1
|
Howard JA, Aziz A, Davis LA, Pugh D, Ahamed MS, Ramkissoon R, Corrales J, Nguyen NT, Mandimutsira C, Beyene T, Ha C, Dao C, Nikumbh P, Zacharias AO, Chowdhury SM, Johnson-Winters K. From Negative to No Cooperativity: Effects of Mutations on Intersubunit Communication within F 420H 2:NADP + Oxidoreductase Using Steady-State and Pre-Steady-State Kinetic Methods. Biochemistry 2025; 64:1338-1347. [PMID: 40036042 DOI: 10.1021/acs.biochem.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
F420H2:NADP+ oxidoreductase (Fno) catalyzes the reversible production of NADPH by transferring a hydride from the reduced F420 cofactor to NADP+. Previous kinetic studies suggest that wild-type Fno (wtFno) displays half-site reactivity and negative cooperativity, making Fno regulatory within methanogenic and sulfate-reducing archaea. These studies identified four amino acids; R186, T192, S190, and H133, as potential candidates involved in intersubunit communication due to their location either at or within close proximity to the interface of the dimer. Therefore, a library of Fno variants─R186K, R186Q, R186I, T192V, T192A, S190A, H133A, and H133N─was generated and characterized using binding, steady-state, and pre-steady-state kinetic experiments to understand their involvement in communication. The Hill coefficient for wtFno was previously reported as 0.61 ± 0.03, while the R186K, R186Q, R186I, and T192V Fno variant values were close or equal to 1, indicating a switch to no cooperativity behavior. The S190A variant displayed increased Hill coefficients of 0.8 ± 0.1 when compared to wtFno, showing that cooperativity was affected. The steady-state double reciprocal plots of the R186 variants, S190A, and T192V Fno variants were linear, which is indicative of no cooperativity, departing from the negative cooperativity shape displayed by wtFno. Unlike wtFno, the pre-steady-state kinetic experiments did not display half-site reactivity for the variants. Additionally, the hydride transfer step became rate-limiting in catalysis for the R186K Fno variant only. Our data suggest that negative cooperativity can be disrupted and that the amino acids R186, T192, and S190 are involved in intersubunit communication.
Collapse
Affiliation(s)
- Jamariya A Howard
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Alaa Aziz
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Lindsay A Davis
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Denzel Pugh
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Md Sabid Ahamed
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Ravi Ramkissoon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Juan Corrales
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Nathan T Nguyen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Charlene Mandimutsira
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Tekleab Beyene
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Co Ha
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Calvin Dao
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Parth Nikumbh
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Adway O Zacharias
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
2
|
Migaud ME, Ziegler M, Baur JA. Regulation of and challenges in targeting NAD + metabolism. Nat Rev Mol Cell Biol 2024; 25:822-840. [PMID: 39026037 DOI: 10.1038/s41580-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.
Collapse
Affiliation(s)
- Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Janda E, Boutin JA, De Lorenzo C, Arbitrio M. Polymorphisms and Pharmacogenomics of NQO2: The Past and the Future. Genes (Basel) 2024; 15:87. [PMID: 38254976 PMCID: PMC10815803 DOI: 10.3390/genes15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The flavoenzyme N-ribosyldihydronicotinamide (NRH):quinone oxidoreductase 2 (NQO2) catalyzes two-electron reductions of quinones. NQO2 contributes to the metabolism of biogenic and xenobiotic quinones, including a wide range of antitumor drugs, with both toxifying and detoxifying functions. Moreover, NQO2 activity can be inhibited by several compounds, including drugs and phytochemicals such as flavonoids. NQO2 may play important roles that go beyond quinone metabolism and include the regulation of oxidative stress, inflammation, and autophagy, with implications in carcinogenesis and neurodegeneration. NQO2 is a highly polymorphic gene with several allelic variants, including insertions (I), deletions (D) and single-nucleotide (SNP) polymorphisms located mainly in the promoter, but also in other regulatory regions and exons. This is the first systematic review of the literature reporting on NQO2 gene variants as risk factors in degenerative diseases or drug adverse effects. In particular, hypomorphic 29 bp I alleles have been linked to breast and other solid cancer susceptibility as well as to interindividual variability in response to chemotherapy. On the other hand, hypermorphic polymorphisms were associated with Parkinson's and Alzheimer's disease. The I and D promoter variants and other NQO2 polymorphisms may impact cognitive decline, alcoholism and toxicity of several nervous system drugs. Future studies are required to fill several gaps in NQO2 research.
Collapse
Affiliation(s)
- Elzbieta Janda
- Laboratory of Cellular and Molecular Toxicology, Department of Health Science, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Jean A. Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Université de Rouen Normandie, INSERM, UMR 1239, 76000 Rouen, France;
| | - Carlo De Lorenzo
- Laboratory of Cellular and Molecular Toxicology, Department of Health Science, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
5
|
Helman T, Braidy N. Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders. Drugs Aging 2023; 40:33-48. [PMID: 36510042 DOI: 10.1007/s40266-022-00989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
The role of nicotinamide adenine dinucleotide (NAD+) in ageing has emerged as a critical factor in understanding links to a wide range of chronic diseases. Depletion of NAD+, a central redox cofactor and substrate of numerous metabolic enzymes, has been detected in many major age-related diseases. However, the mechanisms behind age-associated NAD+ decline remains poorly understood. Despite limited conclusive evidence, supplements aimed at increasing NAD+ levels are becoming increasingly popular. This review provides renewed insights regarding the clinical utility and benefits of NAD+ precursors, namely nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline and phenotypic characterization of age-related disorders, including metabolic, cardiovascular and neurodegenerative diseases. While it is anticipated that NAD+ precursors can play beneficial protective roles in several conditions, they vary in their ability to promote NAD+ anabolism with differing adverse effects. Careful evaluation of the role of NAD+, whether friend or foe in ageing, should be considered.
Collapse
Affiliation(s)
- Tessa Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
6
|
Pang M, Shi LL, Xie Y, Geng T, Liu L, Liao RZ, Tung CH, Wang W. Cobalt-Catalyzed Selective Dearomatization of Pyridines to N–H 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maofu Pang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Le-Le Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianyi Geng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD + precursors in health, disease, and ageing. Mech Ageing Dev 2021; 199:111567. [PMID: 34517020 DOI: 10.1016/j.mad.2021.111567] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
NAD+ is a fundamental molecule in human life and health as it participates in energy metabolism, cell signalling, mitochondrial homeostasis, and in dictating cell survival or death. Emerging evidence from preclinical and human studies indicates an age-dependent reduction of cellular NAD+, possibly due to reduced synthesis and increased consumption. In preclinical models, NAD+ repletion extends healthspan and / or lifespan and mitigates several conditions, such as premature ageing diseases and neurodegenerative diseases. These findings suggest that NAD+ replenishment through NAD+ precursors has great potential as a therapeutic target for ageing and age-predisposed diseases, such as Alzheimer's disease. Here, we provide an updated review on the biological activity, safety, and possible side effects of NAD+ precursors in preclinical and clinical studies. Major NAD+ precursors focused on by this review are nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and the new discovered dihydronicotinamide riboside (NRH). In summary, NAD+ precursors have an exciting therapeutic potential for ageing, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ole Kristian Reiten
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Martin Andreas Wilvang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
8
|
Sonavane M, Hayat F, Makarov M, Migaud ME, Gassman NR. Dihydronicotinamide riboside promotes cell-specific cytotoxicity by tipping the balance between metabolic regulation and oxidative stress. PLoS One 2020; 15:e0242174. [PMID: 33166357 PMCID: PMC7652347 DOI: 10.1371/journal.pone.0242174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), the essential cofactor derived from vitamin B3, is both a coenzyme in redox enzymatic processes and substrate in non-redox events; processes that are intimately implicated in all essential bioenergetics. A decrease in intracellular NAD+ levels is known to cause multiple metabolic complications and age-related disorders. One NAD+ precursor is dihydronicotinamide riboside (NRH), which increases NAD+ levels more potently in both cultured cells and mice than current supplementation strategies with nicotinamide riboside (NR), nicotinamide mononucleotide (NMN) or vitamin B3 (nicotinamide and niacin). However, the consequences of extreme boosts in NAD+ levels are not fully understood. Here, we demonstrate the cell-specific effects of acute NRH exposure in mammalian cells. Hepatocellular carcinoma (HepG3) cells show dose-dependent cytotoxicity when supplemented with 100–1000 μM NRH. Cytotoxicity was not observed in human embryonic kidney (HEK293T) cells over the same dose range of NRH. PUMA and BAX mediate the cell-specific cytotoxicity of NRH in HepG3. When supplementing HepG3 with 100 μM NRH, a significant increase in ROS was observed concurrent with changes in the NAD(P)H and GSH/GSSG pools. NRH altered mitochondrial membrane potential, increased mitochondrial superoxide formation, and induced mitochondrial DNA damage in those cells. NRH also caused metabolic dysregulation, altering mitochondrial respiration. Altogether, we demonstrated the detrimental consequences of an extreme boost of the total NAD (NAD+ + NADH) pool through NRH supplementation in HepG3. The cell-specific effects are likely mediated through the different metabolic fate of NRH in these cells, which warrants further study in other systemic models.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Faisal Hayat
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Mikhail Makarov
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Marie E. Migaud
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
9
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Yang Y, Zhang N, Zhang G, Sauve AA. NRH salvage and conversion to NAD + requires NRH kinase activity by adenosine kinase. Nat Metab 2020; 2:364-379. [PMID: 32694608 PMCID: PMC7384296 DOI: 10.1038/s42255-020-0194-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
Dihydronicotinamide riboside (NRH) has been suggested to act as a precursor for the synthesis of NAD+, but the biochemical pathway converting it has been unknown. Here, we show that NRH can be converted into NAD+ via a salvage pathway in which adenosine kinase (ADK, also known as AK) acts as an NRH kinase. Using isotope-labelling approaches, we demonstrate that NRH is fully incorporated into NAD+, with NMNH acting as an intermediate. We further show that AK is enriched in fractions from cell lysates with NRH kinase activity, and that AK can convert NRH into NAD+. In cultured cells and mouse liver, pharmacological or genetic inhibition of AK blocks formation of reduced nicotinamide mononucleotide (NMNH) and inhibits NRH-stimulated NAD+ biosynthesis. Finally, we confirm the presence of endogenous NRH in the liver with metabolomics. Our findings establish NRH as a natural precursor of NAD+ and reveal a new route for NAD+ biosynthesis via an NRH salvage pathway involving AK.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Ning Zhang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Guoan Zhang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
11
|
Xu W, Liu Z, Ren H, Peng X, Wu A, Ma D, Liu G, Liu L. Twenty Metabolic Genes Based Signature Predicts Survival of Glioma Patients. J Cancer 2020; 11:441-449. [PMID: 31897239 PMCID: PMC6930419 DOI: 10.7150/jca.30923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Glioma, caused by carcinogenesis of brain and spinal glial cells, is the most common primary malignant brain tumor. To find the important indicator for glioma prognosis is still a challenge and the metabolic alteration of glioma has been frequently reported recently. Methods: In our current work, a risk score model based on the expression of twenty metabolic genes was developed using the metabolic gene expressions in The Cancer Genome Atlas (TCGA) dataset, the methods of which included the cox multivariate regression and the random forest variable hunting, a kind of machine learning algorithm, and the risk score generated from this model is used to make predictions in the survival of glioma patients in the training dataset. Subsequently, the result was further verified in other three verification sets (GSE4271, GSE4412 and GSE16011). Risk score related pathways collected in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were identified using Gene Set Enrichment Analysis (GSEA). Results: The risk score generated from our model makes good predictions in the survival of glioma patients in the training dataset and other three verification sets. By assessing the relationships between clinical indicators and the risk score, we found that the risk score was an independent and significant indicator for the prognosis of glioma patients. Simultaneously, we conducted a survival analysis of the patients who received chemotherapy and who did not, finding that the risk score was equally valid in both cases. And signaling pathways related to the genesis and development of multiple cancers were also identified. Conclusions: In summary, our risk score model is predictive for 967 glioma patients' survival from four independent datasets, and the risk score is a meaningful and independent parameter of the clinicopathological information.
Collapse
Affiliation(s)
- Wenfang Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Zhenhao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - He Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Xueqing Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Aoshen Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| |
Collapse
|
12
|
Makarov MV, Harris NW, Rodrigues M, Migaud ME. Scalable syntheses of traceable ribosylated NAD + precursors. Org Biomol Chem 2019; 17:8716-8720. [PMID: 31538639 PMCID: PMC6786760 DOI: 10.1039/c9ob01981b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide, NAD+, is an essential cofactor and substrate for many cellular enzymes. Its sustained intracellular levels have been linked to improved physiological end points in a range of metabolic diseases. Biosynthetic precursors to NAD+ include nicotinic acid, nicotinamide, the ribosylated parents and the phosphorylated form of the ribosylated parents. By combining solvent-assisted mechanochemistry and sealed reaction conditions, access to the ribosylated NAD+ precursors and to the isotopologues of NAD+ precursors was achieved in high yields and levels of purity. The latter is critical as it offers means to better trace biosynthetic pathways to NAD+, investigate the multifaceted roles of the intracellular NAD+ pools, and better exploit NAD+ biology.
Collapse
Affiliation(s)
- M V Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - N W Harris
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - M Rodrigues
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| | - M E Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, 36604 AL, USA.
| |
Collapse
|
13
|
Megarity CF, Abdel‐Aal Bettley H, Caraher MC, Scott KA, Whitehead RC, Jowitt TA, Gutierrez A, Bryce RA, Nolan KA, Stratford IJ, Timson DJ. Negative Cooperativity in NAD(P)H Quinone Oxidoreductase 1 (NQO1). Chembiochem 2019; 20:2841-2849. [DOI: 10.1002/cbic.201900313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Clare F. Megarity
- School of Biological SciencesQueen's University BelfastMedical Biology Centre 97 Lisburn Road Belfast BT9 7BL UK
| | - Hoda Abdel‐Aal Bettley
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - M. Clare Caraher
- School of Biological SciencesQueen's University BelfastMedical Biology Centre 97 Lisburn Road Belfast BT9 7BL UK
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Katherine A. Scott
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Roger C. Whitehead
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Thomas A. Jowitt
- The Faculty of Life ScienceManchester Cancer Research Centre and the University of Manchester Oxford Road Manchester M13 9PT UK
| | - Aldo Gutierrez
- School of Science and TechnologyNottingham Trent University Clifton Campus Nottingham NG11 8NS UK
| | - Richard A. Bryce
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Karen A. Nolan
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ian J. Stratford
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Timson
- School of Biological SciencesQueen's University BelfastMedical Biology Centre 97 Lisburn Road Belfast BT9 7BL UK
- School of Pharmacy and Biomolecular Sciences, Huxley BuildingUniversity of Brighton Lewes Road Brighton BN2 4GJ UK
| |
Collapse
|
14
|
Cancer-associated variants of human NQO1: impacts on inhibitor binding and cooperativity. Biosci Rep 2019; 39:BSR20191874. [PMID: 31431515 PMCID: PMC6732362 DOI: 10.1042/bsr20191874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Human NAD(P)H quinone oxidoreductase (DT-diaphorase, NQO1) exhibits negative cooperativity towards its potent inhibitor, dicoumarol. Here, we addressed the hypothesis that the effects of the two cancer-associated polymorphisms (p.R139W and p.P187S) may be partly mediated by their effects on inhibitor binding and negative cooperativity. Dicoumarol stabilized both variants and bound with much higher affinity for p.R139W than p.P187S. Both variants exhibited negative cooperativity towards dicoumarol; in both cases, the Hill coefficient (h) was approximately 0.5 and similar to that observed with the wild-type protein. NQO1 was also inhibited by resveratrol and by nicotinamide. Inhibition of NQO1 by resveratrol was approximately 10,000-fold less strong than that observed with the structurally similar enzyme, NRH quinine oxidoreductase 2 (NQO2). The enzyme exhibited non-cooperative behaviour towards nicotinamide, whereas resveratrol induced modest negative cooperativity (h = 0.85). Nicotinamide stabilized wild-type NQO1 and p.R139W towards thermal denaturation but had no detectable effect on p.P187S. Resveratrol destabilized the wild-type enzyme and both cancer-associated variants. Our data suggest that neither polymorphism exerts its effect by changing the enzyme’s ability to exhibit negative cooperativity towards inhibitors. However, it does demonstrate that resveratrol can inhibit NQO1 in addition to this compound’s well-documented effects on NQO2. The implications of these findings for molecular pathology are discussed.
Collapse
|
15
|
Megarity CF, Timson DJ. Escherichia coli
Modulator of Drug Activity B (MdaB) Has Different Enzymological Properties to Eukaryote Quinone Oxidoreductases. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clare F. Megarity
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
| | - David J. Timson
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
- School of Pharmacy and Biomolecular SciencesThe University of Brighton Huxley Building, Lewes Road UK-Brighton BN2 4GJ United Kingdom
| |
Collapse
|
16
|
Beaver SK, Mesa-Torres N, Pey AL, Timson DJ. NQO1: A target for the treatment of cancer and neurological diseases, and a model to understand loss of function disease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:663-676. [PMID: 31091472 DOI: 10.1016/j.bbapap.2019.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) is a multi-functional protein that catalyses the reduction of quinones (and other molecules), thus playing roles in xenobiotic detoxification and redox balance, and also has roles in stabilising apoptosis regulators such as p53. The structure and enzymology of NQO1 is well-characterised, showing a substituted enzyme mechanism in which NAD(P)H binds first and reduces an FAD cofactor in the active site, assisted by a charge relay system involving Tyr-155 and His-161. Protein dynamics play important role in physio-pathological aspects of this protein. NQO1 is a good target to treat cancer due to its overexpression in cancer cells. A polymorphic form of NQO1 (p.P187S) is associated with increased cancer risk and certain neurological disorders (such as multiple sclerosis and Alzheimer´s disease), possibly due to its roles in the antioxidant defence. p.P187S has greatly reduced FAD affinity and stability, due to destabilization of the flavin binding site and the C-terminal domain, which leading to reduced activity and enhanced degradation. Suppressor mutations partially restore the activity of p.P187S by local stabilization of these regions, and showing long-range allosteric communication within the protein. Consequently, the correction of NQO1 misfolding by pharmacological chaperones is a viable strategy, which may be useful to treat cancer and some neurological conditions, targeting structural spots linked to specific disease-mechanisms. Thus, NQO1 emerges as a good model to investigate loss of function mechanisms in genetic diseases as well as to improve strategies to discriminate between neutral and pathogenic variants in genome-wide sequencing studies.
Collapse
Affiliation(s)
- Sarah K Beaver
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain.
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
17
|
Yang Y, Mohammed FS, Zhang N, Sauve AA. Dihydronicotinamide riboside is a potent NAD + concentration enhancer in vitro and in vivo. J Biol Chem 2019; 294:9295-9307. [PMID: 30948509 DOI: 10.1074/jbc.ra118.005772] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/31/2019] [Indexed: 12/16/2022] Open
Abstract
Interest in pharmacological agents capable of increasing cellular NAD+ concentrations has stimulated investigations of nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). NR and NMN require large dosages for effect. Herein, we describe synthesis of dihydronicotinamide riboside (NRH) and the discovery that NRH is a potent NAD+ concentration-enhancing agent, which acts within as little as 1 h after administration to mammalian cells to increase NAD+ concentrations by 2.5-10-fold over control values. Comparisons with NR and NMN show that in every instance, NRH provides greater NAD+ increases at equivalent concentrations. NRH also provides substantial NAD+ increases in tissues when administered by intraperitoneal injection to C57BL/6J mice. NRH substantially increases NAD+/NADH ratio in cultured cells and in liver and no induction of apoptotic markers or significant increases in lactate levels in cells. Cells treated with NRH are resistant to cell death caused by NAD+-depleting genotoxins such as hydrogen peroxide and methylmethane sulfonate. Studies to identify its biochemical mechanism of action showed that it does not inhibit NAD+ consumption, suggesting that it acts as a biochemical precursor to NAD+ Cell lysates possess an ATP-dependent kinase activity that efficiently converts NRH to the compound NMNH, but independent of Nrk1 or Nrk2. These studies identify a putative new metabolic pathway to NAD+ and a potent pharmacologic agent for NAD+ concentration enhancement in cells and tissues.
Collapse
Affiliation(s)
- Yue Yang
- From the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | | | - Ning Zhang
- From the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Anthony A Sauve
- From the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
18
|
NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places. Biosci Rep 2019; 39:BSR20180459. [PMID: 30518535 PMCID: PMC6328894 DOI: 10.1042/bsr20180459] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) catalyses the two electron reduction of quinones and a wide range of other organic compounds. Its physiological role is believed to be partly the reduction of free radical load in cells and the detoxification of xenobiotics. It also has non-enzymatic functions stabilising a number of cellular regulators including p53. Functionally, NQO1 is a homodimer with two active sites formed from residues from both polypeptide chains. Catalysis proceeds via a substituted enzyme mechanism involving a tightly bound FAD cofactor. Dicoumarol and some structurally related compounds act as competitive inhibitors of NQO1. There is some evidence for negative cooperativity in quinine oxidoreductases which is most likely to be mediated at least in part by alterations to the mobility of the protein. Human NQO1 is implicated in cancer. It is often over-expressed in cancer cells and as such is considered as a possible drug target. Interestingly, a common polymorphic form of human NQO1, p.P187S, is associated with an increased risk of several forms of cancer. This variant has much lower activity than the wild-type, primarily due to its substantially reduced affinity for FAD which results from lower stability. This lower stability results from inappropriate mobility of key parts of the protein. Thus, NQO1 relies on correct mobility for normal function, but inappropriate mobility results in dysfunction and may cause disease.
Collapse
|
19
|
Menon BRK, Latham J, Dunstan MS, Brandenburger E, Klemstein U, Leys D, Karthikeyan C, Greaney MF, Shepherd SA, Micklefield J. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes. Org Biomol Chem 2018; 14:9354-9361. [PMID: 27714222 DOI: 10.1039/c6ob01861k] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Flavin-dependent halogenase (Fl-Hal) enzymes have been shown to halogenate a range of synthetic as well as natural aromatic compounds. The exquisite regioselectively of Fl-Hal enzymes can provide halogenated building blocks which are inaccessible using standard halogenation chemistries. Consequently, Fl-Hal are potentially useful biocatalysts for the chemoenzymatic synthesis of pharmaceuticals and other valuable products, which are derived from haloaromatic precursors. However, the application of Fl-Hal enzymes, in vitro, has been hampered by their poor catalytic activity and lack of stability. To overcome these issues, we identified a thermophilic tryptophan halogenase (Th-Hal), which has significantly improved catalytic activity and stability, compared with other Fl-Hal characterised to date. When used in combination with a thermostable flavin reductase, Th-Hal can efficiently halogenate a number of aromatic substrates. X-ray crystal structures of Th-Hal, and the reductase partner (Th-Fre), provide insights into the factors that contribute to enzyme stability, which could guide the discovery and engineering of more robust and productive halogenase biocatalysts.
Collapse
Affiliation(s)
- Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Mark S Dunstan
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Ulrike Klemstein
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - David Leys
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Chinnan Karthikeyan
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Michael F Greaney
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
20
|
den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018; 31:116-126. [PMID: 29281794 PMCID: PMC5997408 DOI: 10.1021/acs.chemrestox.7b00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Detoxicating
enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and
NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction
of quinone-like compounds. The protective role of the polymorphic
NQO1 and NQO2 enzymes is especially of interest in the liver as the
major site of drug bioactivation to chemically reactive drug metabolites.
In the current study, we quantified the concentrations of NQO1 and
NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like
drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213
nM. Using recombinant NQO1, we showed that low nM concentrations of
NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine
quinone-like metabolites in vitro. Hepatic NQO2 concentrations
ranged from 2 to 31 μM. NQO2 catalyzed the reduction of quinone-like
metabolites derived from acetaminophen, clozapine, 4′-hydroxydiclofenac,
mefenamic acid, amodiaquine, and carbamazepine. The reduction of the
clozapine nitrenium ion supports association studies showing that
NQO2 is a genetic risk factor for clozapine-induced agranulocytosis.
The 5-hydroxydiclofenac quinone imine, which was previously shown
to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified
as a potent NQO2 inhibitor and was applied to further confirm the
catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites
remains to be established by identification of the physiologically
relevant co-substrates, our results suggest an additional protective
role of the NQO2 protein by non-enzymatic scavenging of quinone-like
metabolites. Hepatic NQO1 activity in detoxication of quinone-like
metabolites becomes especially important when other detoxication pathways
are exhausted and NQO1 levels are induced.
Collapse
Affiliation(s)
- Shalenie P den Braver-Sewradj
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Robin M Toorneman
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stephanie van Leeuwen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Yongjie Zhang
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Riches Z, Liu Y, Berman JM, Walia G, Collier AC. The ontogeny and population variability of human hepatic dihydronicotinamide riboside:quinone oxidoreductase (NQO2). J Biochem Mol Toxicol 2017; 31. [PMID: 28346733 DOI: 10.1002/jbt.21921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/25/2017] [Indexed: 12/16/2022]
Abstract
Dihydronicotinamide riboside:quinone oxidoreductase (NQO2) is an enzyme that performs reduction reactions involved in antioxidant defense. We hypothesized that NQO2 hepatic drug clearance would develop in children over time, similar to NQO1. Using human liver cytosol (n = 117), the effects of age, sex, ethnicity, and weight on NQO2 expression and activity were probed. No significant correlations were observed. Biochemical activity of NQO2 was as high at birth as in adults (0.23 ± 0.04 nmol/min/mg protein, mean ± SEM, range 0-1.83). In contrast, modeled hepatic clearance through the NQO2 pathway was up to 10% of adult levels at birth, reaching predicted adult levels (0.3 ± 0.03 L/h) at 14 years of age. Comparisons between NQO1 and NQO2 in the same livers showed that neither protein (P = 0.32) nor activity (P = 0.23) correlated, confirming both orthologs are independently regulated. Because hepatic clearance through NQO2 does not mature until teenage years, compounds detoxified by this enzyme may be more deleterious in children.
Collapse
Affiliation(s)
- Zoe Riches
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yuejian Liu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jacob M Berman
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Gurinder Walia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
22
|
Ryan A. Azoreductases in drug metabolism. Br J Pharmacol 2016; 174:2161-2173. [PMID: 27487252 DOI: 10.1111/bph.13571] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Azoreductases are flavoenzymes that have been characterized in a range of prokaryotes and eukaryotes. Bacterial azoreductases are associated with the activation of two classes of drug, azo drugs for the treatment of inflammatory bowel disease and nitrofuran antibiotics. The mechanism of reduction of azo compounds is presented; it requires tautomerisation of the azo compound to a quinoneimine and provides a unifying mechanism for the reduction of azo and quinone substrates by azoreductases. The importance of further work in the characterization of azoreductases from enteric bacteria is highlighted to aid in the development of novel drugs for the treatment of colon related disorders. Human azoreductases are known to play a crucial role in the metabolism of a number of quinone-containing cancer chemotherapeutic drugs. The mechanism of hydride transfer to quinones, which is shared not only between eukaryotic and prokaryotic azoreductases but also the wider family of NAD(P)H quinone oxidoreductases, is outlined. The importance of common single nucleotide polymorphisms (SNPs) in human azoreductases is described not only in cancer prognosis but also with regard to their effects on the efficacy of quinone drug-based cancer chemotherapeutic regimens. This highlights the need to screen patients for azoreductase SNPs ahead of treatment with these regimens. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, UK
| |
Collapse
|
23
|
Joseph E, Le CQ, Nguyen T, Oyugi M, Hossain MS, Foss FW, Johnson-Winters K. Evidence of Negative Cooperativity and Half-Site Reactivity within an F420-Dependent Enzyme: Kinetic Analysis of F420H2:NADP(+) Oxidoreductase. Biochemistry 2016; 55:1082-90. [PMID: 26811861 DOI: 10.1021/acs.biochem.5b00762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report the very first example of half-site reactivity and negative cooperativity involving an important F420 cofactor-dependent enzyme. F420H2:NADP(+) oxidoreductase (Fno) is an F420 cofactor-dependent enzyme that catalyzes the reversible reduction of NADP(+) through the transfer of a hydride from the reduced F420 cofactor. These catalytic processes are of major significance in numerous biochemical processes. While the steady-state kinetic analysis showed classic Michaelis-Menten kinetics with varying concentrations of the F420 redox moiety, FO, such plots revealed non-Michaelis-Menten kinetic behavior when NADPH was varied. The double reciprocal plot of the varying concentrations of NADPH displays a downward concave shape, suggesting that negative cooperativity occurs between the two identical monomers. The transient state kinetic data show a burst prior to entering steady-state turnover. The burst suggests that product release is rate-limiting, and the amplitude of the burst phase corresponds to production of product in only one of the active sites of the functional dimer. These results suggest either half-site reactivity or an alternate sites model wherein the reduction of the cofactor, FO occurs at one active site at a time followed by reduction at the second active site. Thus, the data imply that Fno may be a functional regulatory enzyme.
Collapse
Affiliation(s)
- Ebenezer Joseph
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Cuong Quang Le
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Toan Nguyen
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Mercy Oyugi
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Mohammad Shawkat Hossain
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| |
Collapse
|
24
|
A novel cytosolic NADH:quinone oxidoreductase from Methanothermobacter marburgensis. Biosci Rep 2014; 34:e00167. [PMID: 25372605 PMCID: PMC4274662 DOI: 10.1042/bsr20140143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methanothermobacter marburgensis is a strictly anaerobic, thermophilic methanogenic archaeon that uses methanogenesis to convert H2 and CO2 to energy. M. marburgensis is one of the best-studied methanogens, and all genes required for methanogenic metabolism have been identified. Nonetheless, the present study describes a gene (Gene ID 9704440) coding for a putative NAD(P)H:quinone oxidoreductase that has not yet been identified as part of the metabolic machinery. The gene product, MmNQO, was successfully expressed, purified and characterized biochemically, as well as structurally. MmNQO was identified as a flavin-dependent NADH:quinone oxidoreductase with the capacity to oxidize NADH in the presence of a wide range of electron acceptors, whereas NADPH was oxidized with only three acceptors. The 1.50 Å crystal structure of MmNQO features a homodimeric enzyme where each monomer comprises 196 residues folding into flavodoxin-like α/β domains with non-covalently bound FMN (flavin mononucleotide). The closest structural homologue is the modulator of drug activity B from Streptococcus mutans with 1.6 Å root-mean-square deviation on 161 Cα atoms and 28% amino-acid sequence identity. The low similarity at sequence and structural level suggests that MmNQO is unique among NADH:quinone oxidoreductases characterized to date. Based on preliminary bioreactor experiments, MmNQO could provide a useful tool to prevent overflow metabolism in applications that require cells with high energy demand. A novel NADH:quinone oxidoreductase, MmNQO, from Methanothermobacter marburgensis was identified. MmNQO oxidizes NADH with several electron acceptors and is structurally similar to bacterial MdaB. It is localized in the cytosol and may provide a useful tool to prevent overflow metabolism.
Collapse
|
25
|
Pey AL, Megarity CF, Timson DJ. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2163-73. [PMID: 25179580 DOI: 10.1016/j.bbadis.2014.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 01/24/2023]
Abstract
NAD(P)H quinone oxidoreductase 1 is involved in antioxidant defence and protection from cancer, stabilizing the apoptosis regulator p53 towards degradation. Here, we studied the enzymological, biochemical and biophysical properties of two cancer-associated variants (p.R139W and p.P187S). Both variants (especially p.187S) have lower thermal stability and greater susceptibility to proteolysis compared to the wild-type. p.P187S also has reduced activity due to a lower binding affinity for the FAD cofactor as assessed by activity measurements and direct titrations. Native gel electrophoresis and dynamic light scattering also suggest that p.P187S has a higher tendency to populate unfolded states under native conditions. Detailed thermal stability studies showed that all variants irreversibly denature causing dimer dissociation, while addition of FAD restores the stability of the polymorphic forms to wild-type levels. The kinetic destabilization induced by polymorphisms as well as the kinetic protection exerted by FAD was confirmed by measuring denaturation kinetics at temperatures close to physiological. Our data suggest that the main molecular mechanisms associated with these cancer-related variants are their low binding affinity for FAD and/or kinetic instability. Thus, pharmacological chaperones may be useful in the treatment of patients bearing these polymorphisms.
Collapse
Affiliation(s)
- Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain.
| | - Clare F Megarity
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK.
| |
Collapse
|
26
|
Megarity CF, Looi HK, Timson DJ. The Saccharomyces cerevisiae quinone oxidoreductase Lot6p: stability, inhibition and cooperativity. FEMS Yeast Res 2014; 14:797-807. [PMID: 24866129 DOI: 10.1111/1567-1364.12167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022] Open
Abstract
Lot6p (EC 1.5.1.39; Ylr011wp) is the sole quinone oxidoreductase in the budding yeast, Saccharomyces cerevisiae. Using hexahistidine tagged, recombinant Lot6p, we determined the steady-state enzyme kinetic parameters with both NADH and NADPH as electron donors; no cooperativity was observed with these substrates. The NQO1 inhibitor curcumin, the NQO2 inhibitor resveratrol, the bacterial nitroreductase inhibitor nicotinamide and the phosphate mimic vanadate all stabilise the enzyme towards thermal denaturation as judged by differential scanning fluorimetry. All except vanadate have no observable effect on the chemical cross-linking of the two subunits of the Lot6p dimer. These compounds all inhibit Lot6p's oxidoreductase activity, and all except nicotinamide exhibit negative cooperativity. Molecular modelling suggests that curcumin, resveratrol and nicotinamide all bind over the isoalloxazine ring of the FMN cofactor in Lot6p. Resveratrol was predicted to contact an α-helix that links the two active sites. Mutation of Gly-142 (which forms part of this helix) to serine does not greatly affect the thermal stability of the enzyme. However, this variant shows less cooperativity towards resveratrol than the wild type. This suggests a plausible hypothesis for the transmission of information between the subunits and, thus, the molecular mechanism of negative cooperativity in Lot6p.
Collapse
Affiliation(s)
- Clare F Megarity
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|