1
|
Liu Z, Wang H, Dai L, Zeng H, Zhong X. Y-box binding protein 1: A critical target for understanding and treating cardiovascular disease. Cell Signal 2025; 132:111797. [PMID: 40204098 DOI: 10.1016/j.cellsig.2025.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Cardiovascular diseases (CVDs) remain a significant public health burden, characterized by escalating morbidity and mortality rates and demanding novel therapeutic approaches. Cold shock protein Y-box binding protein 1 (YB-1), a highly conserved RNA/DNA-binding protein, has emerged as a pivotal regulator in various pathophysiological processes, including CVDs. YB-1 exerts pleiotropic functions by modulating gene transcription, pre-mRNA splicing, mRNA translation, and stability. The expression and function of YB-1 are intricately regulated by its subcellular localization, post-translational modifications, upstream regulatory signals. YB-1 plays a multifaceted role in CVDs, influencing inflammation, oxidative stress, cell proliferation, apoptosis, phenotypic switching of smooth muscle cells, and mitochondrial dysfunction. However, the regulation of YB-1 expression and function in CVDs is complex and context-dependent, exhibiting divergent effects even in the same disease across different cell types or at disease stages. This review comprehensively explores the structure, regulation, and functional significance of YB-1 in CVDs. We delve into the transcriptional and translational control mechanisms of YB-1, as well as its post-translational modifications. Furthermore, we elucidate the upstream signaling pathways that influence YB-1 expression, with a particular emphasis on non-coding RNAs and specific upstream molecules. Finally, we systematically examine the role of YB-1 in CVDs, summarizing its expression patterns, regulatory mechanisms, and therapeutic potential as a promising target for novel therapeutic interventions. By providing a comprehensive overview of YB-1's involvement in CVDs, this review aims to stimulate further research and facilitate the development of targeted therapies to improve cardiovascular health.
Collapse
Affiliation(s)
- Zixuan Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Lei Dai
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hesong Zeng
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| | - Xiaodan Zhong
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Liu Q, Yan L, Wu T, Wu Q, Ke B, Shen W. Peli1, regulated by m 6A modification, suppresses NLRP3 inflammasome activation in atherosclerosis by inhibiting YB-1. Commun Biol 2025; 8:457. [PMID: 40102597 PMCID: PMC11920095 DOI: 10.1038/s42003-025-07839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
The activation of pyrin domain-containing-3 (NLRP3) inflammasome in macrophages is a risk factor accelerating the progression of atherosclerosis (AS). Here, the function of pellino 1 (Peli1) in regulating the activation of NLRP3 inflammasome during the development of AS was investigated. Our results showed that Y-box binding protein 1 (YB-1) knockdown could inhibit the progression of AS in vivo, and YB-1 silencing repressed oxidized low-density lipoprotein (ox-LDL)-mediated lipid accumulation and inflammation in macrophages by inactivating NLRP3 inflammasome. E3 ubiquitination ligase Peli1 mediated ubiquitination-dependent degradation of YB-1 during AS progression. Moreover, it was found that YTH domain-containing 2 (YTHDC2) recognized methyltransferase-like 3 (METTL3)-mediated Peli1 N6-methyladenosine (m6A) modification and mediated Peli1 mRNA degradation. Rescue studies revealed that YB-1 upregulation abrogated the repressive effect of Peli1 upregulation on AS progression both in vitro and in vivo. Taken together, Peli1, regulated by m6A modification, inhibited YB-1-mediated activation of NLRP3 inflammasome in macrophages by promoting YB-1 ubiquitination to suppress the progression of AS.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lu Yan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Calderón-Peláez MA, Madroñero LJ, Castellanos JE, Velandia-Romero ML. Small extracellular vesicles from the human endothelial cell line EA.hy 926 exert a self-cell activation and modulate DENV-2 genome replication and infection in naïve endothelial cells. PLoS One 2024; 19:e0310735. [PMID: 39325758 PMCID: PMC11426460 DOI: 10.1371/journal.pone.0310735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell signaling and communication, transporting molecules that convey a message to target cells. During infectious diseases, EVs can also carry viral molecules that may contribute to viral spread, as previously reported for dengue virus (DENV). EVs from infected endothelial cells (EC) may harbor viral segments and various sets of molecules that could contribute to endothelial dysfunction during severe dengue. However, the effect of these EVs on non-infected EC (NIC) remain unknown. We characterized the EVs produced by the human EC line EA.hy 926 infected with DENV-2 and assessed their functional impact on polarized NIC. Results showed that infection induced an increased in the quantity of produced EVs, which differentially carried proteins mainly involved in proteosome activity, along with a peptide of the NS5 viral protein. Additionally, all types of Y-RNAs were found, accompanied by a set of differentially loaded microRNAs (miRs) that could regulate DENV genome. Pre-treatment of polarized NIC with small EVs (sEVs) from infected EC before DENV-2 infection caused EC activation, a decrease in viral genome replication, and a protective effect against barrier disruption during the first 24h post-infection, suggesting that sEVs could be important in the pathology or resolution of DENV and a promising therapeutic tool for infectious diseases.
Collapse
Affiliation(s)
| | - L. Johana Madroñero
- Virology group, Vice-chancellor of research, Universidad El Bosque, Bogotá, Colombia
| | - Jaime E. Castellanos
- Virology group, Vice-chancellor of research, Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
4
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
5
|
Tang Y, Li Z, Yang H, Yang Y, Geng C, Liu B, Zhang T, Liu S, Xue Y, Zhang H, Wang J, Zhao H. YB1 dephosphorylation attenuates atherosclerosis by promoting CCL2 mRNA decay. Front Cardiovasc Med 2022; 9:945557. [PMID: 35990936 PMCID: PMC9386362 DOI: 10.3389/fcvm.2022.945557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation is a key pathological process in atherosclerosis. RNA binding proteins (RBPs) have been reported to play an important role in atherosclerotic plaque formation, and they could regulate the expression of inflammatory factors by phosphorylation modification. Y-box binding protein 1 (YB1) is an RBP that has participated in many inflammatory diseases. Here, we found an increased expression of phosphorylated YB1 (pYB1) in atherosclerotic plaques and demonstrated that YB1 dephosphorylation reduced lipid accumulation and lesion area in the aorta in vivo. Additionally, we found that inflammatory cytokines were downregulated in the presence of YB1 dephosphorylation, particularly CCL2, which participates in the pathogenesis of atherosclerosis. Furthermore, we demonstrated that CCL2 mRNA rapid degradation was mediated by the glucocorticoid receptor-mediated mRNA decay (GMD) process during YB1 dephosphorylation, which resulted in the downregulation of CCL2 expression. In conclusion, YB1 phosphorylation affects the development of atherosclerosis through modulating inflammation, and targeting YB1 phosphorylation could be a potential strategy for the treatment of atherosclerosis by anti-inflammation.
Collapse
Affiliation(s)
- Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Liu
- Jilin Zhongtai Biotechnology Co., Ltd, Jilin, China
| | - Tiantian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Siyang Liu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunfei Xue
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongkai Zhang
- The Pathology Department, Beijing Hospital of Traditional Chinese Medicine, The Capital Medical University, Beijing, China
- Hongkai Zhang
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
- Jing Wang
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Hongmei Zhao
| |
Collapse
|
6
|
Zhou Y, Li XH, Xue WL, Jin S, Li MY, Zhang CC, Yu B, Zhu L, Liang K, Chen Y, Tao BB, Zhu YZ, Wang MJ, Zhu YC. YB-1 Recruits Drosha to Promote Splicing of pri-miR-192 to Mediate the Proangiogenic Effects of H 2S. Antioxid Redox Signal 2022; 36:760-783. [PMID: 35044231 DOI: 10.1089/ars.2021.0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: The genes targeted by miRNAs have been well studied. However, little is known about the feedback mechanisms to control the biosynthesis of miRNAs that are essential for the miRNA feedback networks in the cells. In this present study, we aimed at examining how hydrogen sulfide (H2S) promotes angiogenesis by regulating miR-192 biosynthesis. Results: H2S promoted in vitro angiogenesis and angiogenesis in Matrigel plugs embedded in mice by upregulating miR-192. Knockdown of the H2S-generating enzyme cystathionine γ-lyase (CSE) suppressed in vitro angiogenesis, and this suppression was rescued by exogenous H2S donor NaHS. Plakophilin 4 (PKP4) served as a target gene of miR-192. H2S up-regulated miR-192 via the VEGFR2/Akt pathway to promote the splicing of primary miR-192 (pri-miR-192), and it resulted in an increase in both the precursor- and mature forms of miR-192. H2S translocated YB-1 into the nuclei to recruit Drosha to bind with pri-miR-192 and promoted its splicing. NaHS treatment promoted angiogenesis in the hindlimb ischemia mouse model and the skin-wound-healing model in diabetic mice, with upregulated miR-192 and downregulated PKP4 on NaHS treatment. In human atherosclerotic plaques, miR-192 levels were positively correlated with the plasma H2S concentrations. Innovation and Conclusion: Our data reveal a role of YB-1 in recruiting Drosha to splice pri-miR-192 to mediate the proangiogenic effect of H2S. CSE/H2S/YB-1/Drosha/miR-192 is a potential therapeutic target pathway for treating diseases, including organ ischemia and diabetic complications. Antioxid. Redox Signal. 36, 760-783. The Clinical Trial Registration number is 2016-224.
Collapse
Affiliation(s)
- Yu Zhou
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xing-Hui Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Cao Yang NO.2 High School, Shanghai, China
| | - Wen-Long Xue
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Sheng Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Cai-Cai Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hainan Medical College, Haikou, China
| | - Bo Yu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
7
|
Chen W, Li L, Wang J, Li Q, Zhang R, Wang S, Wu Y, Xing D. Extracellular vesicle YRNA in atherosclerosis. Clin Chim Acta 2021; 517:15-22. [DOI: 10.1016/j.cca.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
|
8
|
Zhang J, Guo JR, Wu XL, Wang X, Zhu ZM, Wang Y, Gu X, Fan Y. TWIST1 induces phenotypic switching of vascular smooth muscle cells by downregulating p68 and microRNA-143/145. FEBS Open Bio 2021; 11:932-943. [PMID: 33470057 PMCID: PMC7931233 DOI: 10.1002/2211-5463.13092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
TWIST1 is an important basic helix‐loop‐helix protein linked to multiple physiological and pathological processes. Although TWIST1 is believed to be involved in vascular pathogenesis, its effects on homeostasis of smooth muscle cells (SMCs) remain poorly understood. Here, we show that TWIST1 protein levels were significantly elevated during SMC phenotypic switching in vivo and in vitro. TWIST1 overexpression promoted phenotypic switching of SMCs, while siRNA targeting of TWIST1 prevented cell transition. Mechanistically, TWIST1 decreased the level of microRNA‐143/145, which governs smooth muscle marker gene transcription. In addition, TWIST1 repressed p68 mRNA and protein expression, a crucial modulator of SMC behavior and microRNA biogenesis. Our co‐immunoprecipitation assay demonstrated a previously unrecognized molecular interaction between TWIST1 and p68 protein. Finally, we found that TWIST1 triggered SMC phenotypic switching and suppressed microRNA‐143/145 expression by promoting the proteasomal degradation of p68. These data suggest a novel role of TWIST1 in the regulation of SMC homeostasis by modulating p68/microRNA‐143/145 axis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jie-Ru Guo
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xian-Li Wu
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Wang
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Ming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yong Wang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Gu
- Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ye Fan
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Pioglitazone protects blood vessels through inhibition of the apelin signaling pathway by promoting KLF4 expression in rat models of T2DM. Biosci Rep 2020; 39:221480. [PMID: 31829402 PMCID: PMC6928522 DOI: 10.1042/bsr20190317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Apelin, identified as the endogenous ligand of APJ, exerts various cardiovascular effects. However, the molecular mechanism underlying the regulation of apelin expression in vascular cells is poorly described. Pioglitazone (PIO) and Krüppel-like factor 4 (KLF4) exhibit specific biological functions on vascular physiology and pathophysiology by regulating differentiation- and proliferation-related genes. The present study aimed to investigate the roles of PIO and KLF4 in the transcriptional regulation of apelin in a high-fat diet/streptozotocin rat model of diabetes and in PIO-stimulated vascular smooth muscle cells (VSMCs). Immunohistochemistry, qRT-PCR, and Western blotting assays revealed that the aorta of the Type 2 diabetes mellitus (T2DM) rat models had a high expression of apelin, PIO could decrease the expression of apelin in the PIO-treated rats. In vitro, Western blotting assays and immunofluorescent staining results showed that the basal expression of apelin was decreased but that of KLF4 was increased when VSMCs were stimulated by PIO treatment. Luciferase and chromatin immunoprecipitation assay results suggested that KLF4 bound to the GKLF-binding site of the apelin promoter and negatively regulated the transcription activity of apelin in VSMCs under PIO stimulation. Furthermore, qRT-PCR and Western blotting assay results showed that the overexpression of KLF4 markedly decreased the basal expression of apelin, but the knockdown of KLF4 restored the PIO-induced expression of apelin. In conclusion, PIO inhibited the expression of apelin in T2DM rat models to prevent diabetic macroangiopathy, and negatively regulated the gene transcription of apelin by promoting transcription of KLF4 in the apelin promoter.
Collapse
|
10
|
Budkina KS, Zlobin NE, Kononova SV, Ovchinnikov LP, Babakov AV. Cold Shock Domain Proteins: Structure and Interaction with Nucleic Acids. BIOCHEMISTRY (MOSCOW) 2020; 85:S1-S19. [DOI: 10.1134/s0006297920140011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Niu W, Luo Y, Zhou Y, Li M, Wu C, Duan Y, Wang H, Fan S, Li Z, Xiong W, Li X, Li G, Ren C, Li H, Zhou M. BRD7 suppresses invasion and metastasis in breast cancer by negatively regulating YB1-induced epithelial-mesenchymal transition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:30. [PMID: 32028981 PMCID: PMC7006413 DOI: 10.1186/s13046-019-1493-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023]
Abstract
Background BRD7 is a tumor suppressor known to inhibit cell proliferation and cell cycle progression and initiate apoptosis in breast cancer. However, the function and underlying molecular events of BRD7 in tumor invasion and metastasis in breast cancer are not fully understood. Methods BRD7 expression was assessed in two stable cell lines MDA231 and MCF7 with BRD7 overexpression and one stable cell line MDA231 with BRD7 interference using qRT-PCR and western blotting. CCK8 assay was used to examine the proliferation ability of MDA231 and MCF7 cells. Scratch wound healing assay was used to evaluate cell migration in MDA231 and MCF7 cells. Both Matrigel and three-dimensional invasion assays were performed to investigate the cell invasion ability after BRD7 overexpression or silencing or YB1 restoration in MDA231 and MCF7 cells. The potential interacting proteins of BRD7 were screened using co-immunoprecipitation combined with mass spectrometry and verified by co-immunoprecipitation in HEK293T cells. Additionally, we confirmed the specific binding region between BRD7 and YB1 in HEK293T cells by constructing a series of deletion mutants of BRD7 and YB1 respectively. Finally, xenograft and metastatic mouse models using MDA231 cells were established to confirm the effect of BRD7 on tumor growth and metastasis. Results Here, the results of a series of assays in vitro indicated that BRD7 has the ability to inhibit the mobility, migration and invasion of breast cancer cells. In addition, YB1 was identified as a novel interacting protein of BRD7, and BRD7 was found to associate with the C-terminus of YB1 via its N-terminus. BRD7 decreases the expression of YB1 through negatively regulating YB1 phosphorylation at Ser102, thereby promoting its proteasomal degradation. Furthermore, gene set enrichment analysis revealed that epithelial-mesenchymal transition (EMT) is the common change occurring with altered expression of either BRD7 or YB1 and that BRD7 represses mesenchymal genes and activates epithelial genes. Moreover, restoring the expression of YB1 antagonized the inhibitory effect of BRD7 on tumorigenicity, EMT, invasiveness and metastasis through a series of in vitro and in vivo experiments. Additionally, BRD7 expression was negatively correlated with the level of YB1 in breast cancer patients. The combination of low BRD7 and high YB1 expression was significantly associated with poor prognosis, distant metastasis and advanced TNM stage. Conclusions Collectively, these findings uncover that BRD7 blocks tumor growth, migration and metastasis by negatively regulating YB1-induced EMT, providing new insights into the mechanism by which BRD7 contributes to the progression and metastasis of breast cancer.
Collapse
Affiliation(s)
- Weihong Niu
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yanwei Luo
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yao Zhou
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Mengna Li
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Chunchun Wu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yumei Duan
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Heran Wang
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Songqing Fan
- The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Zheng Li
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China.,High Resolution Mass Spectrometry Laboratory of Advanced Research Center, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Xiong
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Xiaoling Li
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Guiyuan Li
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Caiping Ren
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China.
| | - Hui Li
- The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| | - Ming Zhou
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China.
| |
Collapse
|
12
|
Lin DD, Shen Y, Qiao S, Liu WW, Zheng L, Wang YN, Cui N, Wang YF, Zhao S, Shi JH. Upregulation of OTUD7B (Cezanne) Promotes Tumor Progression via AKT/VEGF Pathway in Lung Squamous Carcinoma and Adenocarcinoma. Front Oncol 2019; 9:862. [PMID: 31572671 PMCID: PMC6749047 DOI: 10.3389/fonc.2019.00862] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
OTUD7B, a multifunctional deubiquitinylase, plays an essential role in inflammation and proliferation signals. However, its function in lung cancer remains largely unknown. The aim of this study was to evaluate the prognostic significance of OTUD7B in patients with lung adenocarcinoma and squamous carcinoma and to characterize its molecular mechanisms in lung cancer progression and metastasis. Two tissue microarrays containing 150 pairs of lung squamous carcinoma and matched adjacent non-cancer tissues, and one tissue microarray containing 75 pairs of lung adenocarcinoma and adjacent non-cancer tissues were included, and immunohistochemical staining was performed to assess the clinical relevance of OTUD7B in non-small cell lung cancer. OTUD7B is highly expressed in both lung squamous carcinoma and adenocarcinoma and correlates with a worse prognosis. MTT proliferation, colony formation, migration and invasion assays and immunoblotting assay in NCI-H358 and A549 cell lines suggested that OTUD7B enhances EGF-induced Akt signal transduction and promotes lung cancer cell proliferation and migration. Immunohistochemical staining of large-scale lung cancer subjects (171 cases) revealed positive correlation of OTUD7B and VEGF expression. ELISA and tube formation assay revealed OTUD7B promotes VEGF production and angiogenesis. NCI-H358 tumor model demonstrated OTUD7B is required for lung tumor progression by facilitating activation of Akt signaling. These findings collectively identified OTUD7B as an independent predictive factor for the prognosis of non-small cell lung cancer and revealed OTUD7B promotes lung cancer cell proliferation and metastasis via Akt/VEGF signal pathway.
Collapse
Affiliation(s)
- Dan-Dan Lin
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Yang Shen
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Shu Qiao
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Wen-Wen Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Lishuang Zheng
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Ya-Nan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Naipeng Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yun-Fan Wang
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
13
|
Cao X, Zhu N, Li L, Zhang Y, Chen Y, Zhang J, Li J, Gao C. Y-box binding protein 1 regulates ox-LDL mediated inflammatory responses and lipid uptake in macrophages. Free Radic Biol Med 2019; 141:10-20. [PMID: 31153975 DOI: 10.1016/j.freeradbiomed.2019.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/09/2022]
Abstract
AIMS Y-box protein 1 (YB1) is a key regulator of inflammatory mediators. However, the roles of YB1 in oxidized low-density lipoprotein (ox-LDL)-induced macrophage inflammation and lipid uptake remain less understood. Thus, we explored the roles of YB1 in ox-LDL-induced macrophage inflammation and lipid uptake and its underlying molecular mechanisms. METHODS An ox-LDL-induced atherosclerosis (AS) model was used in this study. Western blotting, RT-PCR, immunofluorescence, ELISA, dil-ox-LDL staining, a dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) and in vivo experiments were used to detect each target. RESULTS ox-LDL downregulates YB1 expression in THP-1-derived macrophages and human monocyte-derived macrophages (hMDMs) via the NF-κB pathway. Downregulation of YB1 is facilitated by lipid uptake in macrophages, and CD36 is involved in this process. Furthermore, YB1 suppresses CD36 protein levels by directly binding to the coding sequence of the CD36 gene to promote CD36 mRNA decay but does not affect its mRNA transcription. Additionally, YB1 knockdown enhances the inflammatory response and lipid deposition via the NF-κB pathway in vivo. CONCLUSION ox-LDL decreases YB1 expression in macrophages, resulting in enhanced inflammatory responses by affecting NF-κB and facilitating lipid uptake by promoting scavenger receptor CD36 mRNA decay.
Collapse
Affiliation(s)
- Xueming Cao
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Na Zhu
- Department of Health Management, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China
| | - Li Li
- Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China
| | - Yuwei Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Yan Chen
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Jing Zhang
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Jiang Li
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China.
| |
Collapse
|
14
|
Huan W, Zhang J, Li Y, Zhi K. Involvement of DHX9/YB-1 complex induced alternative splicing of Krüppel-like factor 5 mRNA in phenotypic transformation of vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 317:C262-C269. [PMID: 31116584 DOI: 10.1152/ajpcell.00067.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenotypic transformation of vascular smooth muscle cells is a key phenomenon in the development of aortic dissection disease. However, the molecular mechanisms underlying this phenomenon have not been fully understood. We used β-BAPN combined with ANG II treatment to establish a disease model of acute aortic dissection (AAD) in mice. We first examined the gene expression profile of aortic tissue in mice with AAD using a gene chip, followed by confirmation of DExH-box helicase 9 (DHX9) expression using RT-PCR, Western blot, and immunofluorescence analysis. We further developed vascular smooth muscle cell-specific DHX9 conditional knockout mice and conducted differential and functional analysis of gene expression and alternative splicing in mouse vascular smooth muscle cells. Finally, we examined the involvement of DHX9 in Krüppel-like factor 5 (KLF5) mRNA alternative splicing. Our study reported a significant decrease in the expression of DHX9 in the vascular smooth muscle cells (VSMCs) of mice with AAD. The smooth muscle cell-specific knockout of DHX9 exacerbated the development of AAD and altered the transcriptional level expression of many smooth muscle cell phenotype-related genes. Finally, we reported that DHX9 may induce alternative splicing of KLF5 mRNA by bridging YB-1. These results together suggested a new pathogenic mechanism underlying the development of AAD, and future research of this mechanism may help identify effective therapeutic intervention for AAD.
Collapse
Affiliation(s)
- Wei Huan
- Department of Vascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms. Biochim Biophys Acta Gen Subj 2017; 1861:1190-1199. [PMID: 28286014 DOI: 10.1016/j.bbagen.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp+) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp+ in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp+ or unconditioned stem cells. METHODS Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. RESULTS The proteomic remodeling was largely prevented in MSCp+ group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp+. In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp+. CONCLUSIONS Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. GENERAL SIGNIFICANCE Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart.
Collapse
|
16
|
Shi JH, Cui NP, Wang S, Zhao MZ, Wang B, Wang YN, Chen BP. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model. FEBS Open Bio 2016; 6:33-42. [PMID: 27047740 PMCID: PMC4794790 DOI: 10.1002/2211-5463.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 12/12/2022] Open
Abstract
Y-box-binding protein 1 (YB1) is a multifunctional transcription factor with vital roles in proliferation, differentiation and apoptosis. In this study, we have examined the role of its C-terminal domain (YB1 CTD) in proliferation, angiogenesis and tumorigenicity in breast cancer. Breast cancer cell line SK-BR-3 was infected with GFP-tagged YB1 CTD adenovirus expression vector. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay showed that YB1 CTD decreased SK-BR-3 cell proliferation, and down-regulated cyclin B1 and up-regulated p21 levels in SK-BR-3 cells. YB1 CTD overexpression changed the cytoskeletal organization and slightly inhibited the migration of SK-BR-3 cells. YB1 CTD also inhibited secreted VEGF expression in SK-BR-3 cells, which decreased SK-BR-3-induced EA.hy926 endothelial cell angiogenesis in vitro. YB1 CTD overexpression attenuated the ability of SK-BR-3 cells to form tumours in nude mice, and decreased in vivo VEGF levels and angiogenesis in the xenografts in SK-BR-3 tumour-bearing mice. Taken together, our findings demonstrate the vital role of YB1 CTD overexpression in inhibiting proliferation, angiogenesis and tumorigenicity of breast cancer cell line SK-BR-3.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory Hebei Laboratory of Mechanism and Procedure of Cancer Radiotherapy and Chemotherapy Affiliated Hospital of Hebei University Baoding China
| | - Nai-Peng Cui
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| | - Shuo Wang
- Central Laboratory Hebei Laboratory of Mechanism and Procedure of Cancer Radiotherapy and Chemotherapy Affiliated Hospital of Hebei University Baoding China
| | - Ming-Zhi Zhao
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| | - Bing Wang
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| | - Ya-Nan Wang
- Department of Pathology Affiliated Hospital of Hebei University Baoding China
| | - Bao-Ping Chen
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| |
Collapse
|
17
|
Wang W, Wang HJ, Wang B, Li Y, Qin Y, Zheng LS, Zhou JS, Qu PH, Shi JH, Zhang HS. The Role of the Y Box Binding Protein 1 C-Terminal Domain in Vascular Endothelial Cell Proliferation, Apoptosis, and Angiogenesis. DNA Cell Biol 2015; 35:24-32. [PMID: 26430912 DOI: 10.1089/dna.2015.2908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different domains of the multifunctional transcription factor Y-box binding protein 1 (YB1) regulate proliferation, differentiation, and apoptosis by transactivating or repressing the promoters of various genes. Here we report that the C-terminal domain of YB1 (YB1 CTD) is involved in endothelial cell proliferation, apoptosis, and tube formation. The oligo pull-down assays demonstrated that YB1 directly binds double-stranded GC box sequences in endothelial cells through the 125-220 amino acids. Adenovirus expression vectors harboring green fluorescent protein (GFP) or GFP-tagged YB1 CTD were constructed and used to infect EA.hy926 endothelial cells. Overexpression of the YB1 CTD significantly increased p21 expression, decreased cyclin B1 expression, and inhibited the proliferation of EA.hy926 cells. YB1 CTD overexpression also increased Bax and active caspase 3 expression, decreased Bcl-2 expression, and induced apoptosis in EA.hy926 cells. Furthermore, overexpression of the YB1 CTD significantly suppressed migration and tube formation in EA.hy926 cells. Finally, YB1 CTD decreased ERK1/2 phosphorylation in EA.hy926 cells. These findings demonstrated vital roles for YB1 in endothelial cell proliferation, apoptosis, and tube formation through transcriptional regulation of GC box-related genes.
Collapse
Affiliation(s)
- Wei Wang
- 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding, China .,2 Department of Cardiovascular Internal Medicine, Baoding First Central Hospital , Baoding, China
| | - Hong-jie Wang
- 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding, China
| | - Bing Wang
- 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding, China
| | - Ying Li
- 3 Department of Geriatrics, Baoding Second Hospital , Baoding, China
| | - Yan Qin
- 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding, China
| | - Li-shuang Zheng
- 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding, China
| | - Jin-sa Zhou
- 4 Department of Preventive Medicine, Hebei University , Baoding, China
| | - Peng-huan Qu
- 4 Department of Preventive Medicine, Hebei University , Baoding, China
| | - Jian-hong Shi
- 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding, China
| | - Hai-song Zhang
- 5 Department of Kidney Internal Medicine, Affiliated Hospital of Hebei University , Baoding, China
| |
Collapse
|
18
|
Keilhoff G, Titze M, Esser T, Langnaese K, Ebmeyer U. Constitutive and functional expression of YB-1 in microglial cells. Neuroscience 2015; 301:439-53. [DOI: 10.1016/j.neuroscience.2015.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022]
|
19
|
Wang B, Zhao MZ, Cui NP, Lin DD, Zhang AY, Qin Y, Liu CY, Yan WT, Shi JH, Chen BP. Krüppel-like factor 4 induces apoptosis and inhibits tumorigenic progression in SK-BR-3 breast cancer cells. FEBS Open Bio 2015; 5:147-54. [PMID: 25834779 PMCID: PMC4359971 DOI: 10.1016/j.fob.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) functions as either a tumor suppressor or an oncogene in different tissues by regulating the expression of various genes. The aim of this study was to reveal the functions of KLF4 in regulating breast cancer apoptosis, proliferation, and tumorigenic progression. KLF4 expression levels in breast cancer tissues and breast cancer cell lines were found to be much lower than those in nontumorous tissues and a nontransformed mammary epithelial cell line. KLF4 was upregulated in the tumor necrosis factor-α-induced SK-BR-3 breast cancer cell apoptotic process. Overexpression of KLF4 promoted SK-BR-3 breast cancer cell apoptosis and suppressed SK-BR-3 cell tumorigenicity in vivo.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Ming-Zhi Zhao
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Nai-Peng Cui
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Dan-Dan Lin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - An-Yi Zhang
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Yan Qin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Cai-Yun Liu
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wei-Tao Yan
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Bao-Ping Chen
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| |
Collapse
|
20
|
Vascular calcification is coupled with phenotypic conversion of vascular smooth muscle cells through Klf5-mediated transactivation of the Runx2 promoter. Biosci Rep 2014; 34:e00148. [PMID: 25205373 PMCID: PMC4219426 DOI: 10.1042/bsr20140103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Both Klf5 (Krüppel-like factor 5) and Runx2 are involved in phenotypic switching of VSMC (vascular smooth muscle cells). However, the potential link between Klf5 and Runx2 in mediating vascular calcification remains unclear. The aim of the present study was to elucidate the actual relationship between Klf5 and Runx2 in mediating VSMC calcification. We found that high Pi (phosphate) increased the expression of Klf5, which is accompanied by loss of SM α-actin and SM22α (smooth muscle 22 α), as well as gain of Runx2 expression. Overexpression of Klf5 increased, while knockdown of Klf5 decreased, Runx2 expression and calcification. Further study showed that Klf5 bound directly to the Runx2 promoter and activated its transcription. Klf5 was also induced markedly in the calcified aorta of adenine-induced uremic rats. In conclusion, we demonstrate a critical role for Klf5-mediated induction of Runx2 in high Pi -induced VSMC calcification.
Collapse
|
21
|
Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 protein: functions and regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:95-110. [PMID: 24217978 DOI: 10.1002/wrna.1200] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/23/2013] [Accepted: 09/27/2013] [Indexed: 12/15/2022]
Abstract
The Y-box binding protein 1 (YB-1, YBX1) is a member of the family of DNA- and RNA-binding proteins with an evolutionarily ancient and conserved cold shock domain. It falls into a group of intrinsically disordered proteins that do not follow the classical rule 'one protein-one function' but introduce a novel principle stating that a disordered structure suggests many functions. YB-1 participates in a wide variety of DNA/RNA-dependent events, including DNA reparation, pre-mRNA transcription and splicing, mRNA packaging, and regulation of mRNA stability and translation. At the cell level, the multiple activities of YB-1 are manifested as its involvement in cell proliferation and differentiation, stress response, and malignant cell transformation. WIREs RNA 2014, 5:95-110. doi: 10.1002/wrna.1200 CONFLICT OF INTEREST: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitry N Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|