1
|
Yang R, Fu D, Liao A. The role of complement in tumor immune tolerance and drug resistance: a double-edged sword. Front Immunol 2025; 16:1529184. [PMID: 39958348 PMCID: PMC11825488 DOI: 10.3389/fimmu.2025.1529184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
The domain of cancer treatment has persistently been confronted with significant challenges, including those associated with recurrence and drug resistance. The complement system, which serves as the foundation of the innate immune system, exhibits intricate and nuanced dual characteristics in the evolution of tumors. On the one hand, the complement system has the capacity to directly inhibit cancer cell proliferation via specific pathways, thereby exerting a beneficial anti-tumor effect. Conversely, the complement system can also facilitate the establishment of an immune escape barrier for cancer cells through non-complement-mediated mechanisms, thereby protecting them from eradication. Concurrently, the complement system can also be implicated in the emergence of drug resistance through a multitude of complex mechanisms, directly or indirectly reducing the efficacy of therapeutic interventions and facilitating the progression of cancer. This paper analyses the role of the complement system in tumors and reviews recent research advances in the mechanisms of tumor immune tolerance and drug resistance.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Blood Transfusion, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Di Fu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Practice, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Yu JH, Yuan HB, Yan ZY, Zhang X, Xu HH. The complement regulatory protein CD46 serves as a novel biomarker for cervical cancer diagnosis and prognosis evaluation. Front Immunol 2024; 15:1421778. [PMID: 38919630 PMCID: PMC11196419 DOI: 10.3389/fimmu.2024.1421778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Background CD46 has been revealed to be a key factor in malignant transformation and cancer treatment. However, the clinical significance of CD46 in cervical cancer remains unclear, and this study aimed to evaluate its role in cervical cancer diagnosis and prognosis evaluation. Methods A total of 180 patients with an initial diagnosis of cervical cancer were enrolled at Taizhou Hospital of Zhejiang Province, China. The plasma levels of soluble CD46 (sCD46) and the expression of membrane-bound CD46 (mCD46) were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), respectively. Results CD46 was found to be significantly upregulated in cervical cancer tissues vs. normal tissues, while no CD46 staining was detected in paired adjacent noncancerous tissues. CD46 staining was more pronounced in cancer cells than in stromal cells in situ (in tissues). Moreover, the plasma levels of sCD46 were able to some extent discriminate between cancer patients and healthy women (AUC=0.6847, 95% CI:0.6152-0.7541). Analysis of Kaplan-Meier survival curves revealed that patients with low CD46 expression had slightly longer overall survival (OS) than patients with high CD46 expression in the tumor microenvironment, but no significant difference. Univariate Cox regression analysis revealed that CD46 (P=0.034) is an independent risk factor for OS in cervical cancer patients. Conclusion The present study demonstrated that cervical cancer patients exhibit aberrant expression of CD46, which is closely associated with a poor prognosis, suggesting that CD46 plays a key role in promoting cervical carcinogenesis and that CD46 could serve as a promising potential target for precision therapy for cervical cancer.
Collapse
Affiliation(s)
- Jun-Hui Yu
- Department of Gynecology and Obstetrics, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hao-Bo Yuan
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zi-Yi Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xia Zhang
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
3
|
Baschieri F, Illand A, Barbazan J, Zajac O, Henon C, Loew D, Dingli F, Vignjevic DM, Lévêque-Fort S, Montagnac G. Fibroblasts generate topographical cues that steer cancer cell migration. SCIENCE ADVANCES 2023; 9:eade2120. [PMID: 37585527 PMCID: PMC10431708 DOI: 10.1126/sciadv.ade2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Fibroblasts play a fundamental role in tumor development. Among other functions, they regulate cancer cells' migration through rearranging the extracellular matrix, secreting soluble factors, and establishing direct physical contacts with cancer cells. Here, we report that migrating fibroblasts deposit on the substrate a network of tubular structures that serves as a guidance cue for cancer cell migration. Such membranous tubular network, hereafter called tracks, is stably anchored to the substrate in a β5-integrin-dependent manner. We found that cancer cells specifically adhere to tracks by using clathrin-coated structures that pinch and engulf tracks. Tracks thus represent a spatial memory of fibroblast migration paths that is read and erased by cancer cells directionally migrating along them. We propose that fibroblast tracks represent a topography-based intercellular communication system capable of steering cancer cell migration.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Abigail Illand
- Université Paris Saclay, CNRS, Institut des sciences moléculaires d’Orsay, UMR8214, Orsay, France
| | - Jorge Barbazan
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Olivier Zajac
- Institut Curie, UMR144, PSL Research University, Centre Universitaire, Paris, France
| | - Clémence Henon
- Inserm U981, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | | | - Sandrine Lévêque-Fort
- Université Paris Saclay, CNRS, Institut des sciences moléculaires d’Orsay, UMR8214, Orsay, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
4
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Murugaiah V, Varghese PM, Beirag N, DeCordova S, Sim RB, Kishore U. Complement Proteins as Soluble Pattern Recognition Receptors for Pathogenic Viruses. Viruses 2021; 13:v13050824. [PMID: 34063241 PMCID: PMC8147407 DOI: 10.3390/v13050824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
The complement system represents a crucial part of innate immunity. It contains a diverse range of soluble activators, membrane-bound receptors, and regulators. Its principal function is to eliminate pathogens via activation of three distinct pathways: classical, alternative, and lectin. In the case of viruses, the complement activation results in effector functions such as virion opsonisation by complement components, phagocytosis induction, virolysis by the membrane attack complex, and promotion of immune responses through anaphylatoxins and chemotactic factors. Recent studies have shown that the addition of individual complement components can neutralise viruses without requiring the activation of the complement cascade. While the complement-mediated effector functions can neutralise a diverse range of viruses, numerous viruses have evolved mechanisms to subvert complement recognition/activation by encoding several proteins that inhibit the complement system, contributing to viral survival and pathogenesis. This review focuses on these complement-dependent and -independent interactions of complement components (especially C1q, C4b-binding protein, properdin, factor H, Mannose-binding lectin, and Ficolins) with several viruses and their consequences.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Syreeta DeCordova
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
- Correspondence: or
| |
Collapse
|
6
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
Liu F, Luo L, Liu Z, Wu S, Zhang W, Li Q, Peng Y, Wei Y, Li B. A genetic variant in the promoter of CD46 is associated with the risk and prognosis of hepatocellular carcinoma. Mol Carcinog 2020; 59:1243-1255. [PMID: 32869896 DOI: 10.1002/mc.23252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/26/2020] [Accepted: 08/12/2020] [Indexed: 02/05/2023]
Abstract
CD46 (also known as membrane cofactor protein), which is a member of the membrane-bound complement regulatory protein family, has been reported to cause cancer cells to escape complement-dependent cytotoxicity. However, the association between CD46 polymorphisms and the risk of hepatocellular carcinoma (HCC) has not been investigated. This two-stage association study was conducted to assess the relationship between the tagging single nucleotide polymorphisms (tagSNPs) of CD46 and HCC risk and prognosis. A series of functional analyses were performed to study the underlying mechanisms. Among the eight tagSNPs, rs2796267 (P = .003) and rs2796268 (P = .011) were found to modify HCC risk in the discovery set. Only rs2796267 (P < .0001) was confirmed to be associated with HCC susceptibility in the validation set. Compared with the wild-type AA genotype, the GG genotype significantly increased the HCC risk (adjusted odds ratio [OR] = 2.03; 95% confidence interval [CI], 1.34-3.08; P = .001). Moreover, subgroups analysis suggested a positive correlation among male and younger patients, especially among drinkers, smokers, and hepatitis B surface antigen-positive individuals. In functional analyses, we found that the rs2796267 G allele in the promoter region of CD46 could increase the expression of CD46 by affecting the binding affinity of STAT5a. Furthermore, Cox regression analysis revealed that the rs2796267 AG/GG genotype was significantly associated with worse prognosis of resected patients with HCC (hazard ratio = 2.27; 95% CI, 1.27-4.05; P = .006). These results suggest that the CD46 rs2796267 polymorphism may contribute to susceptibility and prognosis of HCC by altering promoter activity.
Collapse
Affiliation(s)
- Fei Liu
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Limei Luo
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongjian Liu
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Sisi Wu
- Division of Core Facilities, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qin Li
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufu Peng
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yonggang Wei
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Li
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Jin YJ, Byun S, Han S, Chamberlin J, Kim D, Kim MJ, Lee Y. Differential alternative splicing regulation among hepatocellular carcinoma with different risk factors. BMC Med Genomics 2019; 12:175. [PMID: 31856847 PMCID: PMC6923823 DOI: 10.1186/s12920-019-0635-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis B virus (HBV), hepatitis C virus (HCV), and alcohol consumption are predominant causes of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying how differently these causes are implicated in HCC development are not fully understood. Therefore, we investigated differential alternative splicing (AS) regulation among HCC patients with these risk factors. Methods We conducted a genome-wide survey of AS events associated with HCCs among HBV (n = 95), HCV (n = 47), or alcohol (n = 76) using RNA-sequencing data obtained from The Cancer Genome Atlas. Results In three group comparisons of HBV vs. HCV, HBV vs. alcohol, and HCV vs. alcohol for RNA seq (ΔPSI> 0.05, FDR < 0.05), 133, 93, and 29 differential AS events (143 genes) were identified, respectively. Of 143 AS genes, eight and one gene were alternatively spliced specific to HBV and HCV, respectively. Through functional analysis over the canonical pathways and gene ontologies, we identified significantly enriched pathways in 143 AS genes including immune system, mRNA splicing-major pathway, and nonsense-mediated decay, which may be important to carcinogenesis in HCC risk factors. Among eight genes with HBV-specific splicing events, HLA-A, HLA-C, and IP6K2 exhibited more differential expression of AS events (ΔPSI> 0.1). Intron retention of HLA-A was observed more frequently in HBV-associated HCC than HCV- or alcohol-associated HCC, and intron retention of HLA-C showed vice versa. Exon 3 (based on ENST00000432678) of IP6K2 was less skipped in HBV-associated in HCC compared to HCV- or alcohol-associated HCC. Conclusion AS may play an important role in regulating transcription differences implicated in HBV-, HCV-, and alcohol-related HCC development.
Collapse
Affiliation(s)
- Young-Joo Jin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon, South Korea
| | - Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Chamberlin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dongwook Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Min Jung Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Pharmacy program, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Wang L, Zhao H, Li J, Xu Y, Lan Y, Yin W, Liu X, Yu L, Lin S, Du MY, Li X, Xiao Y, Zhang Y. Identifying functions and prognostic biomarkers of network motifs marked by diverse chromatin states in human cell lines. Oncogene 2019; 39:677-689. [PMID: 31537905 PMCID: PMC6962092 DOI: 10.1038/s41388-019-1005-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications play critical roles in modulating gene expression, yet their roles in regulatory networks in human cell lines remain poorly characterized. We integrated multiomics data to construct directed regulatory networks with nodes and edges labeled with chromatin states in human cell lines. We observed extensive association of diverse chromatin states and network motifs. The gene expression analysis showed that diverse chromatin states of coherent type-1 feedforward loop (C1-FFL) and incoherent type-1 feedforward loops (I1-FFL) contributed to the dynamic expression patterns of targets. Notably, diverse chromatin state compositions could help C1- or I1-FFL to control a large number of distinct biological functions in human cell lines, such as four different types of chromatin state compositions cooperating with K562-associated C1-FFLs controlling “regulation of cytokinesis,” “G1/S transition of mitotic cell cycle,” “DNA recombination,” and “telomere maintenance,” respectively. Remarkably, we identified six chromatin state-marked C1-FFL instances (HCFC1-NFYA-ABL1, THAP1-USF1-BRCA2, ZNF263-USF1-UBA52, MYC-ATF1-UBA52, ELK1-EGR1-CCT4, and YY1-EGR1-INO80C) could act as prognostic biomarkers of acute myelogenous leukemia though influencing cancer-related biological functions, such as cell proliferation, telomere maintenance, and DNA recombination. Our results will provide novel insight for better understanding of chromatin state-mediated gene regulation and facilitate the identification of novel diagnostic and therapeutic biomarkers of human cancers.
Collapse
Affiliation(s)
- Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Jing Li
- Department of Ultrasonic medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Wenkang Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Xiaoqin Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Lei Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Shihua Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China
| | - Michael Yifei Du
- Weston High School of Massachusetts, 444 Wellesley street, Weston, MA, 02493, USA
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China.
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China.
| |
Collapse
|
10
|
Yang Z, Li J, Feng G, Wang Y, Yang G, Liu Y, Zhang S, Feng J, Zhang X. Hepatitis B virus X protein enhances hepatocarcinogenesis by depressing the targeting of NUSAP1 mRNA by miR- 18b. Cancer Biol Med 2019; 16:276-287. [PMID: 31516748 PMCID: PMC6713641 DOI: 10.20892/j.issn.2095-3941.2018.0283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective The aim of this study was to investigate the underlying mechanism whereby HBx modulates the targeting of NUSAP1 by miR-18b to enhance hepatocarcinogenesis. Methods We employed an integrated approach of bioinformatics analysis and molecular experiments in hepatoma cells, HBV transgenic mice, and clinical liver cancer tissues to investigate the role of HBx-regulated miR-18b in the development of liver cancer. Results In this study, we report that the HBx-mediated tumor suppressor miR-18b modulates hepatocarcinogenesis during the host-HBV interaction. The expression levels of miR-18b were lower in clinical HBV-positive liver cancer tissues and liver tissues of HBV-transgenic mice. Interestingly, HBx inhibited miR-18b expression by inducing the methylation of CpG islands in its promoter. Accordingly, we tested the hypothesis that HBx enhanced hepatocarcinogenesis by increasing the expression of target genes of miR-18b. Moreover, we identified nucleolar spindle-associated protein 1 (NUSAP1) as one of the target genes of miR-18b. NUSAP1 was expressed at high levels in liver cancer tissues. Interestingly, HBx up-regulated NUSAP1 by suppressing miR-18b. Functionally, miR-18b significantly inhibited the proliferation of hepatoma cells by depressing NUSAP1 levels in vivo and in vitro. Conclusions Thus, we conclude that the targeting of NUSAP1 mRNA by the tumor suppressor miR-18b is controlled by HBx-modulated promoter methylation during the host-virus interaction, leading to hepatocarcinogenesis. Our findings provide new insights into the mechanism by which HBx-mediated miRNAs modulate hepatocarcinogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiong Li
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunxia Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuqin Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinyan Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Cho YS, Do MH, Kwon SY, Moon C, Kim K, Lee K, Lee SJ, Hemmi S, Joo YE, Kim MS, Jung C. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers. Oncotarget 2018; 7:38210-38223. [PMID: 27203670 PMCID: PMC5122383 DOI: 10.18632/oncotarget.9427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/28/2016] [Indexed: 01/01/2023] Open
Abstract
CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients.
Collapse
Affiliation(s)
- Young-Suk Cho
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Manh-Hung Do
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Se-Young Kwon
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Kwonseop Kim
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Keesook Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Sang-Jin Lee
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Min Soo Kim
- Department of Statistics, College of Natural Sciences, Chonnam National University, Gwangju, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
12
|
Zhao XM, Li S. HISP: a hybrid intelligent approach for identifying directed signaling pathways. J Mol Cell Biol 2018; 9:453-462. [DOI: 10.1093/jmcb/mjx054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Shan Li
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Gao Y, Feng J, Yang G, Zhang S, Liu Y, Bu Y, Sun M, Zhao M, Chen F, Zhang W, Ye L, Zhang X. Hepatitis B virus X protein-elevated MSL2 modulates hepatitis B virus covalently closed circular DNA by inducing degradation of APOBEC3B to enhance hepatocarcinogenesis. Hepatology 2017; 66:1413-1429. [PMID: 28608964 DOI: 10.1002/hep.29316] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/10/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection is a leading cause in the occurrence of hepatitis B, liver cirrhosis, and liver cancer, in which nuclear HBV covalently closed circular DNA (cccDNA), the genomic form that templates viral transcription and sustains viral persistence, plays crucial roles. In the present study, we explored the hypothesis that HBV X protein (HBx)-elevated male-specific lethal 2 (MSL2) activated HBV replication by modulating cccDNA in hepatoma cells, leading to hepatocarcinogenesis. Immunohistochemical analysis revealed that the expression of MSL2 was positively associated with that of HBV and was increased in the liver tissues of HBV-transgenic mice and clinical HCC patients. Interestingly, microarray profiling identified that MSL2 was associated with those genes responding to the virus. Mechanistically, MSL2 could maintain HBV cccDNA stability through degradation of APOBEC3B by ubiquitylation in hepatoma cells. Above all, HBx accounted for the up-regulation of MSL2 in stably HBx-transfected hepatoma cell lines and liver tissues of HBx-transgenic mice. Luciferase reporter gene assays revealed that the promoter region of MSL2 regulated by HBx was located at nucleotide -1317/-1167 containing FoxA1 binding element. Chromatin immunoprecipitation assay validated that HBx could enhance the binding property of FoxA1 to MSL2 promoter region. HBx up-regulated MSL2 by activating YAP/FoxA1 signaling. Functionally, silencing MSL2 was able to block the growth of hepatoma cells in vitro and in vivo. CONCLUSION HBx-elevated MSL2 modulates HBV cccDNA in hepatoma cells to promote hepatocarcinogenesis, forming a positive feedback loop of HBx/MSL2/cccDNA/HBV. Our finding uncovers insights into the mechanism by which MSL2 as a promotion factor in host cells selectively activates extrachromosomal DNA. (Hepatology 2017;66:1413-1429).
Collapse
Affiliation(s)
- Yuen Gao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinyan Feng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunxia Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanan Bu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Man Zhao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Li D, He W, Liu X, Zheng S, Qi Y, Li H, Mao F, Liu J, Sun Y, Pan L, Du K, Ye K, Li W, Sui J. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. eLife 2017; 6. [PMID: 28949917 PMCID: PMC5614562 DOI: 10.7554/elife.26738] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem. Currently-available therapies are ineffective in curing chronic HBV infection. HBV and its satellite hepatitis D virus (HDV) infect hepatocytes via binding of the preS1 domain of its large envelope protein to sodium taurocholate cotransporting polypeptide (NTCP). Here, we developed novel human monoclonal antibodies that block the engagement of preS1 with NTCP and neutralize HBV and HDV with high potency. One antibody, 2H5-A14, functions at picomolar level and exhibited neutralization-activity-mediated prophylactic effects. It also acts therapeutically by eliciting antibody-Fc-dependent immunological effector functions that impose durable suppression of viral infection in HBV-infected mice, resulting in reductions in the levels of the small envelope antigen and viral DNA, with no emergence of escape mutants. Our results illustrate a novel antibody-Fc-dependent approach for HBV treatment and suggest 2H5-A14 as a novel clinical candidate for HBV prevention and treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Dan Li
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Ximing Liu
- National Institute of Biological Sciences, Beijing, China.,PTN Joint Graduate Program, College of Life Sciences, Peking University, Beijing, China
| | - Sanduo Zheng
- National Institute of Biological Sciences, Beijing, China
| | - Yonghe Qi
- National Institute of Biological Sciences, Beijing, China
| | - Huiyu Li
- National Institute of Biological Sciences, Beijing, China
| | - Fengfeng Mao
- National Institute of Biological Sciences, Beijing, China.,Graduate Program in College of Life Sciences, Beijing Normal University, Beijing, China
| | - Juan Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Lijing Pan
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Kaixin Du
- National Institute of Biological Sciences, Beijing, China.,Graduate Program in College of Life Sciences, Beijing Normal University, Beijing, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
15
|
Feng GX, Li J, Yang Z, Zhang SQ, Liu YX, Zhang WY, Ye LH, Zhang XD. Hepatitis B virus X protein promotes the development of liver fibrosis and hepatoma through downregulation of miR-30e targeting P4HA2 mRNA. Oncogene 2017; 36:6895-6905. [PMID: 28846110 DOI: 10.1038/onc.2017.291] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV)-induced liver necrosis takes great part in liver cirrhosis progression. However, less is known about whether hepatitis B virus X protein (HBx) has effect on liver fibrosis. Here, we report that HBV leads to liver fibrosis and hepatocarcinogenesis through miR-30e targeting P4HA2. HBV transgenic mouse was treated by CCl4 to generate a model of liver fibrosis. A crucial enzyme catalyzing collagen formation, prolyl 4-hydroxylase subunit α2 (P4HA2) was evaluated by immunohistochemistry, western blotting or quantitative reverse transcription-PCR analysis. The function of HBV-modulated P4HA2 in hepatoma cell growth in vitro and in vivo was analyzed by EdU, MTT, colony-forming assay and animal transplantation assay. HBV transgenic mice exhibited more collagen deposition in liver after intraperitoneal injection of CCl4. P4HA2 was dramatically augmented in liver samples of HBV transgenic mice, clinical liver cirrhosis and liver cancer patients. Mechanistically, HBx was capable of inducing P4HA2 through suppressing miR-30e, in which miR-30e could target P4HA2 mRNA 3' untranslated region in liver cancer cells. HBx inhibited the miR-30e expression through increasing methylation of CpG islands in its promoter mediated by EZH2-formed complexes. Functionally, HBx-elevated P4HA2 enhanced the collagen deposition in the liver in vivo and in vitro, leading to liver fibrosis and liver cancer progression. In conclusion, HBx promotes the development of liver fibrosis and hepatocellular carcinoma through miR-30e targeting P4HA2 mRNA. We provide novel perspective on how HBx induces liver fibrosis.
Collapse
Affiliation(s)
- G X Feng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - J Li
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Z Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - S Q Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Y X Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - W Y Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - L H Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - X D Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S, Liu Y, Ye L, Li Y, Zhang X. MicroRNA-145 Modulates N6-Methyladenosine Levels by Targeting the 3'-Untranslated mRNA Region of the N6-Methyladenosine Binding YTH Domain Family 2 Protein. J Biol Chem 2017; 292:3614-3623. [PMID: 28104805 DOI: 10.1074/jbc.m116.749689] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/14/2017] [Indexed: 12/21/2022] Open
Abstract
N6-Methyladenosine (m6A) is a prevalent modification present in the mRNAs of higher eukaryotes. YTH domain family 2 (YTHDF2), an m6A "reader" protein, can recognize mRNA m6A sites to mediate mRNA degradation. However, the regulatory mechanism of YTHDF2 is poorly understood. To this end, we investigated the post-transcriptional regulation of YTHDF2. Bioinformatics analysis suggested that the microRNA miR-145 might target the 3'-untranslated region (3'-UTR) of YTHDF2 mRNA. The levels of miR-145 were negatively correlated with those of YTHDF2 mRNA in clinical hepatocellular carcinoma (HCC) tissues, and immunohistochemical staining revealed that YTHDF2 was closely associated with malignancy of HCC. Interestingly, miR-145 decreased the luciferase activities of 3'-UTR of YTHDF2 mRNA. Mutation of predicted miR-145 binding sites in the 3'-UTR of YTHDF2 mRNA abolished the miR-145-induced decrease in luciferase activity. Overexpression of miR-145 dose-dependently down-regulated YTHDF2 expression in HCC cells at the levels of both mRNA and protein. Conversely, inhibition of miR-145 resulted in the up-regulation of YTHDF2 in the cells. Dot blot analysis and immunofluorescence staining revealed that the overexpression of miR-145 strongly increased m6A levels relative to those in control HCC cells, and this increase could be blocked by YTHDF2 overexpression. Moreover, miR-145 inhibition strongly decreased m6A levels, which were rescued by treatment with a small interfering RNA-based YTHDF2 knockdown. Thus, we conclude that miR-145 modulates m6A levels by targeting the 3'-UTR of YTHDF2 mRNA in HCC cells.
Collapse
Affiliation(s)
- Zhe Yang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiong Li
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Feng
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan Gao
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuqin Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunxia Liu
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China, and
| | - Yueguo Li
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiaodong Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China,
| |
Collapse
|
17
|
Wang Z, Liao J, Wu S, Li C, Fan J, Peng Z. Recipient C6 rs9200 genotype is associated with hepatocellular carcinoma recurrence after orthotopic liver transplantation in a Han Chinese population. Cancer Gene Ther 2016; 23:157-61. [PMID: 27173880 DOI: 10.1038/cgt.2016.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) recurrence is one of the leading causes of death after orthotopic liver transplantation (OLT). The sixth complement component (C6) is a late-acting complement protein that participates in the assembly of the membrane attack complex, which has an indispensable role in innate and acquired immune responses, as well as cancer immune surveillance. However, studies assessing the association between C6 and HCC recurrence after OLT are scarce. This study aimed to evaluate the association of donor and recipient C6 single-nucleotide polymorphisms with the risk for HCC recurrence after OLT. A total of 71 adult patients who underwent primary LT for HCC were enrolled. HCC recurrence was observed in 26 (36.6%) patients. Ten single-nucleotide polymorphisms were genotyped and analyzed in both donor and recipient groups. Patients with the rs9200 heterozygous GA variant presented significantly higher HCC recurrence rates (54.17 vs 27.66%, P=0.028), and lower cumulative tumor-free survival and overall survival (P=0.006 and P=0.013, respectively) compared with those harboring the GG/AA genotype, in multivariate logistic regression and Cox regression analyses. The rs9200 heterozygous GA variant in C6 persisted as a statistically independent prognostic factor (P<0.05) for predicting HCC recurrence after OLT. In conclusion, recipient C6 rs9200 polymorphism is associated with HCC recurrence after OLT, and improves the predictive value of clinical models.
Collapse
Affiliation(s)
- Z Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Feng G, Li J, Zheng M, Yang Z, Liu Y, Zhang S, Ye L, Zhang W, Zhang X. Hepatitis B virus X protein up-regulates C4b-binding protein α through activating transcription factor Sp1 in protection of hepatoma cells from complement attack. Oncotarget 2016; 7:28013-26. [PMID: 27050367 PMCID: PMC5053706 DOI: 10.18632/oncotarget.8472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus X protein (HBx) plays crucial roles in the development of hepatocellular carcinoma (HCC). We previously showed that HBx protected hepatoma cells from complement attack by activation of CD59. Moreover, in this study we found that HBx protected hepatoma cells from complement attack by activation of C4b-binding protein α (C4BPα), a potent inhibitor of complement system. We observed that HBx were positively correlated with those of C4BPα in clinical HCC tissues. Mechanistically, HBx activated the promoter core region of C4BPα, located at -1199/-803nt, through binding to transcription factor Sp1. In addition, chromatin immunoprecipitation (ChIP) assays showed that HBx was able to bind to the promoter of C4BPα, which could be blocked by Sp1 silencing. Functionally, knockdown of C4BPα obviously increased the deposition of C5b-9, a complex of complement membrane attack, and remarkably abolished the HBx-induced resistance of hepatoma cells from complement attack in vitro and in vivo. Thus, we conclude that HBx up-regulates C4BPα through activating transcription factor Sp1 in protection of liver cancer cells from complement attack. Our finding provides new insights into the mechanism by which HBx enhances protection of hepatoma cells from complement attack.
Collapse
Affiliation(s)
- Guoxing Feng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Jiong Li
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Minying Zheng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Zhe Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yunxia Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| |
Collapse
|
19
|
Upregulation of microRNA-146a by hepatitis B virus X protein contributes to hepatitis development by downregulating complement factor H. mBio 2015; 6:mBio.02459-14. [PMID: 25805734 PMCID: PMC4453536 DOI: 10.1128/mbio.02459-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic injuries in hepatitis B virus (HBV) patients are caused by immune responses of the host. In our previous study, microRNA-146a (miR-146a), an innate immunity-related miRNA, and complement factor H (CFH), an important negative regulator of the alternative pathway of complement activation, were differentially expressed in HBV-expressing and HBV-free hepatocytes. Here, the roles of these factors in HBV-related liver inflammation were analyzed in detail. The expression levels of miR-146a and CFH in HBV-expressing hepatocytes were assessed via analyses of hepatocyte cell lines, transgenic mice, adenovirus-infected mice, and HBV-positive human liver samples. The expression level of miR-146a was upregulated in HBV-expressing Huh-7 hepatocytes, HBV-expressing mice, and patients with HBV infection. Further results demonstrated that the HBV X protein (HBx) was responsible for its effects on miR-146a expression through NF-κB-mediated enhancement of miR-146a promoter activity. HBV/HBx also downregulated the expression of CFH mRNA in hepatocyte cell lines and the livers of humans and transgenic mice. Furthermore, overexpression and inhibition of miR-146a in Huh-7 cells downregulated and upregulated CFH mRNA levels, respectively. Luciferase reporter assays demonstrated that miR-146a downregulated CFH mRNA expression in hepatocytes via 3′-untranslated-region (UTR) pairing. The overall effect of this process in vivo is to promote liver inflammation. These results demonstrate that the HBx–miR-146a–CFH–complement activation regulation pathway might play an important role in the immunopathogenesis of chronic HBV infection. These findings have important implications for understanding the immunopathogenesis of chronic hepatitis B and developing effective therapeutic interventions. Hepatitis B virus (HBV) remains an important pathogen and can cause severe liver diseases, including hepatitis, liver cirrhosis, and hepatocellular carcinoma. Although HBV was found in 1966, the molecular mechanisms of pathogenesis are still poorly understood. In the present study, we found that the HBV X protein (HBx) promoted the expression of miR-146a, an innate immunity-related miRNA, through the NF-κB signal pathway and that increasingly expressed miR-146a downregulated its target complement factor H (CFH), an important negative regulator of the complement alternative pathway, leading to the promotion of liver inflammation. We demonstrated that the HBx–miR-146a–CFH–complement activation regulation pathway is potentially an important mechanism of immunopathogenesis caused by chronic HBV infection. Our data provide a novel molecular mechanism of HBV pathogenesis and thus help to understand the correlations between the complement system, an important part of innate immunity, and HBV-associated disease. These findings will also be important to identify potential therapeutic targets for HBV infection.
Collapse
|
20
|
Xu C, Zhou W, Wang Y, Qiao L. Hepatitis B virus-induced hepatocellular carcinoma. Cancer Lett 2014; 345:216-222. [PMID: 23981576 DOI: 10.1016/j.canlet.2013.08.035] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/10/2013] [Accepted: 08/18/2013] [Indexed: 12/12/2022]
Abstract
Many factors are considered to contribute to hepatitis B virus (HBV) associated hepatocellular carcinoma (HCC), including products of HBV, HBV integration and mutation, and host susceptibility. HBV X protein (HBx) can interfere with several signal pathways that associated with cell proliferation and apoptosis, and the impact of HBx C-terminal truncation in the development of HCC has been implicated. Recent studies by advanced sequencing technologies have revealed recurrent HBV DNA integration sites in hepatoma cells and susceptible genes/SNPs play an important role in the pathogenesis of liver cancer. Epigenetic changes, immune and inflammatory factors are also important contributing factors for liver cancer. This mini-review provides an overview on the recent development of HBV induced HCC.
Collapse
Affiliation(s)
- Cheng Xu
- Institute for Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wence Zhou
- The Department of General Surgery II, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yuming Wang
- Institute for Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Liang Qiao
- Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|