibit tumor growth in vitro and in vivo. ADAR2 knockdown inhibited apoptosis in ADAR2 highly expressing tumor cells. RNA-seq assay showed that ADAR2, not ADAR1 or active-site-mutated ADAR2, could edit insulin-like growth factor binding protein 7 (IGFBP7) mRNA in ESCC. IGFBP7 knockdown or ADAR2 catalytic activity destruction abolished the pro-apoptotic function of ADAR2. Mechanistically, RNA editing may stabilize IGFBP7 protein by changing the protease recognition site of matriptase and this is essential for IGFBP7 to induce apoptosis. Western blotting revealed that ADAR2 overexpression could induce IGFBP7-dependent inhibition of Akt signaling. Thus, our data indicate that ADAR2 suppresses tumor growth and induces apoptosis by editing and stabilizing IGFBP7 in ESCC, and this may represent a novel therapeutic target for treating ESCC.
Collapse
Affiliation(s)
- Yuan-Bin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao-Yu Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Hai-De Qin
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lanjun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
15
|
A-to-I RNA editing of the IGFBP7 transcript increases during aging in porcine brain tissues. Biochem Biophys Res Commun 2016; 479:596-601. [DOI: 10.1016/j.bbrc.2016.09.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023]
|
16
|
Quelen C, Eloit Y, Noirot C, Bousquet M, Brousset P. RNA editing in acute myeloid leukaemia with normal karyotype. Br J Haematol 2015; 173:788-90. [PMID: 26251186 DOI: 10.1111/bjh.13631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/04/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Cathy Quelen
- Institut National de la Sante et de la Recherche Médicale, U1037, Centre de Recherches en Cancérologie de Toulouse U1037 and Laboratoire d'Excellence (Labex Toucan), Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Yaelle Eloit
- Département de Pathologie, Institut Universitaire du Cancer Oncopole de Toulouse, Toulouse, France
| | - Céline Noirot
- Plateforme bioinformatique Toulouse Midi-Pyrénées, UBIA, INRA, Auzeville Castanet-Tolosan, France
| | - Marina Bousquet
- Institut National de la Sante et de la Recherche Médicale, U1037, Centre de Recherches en Cancérologie de Toulouse U1037 and Laboratoire d'Excellence (Labex Toucan), Toulouse, France
| | - Pierre Brousset
- Institut National de la Sante et de la Recherche Médicale, U1037, Centre de Recherches en Cancérologie de Toulouse U1037 and Laboratoire d'Excellence (Labex Toucan), Toulouse, France. .,Université Paul Sabatier, Toulouse, France. .,Département de Pathologie, Institut Universitaire du Cancer Oncopole de Toulouse, Toulouse, France.
| |
Collapse
|
17
|
A critical analysis of codon optimization in human therapeutics. Trends Mol Med 2014; 20:604-13. [PMID: 25263172 DOI: 10.1016/j.molmed.2014.09.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/01/2023]
Abstract
Codon optimization describes gene engineering approaches that use synonymous codon changes to increase protein production. Applications for codon optimization include recombinant protein drugs and nucleic acid therapies, including gene therapy, mRNA therapy, and DNA/RNA vaccines. However, recent reports indicate that codon optimization can affect protein conformation and function, increase immunogenicity, and reduce efficacy. We critically review this subject, identifying additional potential hazards including some unique to nucleic acid therapies. This analysis highlights the evolved complexity of codon usage and challenges the scientific bases for codon optimization. Consequently, codon optimization may not provide the optimal strategy for increasing protein production and may decrease the safety and efficacy of biotech therapeutics. We suggest that the use of this approach is reconsidered, particularly for in vivo applications.
Collapse
|
18
|
Chen JY, Peng Z, Zhang R, Yang XZ, Tan BCM, Fang H, Liu CJ, Shi M, Ye ZQ, Zhang YE, Deng M, Zhang X, Li CY. RNA editome in rhesus macaque shaped by purifying selection. PLoS Genet 2014; 10:e1004274. [PMID: 24722121 PMCID: PMC3983040 DOI: 10.1371/journal.pgen.1004274] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 02/15/2014] [Indexed: 12/31/2022] Open
Abstract
Understanding of the RNA editing process has been broadened considerably by the next generation sequencing technology; however, several issues regarding this regulatory step remain unresolved--the strategies to accurately delineate the editome, the mechanism by which its profile is maintained, and its evolutionary and functional relevance. Here we report an accurate and quantitative profile of the RNA editome for rhesus macaque, a close relative of human. By combining genome and transcriptome sequencing of multiple tissues from the same animal, we identified 31,250 editing sites, of which 99.8% are A-to-G transitions. We verified 96.6% of editing sites in coding regions and 97.5% of randomly selected sites in non-coding regions, as well as the corresponding levels of editing by multiple independent means, demonstrating the feasibility of our experimental paradigm. Several lines of evidence supported the notion that the adenosine deamination is associated with the macaque editome--A-to-G editing sites were flanked by sequences with the attributes of ADAR substrates, and both the sequence context and the expression profile of ADARs are relevant factors in determining the quantitative variance of RNA editing across different sites and tissue types. In support of the functional relevance of some of these editing sites, substitution valley of decreased divergence was detected around the editing site, suggesting the evolutionary constraint in maintaining some of these editing substrates with their double-stranded structure. These findings thus complement the "continuous probing" model that postulates tinkering-based origination of a small proportion of functional editing sites. In conclusion, the macaque editome reported here highlights RNA editing as a widespread functional regulation in primate evolution, and provides an informative framework for further understanding RNA editing in human.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Zhiyu Peng
- BGI-Guangzhou, Guangzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Rongli Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xin-Zhuang Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Huaying Fang
- School of Mathematical Sciences and Center for Quantitative Biology, Peking University, Beijing, China
| | - Chu-Jun Liu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | | | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Minghua Deng
- School of Mathematical Sciences and Center for Quantitative Biology, Peking University, Beijing, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (XZ); (CYL)
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (XZ); (CYL)
| |
Collapse
|
19
|
Pinto Y, Cohen HY, Levanon EY. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 2014; 15:R5. [PMID: 24393560 PMCID: PMC4053846 DOI: 10.1186/gb-2014-15-1-r5] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/07/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND ADAR proteins are among the most extensively studied RNA binding proteins. They bind to their target and deaminate specific adenosines to inosines. ADAR activity is essential, and the editing of a subset of their targets is critical for viability. Recently, a huge number of novel ADAR targets were detected by analyzing next generation sequencing data. Most of these novel editing sites are located in lineage-specific genomic repeats, probably a result of overactivity of editing enzymes, thus masking the functional sites. In this study we aim to identify the set of mammalian conserved ADAR targets. RESULTS We used RNA sequencing data from human, mouse, rat, cow, opossum, and platypus to define the conserved mammalian set of ADAR targets. We found that the conserved mammalian editing sites are surprisingly small in number and have unique characteristics that distinguish them from non-conserved ones. The sites that constitute the set have a distinct genomic distribution, tend to be located in genes encoding neurotransmitter receptors or other synapse related proteins, and have higher editing and expression levels. We also found a high consistency of editing levels of this set within mice strains and between human and mouse. Tight regulation of editing in these sites across strains and species implies their functional importance. CONCLUSIONS Despite the discovery of numerous editing targets, only a small number of them are conserved within mammalian evolution. These sites are extremely highly conserved and exhibit unique features, such as tight regulation, and probably play a pivotal role in mammalian biology.
Collapse
|
20
|
Hochberg M, Gilead L, Markel G, Nemlich Y, Feiler Y, Enk CD, Denichenko P, Karni R, Ingber A. Insulin-like growth factor-binding protein-7 (IGFBP7) transcript: A-to-I editing events in normal and cancerous human keratinocytes. Arch Dermatol Res 2013; 305:519-28. [PMID: 23543219 DOI: 10.1007/s00403-013-1338-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/03/2013] [Accepted: 03/18/2013] [Indexed: 12/20/2022]
Abstract
Non-melanoma skin cancers (NMSC) are the most common malignancies in caucasians worldwide. Insulin-like growth factor-binding protein-7 (IGFBP7) was suggested to function as a tumor suppressor gene in several cancers, and to play a role in the proliferation of keratinocytes. A-to-I RNA editing is a post-transcriptional mechanism frequently used to expand and diversify transcriptome and proteome repertoire in eukaryotic cells. A-to-I RNA editing can alter codons, substitute amino acids and affect protein sequence, structure, and function. Two editing sites were identified within the IGFBP7 transcript. To evaluate the expression and editing of IGFBP7 mRNA in NMSC compared to normal epidermis. We examined the expression and mRNA editing level of IGFBP7 in 22 basal cell carcinoma (BCC), 15 squamous cell carcinoma (SCC), and 18 normal epidermis samples that were surgically removed from patients by the Mohs Micrographic Surgery procedure. We studied the effect of IGFBP7 editing on an immortalized HaCaT keratinocyte cell model. IGFBP7 mRNA is over expressed in BCC and SCC compared to normal epidermis. Moreover, the IGFBP7 transcript is highly edited in normal epidermis, but its editing is significantly reduced in BCC and SCC. The edited form of IGFBP7 can inhibit proliferation and induce senescence in cultured keratinocytes. This study describes for the first time A-to-I editing in the coding sequence of a tumor suppressor gene in humans, and suggests that IGFBP7 editing serves as a fine-tuning mechanism to maintain the equilibrium between proliferation and senescence in normal skin.
Collapse
Affiliation(s)
- Malka Hochberg
- Department of Dermatology, Hadassah-Hebrew University Medical Center, P.O.Box 12000, 91010, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|