1
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Di Mambro A, Esposito M. Thirty years of SET/TAF1β/I2PP2A: from the identification of the biological functions to its implications in cancer and Alzheimer's disease. Biosci Rep 2022; 42:BSR20221280. [PMID: 36345878 PMCID: PMC9679398 DOI: 10.1042/bsr20221280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
The gene encoding for the protein SE translocation (SET) was identified for the first time 30 years ago as part of a chromosomal translocation in a patient affected by leukemia. Since then, accumulating evidence have linked overexpression of SET, aberrant SET splicing, and cellular localization to cancer progression and development of neurodegenerative tauopathies such as Alzheimer's disease. Molecular biology tools, such as targeted genetic deletion, and pharmacological approaches based on SET antagonist peptides, have contributed to unveil the molecular functions of SET and its implications in human pathogenesis. In this review, we provide an overview of the functions of SET as inhibitor of histone and non-histone protein acetylation and as a potent endogenous inhibitor of serine-threonine phosphatase PP2A. We discuss the role of SET in multiple cellular processes, including chromatin remodelling and gene transcription, DNA repair, oxidative stress, cell cycle, apoptosis cell migration and differentiation. We review the molecular mechanisms linking SET dysregulation to tumorigenesis and discuss how SET commits neurons to progressive cell death in Alzheimer's disease, highlighting the rationale of exploiting SET as a therapeutic target for cancer and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Antonella Di Mambro
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| | - Maria Teresa Esposito
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| |
Collapse
|
3
|
Gadallah M, Asaad NY, Shabaan M, Elkholy SS, Samara MY, Taie D. Role of SET oncoprotein in hepatocellular carcinoma: An immunohistochemical study. J Immunoassay Immunochem 2022; 43:420-434. [PMID: 35156535 DOI: 10.1080/15321819.2022.2034646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary cancer of the liver and it is the fourth most common cause of cancer related death worldwide. In Egypt, liver cancer constitutes the most common cause of mortality-related cancer. This study aimed to evaluate the immunohistochemical expression of SET oncoprotein in HCC tissues in comparison with its expression in non tumorous liver tissues and to correlate its expression with clinicopathological parameters. This study investigated 100 cases of HCC (including tumorous and non tumorous tissues). One hundred percent of tumorous and non-tumorous tissues were positive for SET expression. The mean and median values of H-score for SET expression were higher in tumorous than non tumorous tissues (P = .03). Higher SET expression was significantly correlated with larger tumor size (P = .012), positive lymphovascular invasion (P = .028), and shorter overall survival (P < .001). SET expression in tumor tissues is the most independent factor to affect the overall survival of HCC patients. SET plays a role in hepatocarcinogenesis proved by the increase of SET expression from non-tumorous to tumorous tissues. Also, SET can be used as a prognostic indicator and a novel target therapy in HCC patients.
Collapse
Affiliation(s)
- Marwa Gadallah
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy Yousef Asaad
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammed Shabaan
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Saad Elkholy
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Manar Yousef Samara
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Doha Taie
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| |
Collapse
|
4
|
Padovani KS, Goto RN, Fugio LB, Garcia CB, Alves VM, Brassesco MS, Greene LJ, Rego EM, Leopoldino AM. Crosstalk between hnRNP K and SET in ATRA-induced differentiation in acute promyelocytic leukemia. FEBS Open Bio 2021; 11:2019-2032. [PMID: 34058077 PMCID: PMC8255839 DOI: 10.1002/2211-5463.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
HnRNP K protein is a heterogeneous nuclear ribonucleoprotein which has been proposed to be involved in the leukemogenesis of acute promyelocytic leukemia (APL), as well as in differentiation induced by all‐trans retinoic acid (ATRA). We previously demonstrated a connection between SET and hnRNP K function in head and neck squamous cell carcinoma (HNSCC) cells related to splicing processing. The objective of this study was to characterize the participation of hnRNP K and SET proteins in ATRA‐induced differentiation in APL. We observed higher (5‐ to 40‐fold) levels of hnRNP K and SET mRNA in APL patients at the diagnosis phase compared with induction and maintenance phases. hnRNP K knockdown using short‐hairpin RNA led to cell death in ATRA‐sensitive NB4 and resistant NB4‐R2 cells by apoptosis with SET cleavage. In addition, hnRNP K knockdown increased granulocytic differentiation in APL cells, mainly in NB4‐R2 with ATRA. hnRNP K knockdown had an effect similar to that of treatment with U0126 (an meiosis‐specific serine/threonine protein kinase/ERK inhibitor), mainly in NB4‐R2 cells. SET knockdown in APL cells revealed that apoptosis induction in cells with hnRNP K knockdown occurred by SET cleavage rather than by reduction in SET protein. Transplantation of NB4‐R2 cells into nude mice confirmed that arsenic trioxide (ATO) combined with U0126 has higher potential against tumor progression when compared to ATO. Therefore, hnRNP K/SET and ERK are potential therapeutic targets for both antineoplastic leukemia therapy and relapsed APL patients with ATRA resistance.
Collapse
Affiliation(s)
- Karina Stringhetta Padovani
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil
| | - Renata Nishida Goto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Lais Brigliadori Fugio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Vani Maria Alves
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto-FMRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Lewis Joel Greene
- CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil.,Department of Cellular and Molecular Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto-FMRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo Magalhães Rego
- CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil.,Department of Internal Medicine, School of Medicine of Ribeirão Preto-FMRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil
| |
Collapse
|
5
|
Buyse G, Di Michele M, Wijgaerts A, Louwette S, Wittevrongel C, Thys C, Downes K, Ceulemans B, Van Esch H, Van Geet C, Freson K. Unravelling the disease mechanism for TSPYL1 deficiency. Hum Mol Genet 2020; 29:3431-3442. [PMID: 33075815 DOI: 10.1093/hmg/ddaa233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
We describe a lethal combined nervous and reproductive systems disease in three affected siblings of a consanguineous family. The phenotype was characterized by visceroautonomic dysfunction (neonatal bradycardia/apnea, feeding problems, hyperactive startle reflex), severe postnatal progressive neurological abnormalities (including abnormal neonatal cry, hypotonia, epilepsy, polyneuropathy, cerebral gray matter atrophy), visual impairment, testicular dysgenesis in males and sudden death at infant age by brainstem-mediated cardiorespiratory arrest. Whole-exome sequencing revealed a novel homozygous frameshift variant p.Val242GlufsTer52 in the TSPY-like 1 gene (TSPYL1). The truncated TSPYL1 protein that lacks the nucleosome assembly protein domain was retained in the Golgi of fibroblasts from the three patients, whereas control fibroblasts express full-length TSPYL1 in the nucleus. Proteomic analysis of nuclear extracts from fibroblasts identified 24 upregulated and 20 downregulated proteins in the patients compared with 5 controls with 'regulation of cell cycle' as the highest scored biological pathway affected. TSPYL1-deficient cells had prolonged S and G2 phases with reduced cellular proliferation rates. Tspyl1 depletion in zebrafish mimicked the patients' phenotype with early lethality, defects in neurogenesis and cardiac dilation. In conclusion, this study reports the third pedigree with recessive TSPYL1 variants, confirming that TSPYL1 deficiency leads to a combined nervous and reproductive systems disease, and provides for the first time insights into the disease mechanism.
Collapse
Affiliation(s)
- Gunnar Buyse
- Department of Pediatric Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Michela Di Michele
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34090 Montpellier, France
| | - Anouck Wijgaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven 3000, Belgium
| | - Sophie Louwette
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven 3000, Belgium
| | - Christine Wittevrongel
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven 3000, Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven 3000, Belgium
| | - Kate Downes
- East Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Berten Ceulemans
- Department of Pediatric Neurology, University hospital, University of Antwerp, 2000 Antwerp, Belgium
| | - Hild Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium.,Laboratory for the Genetics of Cognition, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Chris Van Geet
- Department of Pediatric Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
6
|
Kowluru A. Potential roles of PP2A-Rac1 signaling axis in pancreatic β-cell dysfunction under metabolic stress: Progress and promise. Biochem Pharmacol 2020; 180:114138. [PMID: 32634437 DOI: 10.1016/j.bcp.2020.114138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Recent estimates by the International Diabetes Federation suggest that the incidence of diabetes soared to an all-time high of 463 million in 2019, and the federation predicts that by 2045 the number of individuals afflicted with this disease will increase to 700 million. Therefore, efforts to understand the pathophysiology of diabetes are critical for moving toward the development of novel therapeutic strategies for this disease. Several contributors (oxidative stress, endoplasmic reticulum stress and others) have been proposed for the onset of metabolic dysfunction and demise of the islet β-cell leading to the pathogenesis of diabetes. Existing experimental evidence revealed sustained activation of PP2A and Rac1 in pancreatic β-cells exposed to metabolic stress (diabetogenic) conditions. Evidence in a variety of cell types implicates modulatory roles for specific signaling proteins (α4, SET, nm23-H1, Pak1) in the functional regulation of PP2A and Rac1. In this Commentary, I overviewed potential cross-talk between PP2A and Rac1 signaling modules in the onset of metabolic dysregulation of the islet β-cell leading to impaired glucose-stimulated insulin secretion (GSIS), loss of β-cell mass and the onset of diabetes. Potential knowledge gaps and future directions in this fertile area of islet biology are also highlighted. It is hoped that this Commentary will provide a basis for future studies toward a better understanding of roles of PP2A-Rac1 signaling module in pancreatic β-cell dysfunction, and identification of therapeutic targets for the treatment of islet β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Laboratory Research Service, John D. Dingell VA Medical Center and Departments of Pharmaceutical Sciences and Internal Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Stevens SJ, van der Schoot V, Leduc MS, Rinne T, Lalani SR, Weiss MM, van Hagen JM, Lachmeijer AM, Stockler-Ipsiroglu SG, Lehman A, Brunner HG. De novo mutations in the SET
nuclear proto-oncogene, encoding a component of the inhibitor of histone acetyltransferases (INHAT) complex in patients with nonsyndromic intellectual disability. Hum Mutat 2018; 39:1014-1023. [DOI: 10.1002/humu.23541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Servi J.C. Stevens
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
| | - Vyne van der Schoot
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
| | - Magalie S. Leduc
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
- Baylor Genetics; Houston Texas USA
| | - Tuula Rinne
- Department of Genetics; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Seema R. Lalani
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Marjan M. Weiss
- Department of Clinical Genetics; VU University Medical Centre; Amsterdam the Netherlands
| | - Johanna M. van Hagen
- Department of Clinical Genetics; VU University Medical Centre; Amsterdam the Netherlands
| | | | | | - Anna Lehman
- Department of Medical Genetics; British Columbia Children's Hospital; Vancouver Canada
| | - Han G Brunner
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
- Department of Genetics; Radboud University Medical Centre; Nijmegen the Netherlands
| | | |
Collapse
|
8
|
Goto RN, Sobral LM, Sousa LO, Garcia CB, Lopes NP, Marín-Prida J, Ochoa-Rodríguez E, Verdecia-Reyes Y, Pardo-Andreu GL, Curti C, Leopoldino AM. Anti-cancer activity of a new dihydropyridine derivative, VdiE-2N, in head and neck squamous cell carcinoma. Eur J Pharmacol 2018; 819:198-206. [DOI: 10.1016/j.ejphar.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
|
9
|
Xu S, Liu X, Gao L, Xu B, Li J, Gao C, Cui Y, Liu J. Development and identification of Set transgenic mice. Exp Ther Med 2017; 15:1982-1988. [PMID: 29434793 PMCID: PMC5776649 DOI: 10.3892/etm.2017.5612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
As a multifunctional protein involved in numerous biological processes, Set is expressed in several embryonic and adult organs. Furthermore, Set is overexpressed in numerous types of human cancers, including acute myeloid leukemia, breast cancer and pancreatic cancer. The expression of Set in germ cells is involved in gonad development, and the overexpression of Set has been observed in polycystic ovaries. In order to elucidate the physiological and pathological roles of Set, a Set transgenic mouse model was developed, in which the global overexpression of Set in adult tissues could be induced via the Cre/loxP system with the precise deletion of the Stop fragment in double-transgenic hybrids. This result was then confirmed by genotypical and protein analysis using polymerase chain reaction and bioluminescence imaging. In conclusion, the conditional Set transgenic mice carrying a reporter system were successfully generated. The transgenic mice open a new window for the further investigation of the function of Set using tissue-specific Cre mice and inducible Cre systems.
Collapse
Affiliation(s)
- Siliang Xu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoqiang Liu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lingling Gao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianmin Li
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
10
|
Lo JH, Chen TT. Production of bioactive recombinant human Eb-peptide of pro-IGF-I and identification of binding components from the plasma membrane of human breast cancer cells (MDA-MB-231). Exp Cell Res 2017; 362:235-243. [PMID: 29191552 DOI: 10.1016/j.yexcr.2017.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 01/12/2023]
Abstract
E-peptide of the pro-Insulin-like growth factor-I (pro-IGF-I) is produced from pre-pro-IGF-I by proteolytic cleavage in the post-translational processing. The human Eb-peptide (hEb-peptide), derived from the E domain of pro-IGF-IB isoform, is a bioactive molecule whose exact physiological role remains elusive. Accumulated evidence reported from our laboratory indicated that hEb-peptide possesses activity against multiple hallmark characteristics of solid tumor in different cancer cell types. In human breast carcinoma cells (MDA-MB-231), it was demonstrated that hEb-peptide can promote cell attachment to substratum, inhibit colony formation in a semisolid medium, reduce cancer cell invasion, and inhibit cancer-induced angiogenesis. Like the action of other peptide hormones, these cellular responses triggered by hEb may be initiated through binding to a receptor molecule residing on the surface of the cell. Our laboratory and the others have previously provided evidence demonstrating the existence of hEb-peptide specific binding components residing on the cell membrane. In this study, we report the isolation and identification of eight protein molecules bound reversibly with hEb-peptide from the membrane preparation of MDA-MB-231 cells. Some of the identified proteins are known to be present at cell surface and function as receptors while the others are not. The functions of these molecules reveal strong correlation with the demonstrated activities of hEb-peptide on MDA-MB-231cells, suggesting hEb-peptide activity on cancer cells might be mediated by these molecules.
Collapse
Affiliation(s)
- Jay H Lo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
11
|
Dorard E, Chasseigneaux S, Gorisse-Hussonnois L, Broussard C, Pillot T, Allinquant B. Soluble Amyloid Precursor Protein Alpha Interacts with alpha3-Na, K-ATPAse to Induce Axonal Outgrowth but Not Neuroprotection: Evidence for Distinct Mechanisms Underlying these Properties. Mol Neurobiol 2017; 55:5594-5610. [PMID: 28983842 DOI: 10.1007/s12035-017-0783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
Abstract
Amyloid precursor protein (APP) is cleaved not only to generate the amyloid peptide (Aß), involved in neurodegenerative processes, but can also be metabolized by alpha secretase to produce and release soluble N-terminal APP (sAPPα), which has many properties including the induction of axonal elongation and neuroprotection. The mechanisms underlying the properties of sAPPα are not known. Here, we used proteomic analysis of mouse cortico-hippocampal membranes to identify the neuronal specific alpha3 (α3)-subunit of the plasma membrane enzyme Na, K-ATPase (NKA) as a new binding partner of sAPPα. We showed that sAPPα recruits very rapidly clusters of α3-NKA at neuronal surface, and its binding triggers a cascade of events promoting sAPPα-induced axonal outgrowth. The binding of sAPPα with α3-NKA was not observed for sAPPα-induced Aß1-42 oligomers neuroprotection, neither the downstream events particularly the interaction of sAPPα with APP before endocytosis, ERK signaling, and the translocation of SET from the nucleus to the plasma membrane. These data suggest that the mechanisms of the axonal growth promoting and neuroprotective properties of sAPPα appear to be specific and independent. The signals at the cell surface specific to trigger these mechanisms require further study.
Collapse
Affiliation(s)
- Emilie Dorard
- UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75014, Paris, France.,SynAging, 54500, Vandoeuvre-les, Nancy, France
| | - Stéphanie Chasseigneaux
- UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75014, Paris, France.,INSERM U1144, Université Paris Descartes and Université Paris Diderot UMR-S 1144, 75006, Paris, France
| | - Lucie Gorisse-Hussonnois
- UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75014, Paris, France
| | - Cédric Broussard
- Plate-forme Protéomique, Université Paris Descartes 3P5, Institut Cochin, 75014, Paris, France
| | | | - Bernadette Allinquant
- UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75014, Paris, France.
| |
Collapse
|
12
|
Sobral LM, Coletta RD, Alberici LC, Curti C, Leopoldino AM. SET/I2PP2A overexpression induces phenotypic, molecular, and metabolic alterations in an oral keratinocyte cell line. FEBS J 2017. [PMID: 28636114 DOI: 10.1111/febs.14148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multifunctional SET/I2PP2A protein is known to be overexpressed in head and neck squamous cell carcinoma. However, SET has been reported to have apparently conflicting roles in promoting cancer cell survival under oxidative stress conditions and preventing invasion and metastasis, complicating efforts to understand the contribution of SET to carcinogenesis. In the present study, we overexpressed SETin a spontaneously immortalized oral keratinocyte cell line (NOK-SI SET) and demonstrated that SET upregulation alone was sufficient to transform cells. In comparison with NOK-SI cells, NOK-SI SET cells demonstrated increased levels of phosphorylated Akt, c-Myc and inactive/phosphorylated Rb, together with decreased total Rb protein levels. In addition, NOK-SI SET cells presented the following: (a) a spindle-cell shape morphology compared with the polygonal morphology of NOK-SI cells; (b) loss of mesenchymal stem cell markers CD44 and CD73, and epithelial cell markers CD71 and integrin α6/β4; (c) the ability to form xenograft tumors in nude mice; and (d) increased mitochondrial respiration accompanied by decreased ROSlevels. Overall, our results show that SEToverexpression promotes morphological and oncogenic cell transformation of an oral keratinocyte cell.
Collapse
Affiliation(s)
- Lays M Sobral
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Luciane C Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Andréia M Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
13
|
Mody HR, Hung SW, Naidu K, Lee H, Gilbert CA, Hoang TT, Pathak RK, Manoharan R, Muruganandan S, Govindarajan R. SET contributes to the epithelial-mesenchymal transition of pancreatic cancer. Oncotarget 2017; 8:67966-67979. [PMID: 28978088 PMCID: PMC5620228 DOI: 10.18632/oncotarget.19067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has a devastating prognosis due to 80-90% of diagnostic cases occurring when metastasis has already presented. Activation of the epithelial-mesenchymal transition (EMT) is a prerequisite for metastasis because it allows for the dissemination of tumor cells to blood stream and secondary organs. Here, we sought to determine the role of SET oncoprotein, an endogenous inhibitor of PP2A, in EMT and pancreatic tumor progression. Among the two major isoforms of SET (isoform 1 and isoform 2), higher protein levels of SET isoform 2 were identified in aggressive pancreatic cancer cell lines. Overexpressing SET isoform 2, and to a lesser extent SET isoform 1, in epithelial cell lines promoted EMT-like features by inducing mesenchymal characteristics and promoting cellular proliferation, migration, invasion, and colony formation. Consistently, knockdown of SET isoforms in the mesenchymal cell line partially resisted these characteristics and promoted epithelial features. SET-induced EMT was likely facilitated by increased N-cadherin overexpression, decreased PP2A activity and/or increased expression of key EMT-driving transcription factors. Additionally, SET overexpression activated the Rac1/JNK/c-Jun signaling pathway that induced transcriptional activation of N-cadherin expression. In vivo, SET isoform 2 overexpression significantly correlated with increased N-cadherin in human PDAC and to tumor burden and metastatic ability in an orthotopic mouse tumor model. These findings identify a new role for SET in cancer and have implications for the design and targeting of SET for intervening pancreatic tumor progression.
Collapse
Affiliation(s)
- Hardik R Mody
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA.,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| | - Kineta Naidu
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Haesung Lee
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Caitlin A Gilbert
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Toan Thanh Hoang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Rakesh K Pathak
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Radhika Manoharan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Shanmugam Muruganandan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA.,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Jiang SW, Xu S, Chen H, Liu X, Tang Z, Cui Y, Liu J. Pathologic significance of SET/I2PP2A-mediated PP2A and non-PP2A pathways in polycystic ovary syndrome (PCOS). Clin Chim Acta 2017; 464:155-159. [PMID: 27836688 DOI: 10.1016/j.cca.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023]
Abstract
SET (SE translocation, SET), a constitutive inhibitor of protein phosphatase 2A (PP2A), is a multifunctional oncoprotein involved in DNA replication, histone modification, nucleosome assembly, gene transcription and cell proliferation. It is widely expressed in human tissues including the gonadal system and brain. Intensive studies have shown that overexpressed SET plays an important role in the development of Alzheimer's disease (AD), and may also contribute to the malignant transformation of breast and ovarian cancers. Recent studies indicated that through interaction with PP2A, SET may upregulate androgen biosynthesis and contribute to hyperandrogenism in polycystic ovary syndrome (PCOS) patients. This review article summarizes data concerning the SET expression in ovaries from PCOS and normal women, and analyzes the role/regulatory mechanism of SET for androgen biosynthesis in PCOS, as well as the significance of this action in the development of PCOS. The potential value of SET-triggered pathway as a therapeutic target and the application of anti-SET reagents for treating hyperandrogenism in PCOS patients are also discussed.
Collapse
Affiliation(s)
- Shi-Wen Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA.
| | - Siliang Xu
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA; The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Xiaoqiang Liu
- The Third People's Hospital of Qingdao, Department of Obstetrics and Gynecology, Qingdao, Shandong 266041, China; Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zuoqing Tang
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
15
|
Xu S, Duan P, Li J, Senkowski T, Guo F, Chen H, Romero A, Cui Y, Liu J, Jiang SW. Zinc Finger and X-Linked Factor (ZFX) Binds to Human SET Transcript 2 Promoter and Transactivates SET Expression. Int J Mol Sci 2016; 17:ijms17101737. [PMID: 27775603 PMCID: PMC5085766 DOI: 10.3390/ijms17101737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 02/05/2023] Open
Abstract
SET (SE Translocation) protein carries out multiple functions including those for protein phosphatase 2A (PP2A) inhibition, histone modification, DNA repair, and gene regulation. SET overexpression has been detected in brain neurons of patients suffering Alzheimer's disease, follicle theca cells of Polycystic Ovary Syndrome (PCOS) patients, and ovarian cancer cells, indicating that SET may play a pathological role for these disorders. SET transcript 2, produced by a specific promoter, represents a major transcript variant in different cell types. In this study, we characterized the transcriptional activation of human SET transcript 2 promoter in HeLa cells. Promoter deletion experiments and co-transfection assays indicated that ZFX, the Zinc finger and X-linked transcription factor, was able to transactivate the SET promoter. A proximal promoter region containing four ZFX-binding sites was found to be critical for the ZFX-mediated transactivation. Mutagenesis study indicated that the ZFX-binding site located the closest to the transcription start site accounted for most of the ZFX-mediated transactivity. Manipulation of ZFX levels by overexpression or siRNA knockdown confirmed the significance and specificity of the ZFX-mediated SET promoter activation. Chromatin immunoprecipitation results verified the binding of ZFX to its cognate sites in the SET promoter. These findings have led to identification of ZFX as an upstream factor regulating SET gene expression. More studies are required to define the in vivo significance of this mechanism, and specifically, its implication for several benign and malignant diseases related to SET dysregulation.
Collapse
Affiliation(s)
- Siliang Xu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Tristan Senkowski
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Fengbiao Guo
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515000, China.
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515000, China.
| | - Alberto Romero
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
16
|
The zebrafish homologs of SET/I2PP2A oncoprotein: expression patterns and insights into their physiological roles during development. Biochem J 2016; 473:4609-4627. [PMID: 27754889 DOI: 10.1042/bcj20160523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 01/12/2023]
Abstract
The oncoprotein SET/I2PP2A (protein phosphatase 2A inhibitor 2) participates in various cellular mechanisms such as transcription, cell cycle regulation and cell migration. SET is also an inhibitor of the serine/threonine phosphatase PP2A, which is involved in the regulation of cell homeostasis. In zebrafish, there are two paralogous set genes that encode Seta (269 amino acids) and Setb (275 amino acids) proteins which share 94% identity. We show here that seta and setb are similarly expressed in the eye, the otic vesicle, the brain and the lateral line system, as indicated by in situ hybridization labeling. Whole-mount immunofluorescence analysis revealed the expression of Seta/b proteins in the eye retina, the olfactory pit and the lateral line neuromasts. Loss-of-function studies using antisense morpholino oligonucleotides targeting both seta and setb genes (MOab) resulted in increased apoptosis, reduced cell proliferation and morphological defects. The morphant phenotypes were partially rescued when MOab was co-injected with human SET mRNA. Knockdown of setb with a transcription-blocking morpholino oligonucleotide (MOb) resulted in phenotypic defects comparable with those induced by setb gRNA (guide RNA)/Cas9 [CRISPR (clustered regularly interspaced short palindromic repeats)-associated 9] injections. In vivo labeling of hair cells showed a significantly decreased number of neuromasts in MOab-, MOb- and gRNA/Cas9-injected embryos. Microarray analysis of MOab morphant transcriptome revealed differential expression in gene networks controlling transcription in the sensory organs, including the eye retina, the ear and the lateral line. Collectively, our results suggest that seta and setb are required during embryogenesis and play roles in the zebrafish sensory system development.
Collapse
|
17
|
He K, Shi L, Jiang T, Li Q, Chen Y, Meng C. Association between SET expression and glioblastoma cell apoptosis and proliferation. Oncol Lett 2016; 12:2435-2444. [PMID: 27698810 PMCID: PMC5038217 DOI: 10.3892/ol.2016.4951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/01/2016] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) was one of the first cancer types systematically studied at a genomic and transcriptomic level due to its high incidence and aggressivity; however, the detailed mechanism remains unclear, even though it is known that numerous cytokines are involved in the occurrence and development of GBM. The present study aimed to determine whether the SET gene has a role in human glioblastoma carcinogenesis. A total of 32 samples, including 18 cases of glioma, 2 cases of meningioma and 12 normal brain tissue samples, were detected using the streptavidin-peroxidase method through immunohistochemistry. To reduce SET gene expression in U251 and U87MG cell lines, the RNA interference technique was used and transfection with small interfering (si)RNA of the SET gene was performed. Cell apoptosis was detected by flow cytometry, cell migration was examined by Transwell migration assay and cell proliferation was determined by Cell Counting Kit-8. SET, Bcl-2, Bax and caspase-3 mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Positive protein expression of SET was observed in the cell nucleus, with the expression level of SET significantly higher in glioma tissues compared with normal brain tissue (P=0.001). Elevated expression of SET was significantly associated with gender (P=0.002), tumors classified as World Health Organization grade II (P=0.031), III (P=0.003) or IV (P=0.001), and moderately (P=0.031) or poorly differentiated (P=0.001) tumors. Compared with the negative and non-treatment (blank) control cells, SET gene expression was significantly inhibited (P=0.006 and P<0.001), cell apoptosis was significantly increased (P=0.001 and P<0.001), cell proliferation was significantly inhibited (P=0.002 and P=0.015), and cell migration was significantly decreased (P=0.001 and P=0.001) in siRNA-transfected U87MG−SET and U251−SET cells, respectively. In addition, mRNA and protein expression levels of Bcl-2 were significantly inhibited in U87MG−SET and U251−SET cells, while mRNA and protein expression levels of Bax and caspase-3 were significantly increased, compared with the two control groups. Thus, the current data suggests that SET may regulate the proliferation and apoptosis of glioblastoma cells by upregulating Bcl-2, and downregulating Bax and caspase-3.
Collapse
Affiliation(s)
- Kunyan He
- Department of Anatomy, Basic Medical and Forensic Medical Institute, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lihong Shi
- Department of Anatomy, Basic Medical and Forensic Medical Institute, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tingting Jiang
- Department of Anatomy, Basic Medical and Forensic Medical Institute, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Li
- Department of Neurosurgery, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610041, P.R. China
| | - Yao Chen
- Department of Anatomy, Basic Medical and Forensic Medical Institute, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chuan Meng
- Department of Neurosurgery, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
18
|
MYC-dependent recruitment of RUNX1 and GATA2 on the SET oncogene promoter enhances PP2A inactivation in acute myeloid leukemia. Oncotarget 2016; 8:53989-54003. [PMID: 28903318 PMCID: PMC5589557 DOI: 10.18632/oncotarget.9840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/22/2016] [Indexed: 01/15/2023] Open
Abstract
The SET (I2PP2A) oncoprotein is a potent inhibitor of protein phosphatase 2A (PP2A) that regulates many cell processes and important signaling pathways. Despite the importance of SET overexpression and its prognostic impact in both hematologic and solid tumors, little is known about the mechanisms involved in its transcriptional regulation. In this report, we define the minimal promoter region of the SET gene, and identify a novel multi-protein transcription complex, composed of MYC, SP1, RUNX1 and GATA2, which activates SET expression in AML. The role of MYC is crucial, since it increases the expression of the other three transcription factors of the complex, and supports their recruitment to the promoter of SET. These data shed light on a new regulatory mechanism in cancer, in addition to the already known PP2A-MYC and SET-PP2A. Besides, we show that there is a significant positive correlation between the expression of SET and MYC, RUNX1, and GATA2 in AML patients, which further endorses our results. Altogether, this study opens new directions for understanding the mechanisms that lead to SET overexpression, and demonstrates that MYC, SP1, RUNX1 and GATA2 are key transcriptional regulators of SET expression in AML.
Collapse
|
19
|
Jin H, Yu M, Lin Y, Hou B, Wu Z, Li Z, Sun J. MiR-502-3P suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SET. Onco Targets Ther 2016; 9:3281-9. [PMID: 27330307 PMCID: PMC4898420 DOI: 10.2147/ott.s87183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background/aim Increasing evidences show that microRNAs are engaged in hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of miR-502-3P in HCC and to identify its underlying mechanism. Methods The expression levels of miR-502-3P were assessed in multiple HCC cell lines and in liver tissues of patients with HCC. We further examined the effects of miR-502-3P on malignant behavior of HCC. The molecular target of miR-502-3P was identified using a computer algorithm and confirmed experimentally. Results Downregulation of miR-502-3P was found in both HCC cell lines and human samples. Overexpression of miR-502-3P dramatically inhibits HCC proliferation, metastasis, invasion, and cell adhesion. We further verify the SET as a novel and direct target of miR-502-3P in HCCs. Conclusion Taken together, overexpression of miR-502-3P or downregulation of SET may prove beneficial as a therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Haosheng Jin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Min Yu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ye Lin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Baohua Hou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhongshi Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhide Li
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jian Sun
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Wang Y, He PC, Liu YF, Qi J, Zhang M. Construction of SET overexpression vector and its effects on the proliferation and apoptosis of 293T cells. Mol Med Rep 2016; 13:4329-34. [PMID: 27035430 DOI: 10.3892/mmr.2016.5049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
The expression of SET nuclear proto‑oncogene (SET) is commonly associated with cell proliferation and tumorigenesis. In the present study, a eukaryotic SET expression plasmid (pEGFP‑N1‑SET) was constructed and transiently transfected into 293T human embryonic kidney cells. Transfection led to expression of the SET oncoprotein at high levels, as indicated by polymerase chain reaction and western blot analysis. In addition, the relative mRNA and protein expression of protein phosphatase 2A in pEGFP‑N1‑SET‑transfected 293T cells was downregulated compared with that in empty vector‑transfected cells. Furthermore, overexpression of SET increased the percentage of 293T cells in S and G2/M phases compared with the control transfectants. An increase in B‑cell lymphoma 2 (Bcl‑2) and a decrease in Bcl‑2‑associated X (Bax) protein expression was observed in the pEGFP‑N1‑SET‑transfected cells compared with that in the controls, and their susceptibility to As4S4‑induced apoptosis was decreased. The protein SET is involved in a number of cellular processes, including DNA replication, chromatin remodeling, gene transcription, differentiation, migration and cell cycle regulation. SET is overexpressed in several neoplasms, particularly in acute myeloid leukemia. The findings of the present study suggested that the SET gene may contribute to tumorigenesis and may be a potential novel effective therapeutic target for leukemia and other cancer types.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Peng-Cheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Yan-Feng Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Qi
- Institute of Xi'an Blood Bank, Shaanxi Blood Center, Xi'an, Shaanxi 710068, P.R. China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Medical College, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Trakhtenberg EF, Morkin MI, Patel KH, Fernandez SG, Sang A, Shaw P, Liu X, Wang Y, Mlacker GM, Gao H, Velmeshev D, Dombrowski SM, Vitek MP, Goldberg JL. The N-terminal Set-β Protein Isoform Induces Neuronal Death. J Biol Chem 2015; 290:13417-26. [PMID: 25833944 DOI: 10.1074/jbc.m114.633883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Set-β protein plays different roles in neurons, but the diversity of Set-β neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-β are altered in Alzheimer disease, cleavage of Set-β leads to neuronal death after stroke, and the full-length Set-β regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-β isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-β-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-β transcript lacking the nuclear localization signal and demonstrated that the full-length (∼39-kDa) Set-β is localized predominantly in the nucleus, whereas a shorter (∼25-kDa) Set-β isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-β cleavage product can induce neuronal death.
Collapse
Affiliation(s)
- Ephraim F Trakhtenberg
- From the Neuroscience Program and Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, and
| | - Melina I Morkin
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, and the Shiley Eye Center, University of California San Diego, La Jolla, California 92093
| | - Karan H Patel
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, and
| | | | - Alan Sang
- the Shiley Eye Center, University of California San Diego, La Jolla, California 92093
| | - Peter Shaw
- the Shiley Eye Center, University of California San Diego, La Jolla, California 92093
| | - Xiongfei Liu
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, and
| | - Yan Wang
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, and the Shiley Eye Center, University of California San Diego, La Jolla, California 92093
| | - Gregory M Mlacker
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, and
| | - Han Gao
- From the Neuroscience Program and
| | - Dmitry Velmeshev
- Molecular and Cellular Pharmacology Program,University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Susan M Dombrowski
- Genomatix Software, Ann Arbor, Michigan 48108, the Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Michael P Vitek
- Oncotide Pharmaceuticals Inc., Durham, North Carolina 27709, and the Department of Neurology, Duke University Medical Center, Durham, North Carolina 27708
| | - Jeffrey L Goldberg
- From the Neuroscience Program and Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, and the Shiley Eye Center, University of California San Diego, La Jolla, California 92093,
| |
Collapse
|
22
|
Arif M, Wei J, Zhang Q, Liu F, Basurto-Islas G, Grundke-Iqbal I, Iqbal K. Cytoplasmic retention of protein phosphatase 2A inhibitor 2 (I2PP2A) induces Alzheimer-like abnormal hyperphosphorylation of Tau. J Biol Chem 2014; 289:27677-91. [PMID: 25128526 PMCID: PMC4183805 DOI: 10.1074/jbc.m114.565358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Abnormal hyperphosphorylation of Tau leads to the formation of neurofibrillary tangles, a hallmark of Alzheimer disease (AD), and related tauopathies. The phosphorylation of Tau is regulated by protein phosphatase 2A (PP2A), which in turn is modulated by endogenous inhibitor 2 (I2 (PP2A)). In AD brain, I2 (PP2A) is translocated from neuronal nucleus to cytoplasm, where it inhibits PP2A activity and promotes abnormal phosphorylation of Tau. Here we describe the identification of a potential nuclear localization signal (NLS) in the C-terminal region of I2 (PP2A) containing a conserved basic motif, (179)RKR(181), which is sufficient for directing its nuclear localization. The current study further presents an inducible cell model (Tet-Off system) of AD-type abnormal hyperphosphorylation of Tau by expressing I2 (PP2A) in which the NLS was inactivated by (179)RKR(181) → AAA along with (168)KR(169) → AA mutations. In this model, the mutant NLS (mNLS)-I2 (PP2A) (I2 (PP2A)AA-AAA) was retained in the cell cytoplasm, where it physically interacted with PP2A and inhibited its activity. Inhibition of PP2A was associated with the abnormal hyperphosphorylation of Tau, which resulted in microtubule network instability and neurite outgrowth impairment. Expression of mNLS-I2 (PP2A) activated CAMKII and GSK-3β, which are Tau kinases regulated by PP2A. The immunoprecipitation experiments showed the direct interaction of I2 (PP2A) with PP2A and GSK-3β but not with CAMKII. Thus, the cell model provides insights into the nature of the potential NLS and the mechanistic relationship between I2 (PP2A)-induced inhibition of PP2A and hyperphosphorylation of Tau that can be utilized to develop drugs preventing Tau pathology.
Collapse
Affiliation(s)
- Mohammad Arif
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Jianshe Wei
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Qi Zhang
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Fei Liu
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Gustavo Basurto-Islas
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Inge Grundke-Iqbal
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Khalid Iqbal
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| |
Collapse
|
23
|
Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration. J Neurosci 2014; 34:7361-74. [PMID: 24849368 DOI: 10.1523/jneurosci.3658-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation.
Collapse
|
24
|
Sobral LM, Sousa LO, Coletta RD, Cabral H, Greene LJ, Tajara EH, Gutkind JS, Curti C, Leopoldino AM. Stable SET knockdown in head and neck squamous cell carcinoma promotes cell invasion and the mesenchymal-like phenotype in vitro, as well as necrosis, cisplatin sensitivity and lymph node metastasis in xenograft tumor models. Mol Cancer 2014; 13:32. [PMID: 24555657 PMCID: PMC3936887 DOI: 10.1186/1476-4598-13-32] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SET/I2PP2A is a multifunctional protein that is up-regulated in head and neck squamous cell carcinoma (HNSCC). The action of SET in HNSCC tumorigenicity is unknown. METHODS Stable SET knockdown by shRNA (shSET) was established in three HNSCC cell lines: HN12, HN13, and Cal27. Protein expression and phosphorylated protein levels were determined by Western blotting and immunofluorescence, cell migration and invasion were measured by functional analysis, and PP2A activity was determined using a serine/threonine phosphatase assay. A real-time PCR array was used to quantify 84 genes associated with cell motility. Metalloproteinase (MMP) activity was assessed by zymographic and fluorometric assays. HN12shSET xenograft tumors (flank and tongue models) were established in Balb/c nude mice; the xenograft characteristics and cisplatin sensitivity were demonstrated by macroscopic, immunohistochemical, and histological analyses, as well as lymph node metastasis by histology. RESULTS The HN12shSET cells displayed reduced ERK1/2 and p53 phosphorylation compared with control. ShSET reduced HN12 cell proliferation and increased the sub-G1 population of HN12 and Cal27 cells. Increased PP2A activity was also associated with shSET. The PCR array indicated up-regulation of three mRNAs in HN12 cells: vimentin, matrix metalloproteinase-9 (MMP9) and non-muscle myosin heavy chain IIB. Reduced E-cadherin and pan-cytokeratin, as well as increased vimentin, were also demonstrated as the result of SET knockdown. These changes were accompanied by an increase in MMP-9 and MMP-2 activities, migration and invasion. The HN12shSET subcutaneous xenograft tumors presented a poorly differentiated phenotype, reduced cell proliferation, and cisplatin sensitivity. An orthotopic xenograft tumor model using the HN12shSET cells displayed increased metastatic potential. CONCLUSIONS SET accumulation has important actions in HNSCC. As an oncogene, SET promotes cell proliferation, survival, and resistance to cell death by cisplatin in vivo. As a metastasis suppressor, SET regulates invasion, the epithelial mesenchymal transition, and metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andréia M Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Riberião Preto, University of São Paulo, Av, Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Pope SM, Lässer C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J Extracell Vesicles 2013; 2:22484. [PMID: 24363837 PMCID: PMC3862870 DOI: 10.3402/jev.v2i0.22484] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Until recently thought to be of little significance unless occurring during pregnancy, Toxoplasma gondii infection of human hosts is now known to play a larger role in mental health and is a growing concern in the health care community. We sought to elucidate a possible mechanism by which Toxoplasma infection may cause some of the behavioural pathology now associated with infection. We hypothesized that exosomes may be playing a role. METHODS We utilized electron microscopy to detect the presence and size of extracellular vesicles in the supernatants of Toxoplasma-infected human foreskin fibroblasts (HFF). We then utilized microarray analysis to discern mRNA and miRNA content of the vesicles isolated from supernatants of Toxoplasma-infected (Toxo) and serum-starved (SS) HFF. RESULTS We recovered extracellular vesicles with a size consistent with exosomes that we called exosome-like vesicles (ELVs) from the supernatants of SS and Toxo cultures. The mRNA and miRNA content of these ELVs was highly regulated creating specific and unique expression profiles comparing Toxo ELVs, SS ELVs and RNA isolated from whole cell homogenates. Interestingly, among the most enriched mRNA isolated from ELVs of Toxo cells are 4 specific mRNA species that have been described in the literature as having neurologic activity: Rab-13, eukaryotic translation elongation factor 1 alpha 1, thymosin beta 4 and LLP homolog. In addition, miRNA species uniquely expressed in Toxo ELVs include miR-23b, a well-known regulator of IL-17. CONCLUSION While the production of ELVs containing mRNAs that modify behaviour are consistent with reported Toxoplasma pathology, the mechanism of enrichment and ultimate in vivo effect of these mRNA and miRNA containing ELVs remains to be investigated.
Collapse
Affiliation(s)
- Samuel M Pope
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis IN, USA
| | - Cecilia Lässer
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Ahn JM, Kim MS, Kim YI, Jeong SK, Lee HJ, Lee SH, Paik YK, Pandey A, Cho JY. Proteogenomic analysis of human chromosome 9-encoded genes from human samples and lung cancer tissues. J Proteome Res 2013; 13:137-46. [PMID: 24274035 DOI: 10.1021/pr400792p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Chromosome-centric Human Proteome Project (C-HPP) was recently initiated as an international collaborative effort. Our team adopted chromosome 9 (Chr 9) and performed a bioinformatics and proteogenomic analysis to catalog Chr 9-encoded proteins from normal tissues, lung cancer cell lines, and lung cancer tissues. Approximately 74.7% of the Chr 9 genes of the human genome were identified, which included approximately 28% of missing proteins (46 of 162) on Chr 9 compared with the list of missing proteins from the neXtProt Master Table (2013-09). In addition, we performed a comparative proteomics analysis between normal lung and lung cancer tissues. On the basis of the data analysis, 15 proteins from Chr 9 were detected only in lung cancer tissues. Finally, we conducted a proteogenomic analysis to discover Chr 9-residing single nucleotide polymorphisms (SNP) and mutations described in the COSMIC cancer mutation database. We identified 21 SNPs and four mutations containing peptides on Chr 9 from normal human cells/tissues and lung cancer cell lines, respectively. In summary, this study provides valuable information of the human proteome for the scientific community as part of C-HPP. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000603.
Collapse
Affiliation(s)
- Jung-Mo Ahn
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|