1
|
Petrovic I, Grzesiek S, Isaikina P. Advances in the molecular understanding of GPCR-arrestin complexes. Biochem Soc Trans 2024; 52:2333-2342. [PMID: 39508463 DOI: 10.1042/bst20240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.
Collapse
Affiliation(s)
- Ivana Petrovic
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Polina Isaikina
- Center for Life Sciences, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
2
|
Ding S, Pang X, Luo S, Gao H, Li B, Yue J, Chen J, Hu S, Tu Z, He D, Kuang Y, Dong Z, Zhang M. Dynamic RBM47 ISGylation confers broad immunoprotection against lung injury and tumorigenesis via TSC22D3 downregulation. Cell Death Discov 2023; 9:430. [PMID: 38036512 PMCID: PMC10689852 DOI: 10.1038/s41420-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
ISGylation is a well-established antiviral mechanism, but its specific function in immune and tissue homeostasis regulation remains elusive. Here, we reveal that the RNA-binding protein RBM47 undergoes phosphorylation-dependent ISGylation at lysine 329 to regulate immune activation and maintain lung homeostasis. K329R knockin (KI) mice with defective RBM47-ISGylation display heightened susceptibility to LPS-induced acute lung injury and lung tumorigenesis, accompanied with multifaceted immunosuppression characterized by elevated pro-inflammatory factors, reduced IFNs/related chemokines, increased myeloid-derived suppressor cells, and impaired tertiary lymphoid structures. Mechanistically, RBM47-ISGylation regulation of the expression of TSC22D3 mRNA, a glucocorticoid-inducible transcription factor, partially accounts for the effects of RBM47-ISGylation deficiency due to its broad immunosuppressive activity. We further demonstrate the direct inhibitory effect of RBM47-ISGylation on TSC22D3 expression in human cells using a nanobody-targeted E3 ligase to induce site-specific ISGylation. Furthermore, epinephrine-induced S309 phosphorylation primes RBM47-ISGylation, with epinephrine treatment exacerbating dysregulated cytokine expression and ALI induction in K329R KI mice. Our findings provide mechanistic insights into the dynamic regulation of RBM47-ISGylation in supporting immune activation and maintaining lung homeostasis.
Collapse
Affiliation(s)
- Shihui Ding
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiquan Pang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Huili Gao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junqiu Yue
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Jian Chen
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Sheng Hu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Wuhan, 430079, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong He
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, No. 232, Hesong Street, Daoli District, Harbin, 150070, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Fredriksson J, Holdfeldt A, Mårtensson J, Björkman L, Møller TC, Müllers E, Dahlgren C, Sundqvist M, Forsman H. GRK2 selectively attenuates the neutrophil NADPH-oxidase response triggered by β-arrestin recruiting GPR84 agonists. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119262. [PMID: 35341806 DOI: 10.1016/j.bbamcr.2022.119262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84- but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by β-arrestin recruitment data. The ROS production induced by a non β-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this β-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with β-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.
Collapse
Affiliation(s)
- Johanna Fredriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
ASAI D, KANG JH, KATAYAMA Y. Old but Still Useful [γ-<sup>32</sup>P]ATP —Development of Peptide Substrates for Protein Kinases by <sup>32</sup>P-Based Enzyme Activity Assay—. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke ASAI
- Laboratory of Microbiology, Showa Pharmaceutical University
| | - Jeong-Hun KANG
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute
| | - Yoshiki KATAYAMA
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| |
Collapse
|
5
|
Matthees ESF, Haider RS, Hoffmann C, Drube J. Differential Regulation of GPCRs-Are GRK Expression Levels the Key? Front Cell Dev Biol 2021; 9:687489. [PMID: 34109182 PMCID: PMC8182058 DOI: 10.3389/fcell.2021.687489] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and their signal transduction is tightly regulated by GPCR kinases (GRKs) and β-arrestins. In this review, we discuss novel aspects of the regulatory GRK/β-arrestin system. Therefore, we briefly revise the origin of the "barcode" hypothesis for GPCR/β-arrestin interactions, which states that β-arrestins recognize different receptor phosphorylation states to induce specific functions. We emphasize two important parameters which may influence resulting GPCR phosphorylation patterns: (A) direct GPCR-GRK interactions and (B) tissue-specific expression and availability of GRKs and β-arrestins. In most studies that focus on the molecular mechanisms of GPCR regulation, these expression profiles are underappreciated. Hence we analyzed expression data for GRKs and β-arrestins in 61 tissues annotated in the Human Protein Atlas. We present our analysis in the context of pathophysiological dysregulation of the GPCR/GRK/β-arrestin system. This tissue-specific point of view might be the key to unraveling the individual impact of different GRK isoforms on GPCR regulation.
Collapse
Affiliation(s)
| | | | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB – Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | |
Collapse
|
6
|
Liu JJ, Chiu YT, Chen C, Huang P, Mann M, Liu-Chen LY. Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice. Neuropharmacology 2020; 181:108324. [PMID: 32976891 DOI: 10.1016/j.neuropharm.2020.108324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Kappa opioid receptor (KOR) agonists possess adverse dysphoric and psychotomimetic effects, thus limiting their applications as non-addictive anti-pruritic and analgesic agents. Here, we showed that protein kinase C (PKC) inhibition preserved the beneficial antinociceptive and antipruritic effects of KOR agonists, but attenuated the adverse condition placed aversion (CPA), sedation, and motor incoordination in mice. Using a large-scale mass spectrometry-based phosphoproteomics of KOR-mediated signaling in the mouse brain, we observed PKC-dependent modulation of G protein-coupled receptor kinases and Wnt pathways at 5 min; stress signaling, cytoskeleton, mTOR signaling and receptor phosphorylation, including cannabinoid receptor CB1 at 30 min. We further demonstrated that inhibition of CB1 attenuated KOR-mediated CPA. Our results demonstrated the feasibility of in vivo biochemical dissection of signaling pathways that lead to side effects.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Yi-Ting Chiu
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Chongguang Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Peng Huang
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
7
|
Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids 2020; 52:863-870. [PMID: 32577910 DOI: 10.1007/s00726-020-02864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family consists of seven cytosolic serine/threonine (Ser/Thr) protein kinases, and among them, GRK2 is involved in the regulation of an enormous range of both G protein-coupled receptors (GPCRs) and non-GPCR substrates that participate in or regulate many critical cellular processes. GRK2 dysfunction is associated with multiple diseases, including cancers, brain diseases, cardiovascular and metabolic diseases, and therefore GRK2-specific substrates/inhibitors are needed not only for studies of GRK2-mediated cellular functions but also for GRK2-targeted drug development. Here, we first review the structure, regulation and functions of GRK2, and its synthetic substrates and inhibitors. We then highlight recent work on synthetic peptide substrates/inhibitors as promising tools for fundamental studies of the physiological functions of GRK2, and as candidates for applications in clinical diagnostics.
Collapse
|
8
|
A high-affinity peptide substrate for G protein-coupled receptor kinase 2 (GRK2). Amino Acids 2019; 51:973-976. [PMID: 31004228 DOI: 10.1007/s00726-019-02735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023]
Abstract
We synthesized a previously identified β-tubulin-derived G protein-coupled receptor kinase 2 (GKR2) peptide (GR-11-1; DEMEFTEAESNMN) and its amino-terminal extension (GR-11-1-N; GEGMDEMEFTEAESNMN) and carboxyl-terminal extension (GR-11-1-C; DEMEFTEAESNMNDLVSEYQ) peptides with the aim of finding a high-affinity peptide substrate for GRK2. GR-11-1-C showed high affinity for GRK2, but very low affinity for GKR5. Its specificity and sensitivity for GKR2 were greater than those of GR-11-1 and GR-11-1-N. These findings should be useful in designing tools for probing GKR2-mediated intracellular signaling pathways, as well as GRK2-specific drugs.
Collapse
|
9
|
Komolov KE, Benovic JL. G protein-coupled receptor kinases: Past, present and future. Cell Signal 2017; 41:17-24. [PMID: 28711719 DOI: 10.1016/j.cellsig.2017.07.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023]
Abstract
This review is provided in recognition of the extensive contributions of Dr. Robert J. Lefkowitz to the G protein-coupled receptor (GPCR) field and to celebrate his 75th birthday. Since one of the authors trained with Bob in the 80s, we provide a history of work done in the Lefkowitz lab during the 80s that focused on dissecting the mechanisms that regulate GPCR signaling, with a particular emphasis on the GPCR kinases (GRKs). In addition, we highlight structure/function characteristics of GRK interaction with GPCRs as well as a review of two recent reports that provide a molecular model for GRK-GPCR interaction. Finally, we offer our perspective on some future studies that we believe will drive this field.
Collapse
Affiliation(s)
- Konstantin E Komolov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
10
|
Hayashi K, Gotou M, Matsui T, Imahashi K, Nishimoto T, Kobayashi H. Identification of phosphorylation sites on β1-adrenergic receptor in the mouse heart. Biochem Biophys Res Commun 2017; 488:362-367. [PMID: 28501616 DOI: 10.1016/j.bbrc.2017.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
β1-adrenergic receptor (Adrb1) belongs to the superfamily of G-protein-coupled receptors (GPCRs) and plays a critical role in the regulation of heart rate and myocardial contraction force. GPCRs are phosphorylated at multiple sites to regulate distinct signal transduction pathways in different tissues. However, little is known about the location and function of distinct phosphorylation sites of Adrb1 in vivo. To clarify the mechanisms underlying functional regulation associated with Adrb1 phosphorylation in vivo, we aimed to identify Adrb1 phosphorylation sites in the mouse heart using phosphoproteomics techniques with nano-flow liquid chromatography/tandem mass spectrometry (LC-MS/MS). We revealed the phosphorylation residues of Adrb1 to be Ser274 and Ser280 in the third intracellular loop and Ser412, Ser417, Ser450, Ser451, and Ser462 at the C-terminus. We also found that phosphorylation at Ser274, Ser280, and Ser462 was enhanced in response to stimulation with an Adrb1 agonist. This is the first study to identify Adrb1 phosphorylation sites in vivo. These findings will provide novel insights into the regulatory mechanisms mediated by Adrb1 phosphorylation.
Collapse
Affiliation(s)
- Kozo Hayashi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Masamitsu Gotou
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Toshikatsu Matsui
- Cardiovascular and Metabolic Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Kenichi Imahashi
- Cardiovascular and Metabolic Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Tomoyuki Nishimoto
- Cardiovascular and Metabolic Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Hiroyuki Kobayashi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| |
Collapse
|
11
|
Asai D, Murata M, Toita R, Kawano T, Nakashima H, Kang JH. Role of amino acid residues surrounding the phosphorylation site in peptide substrates of G protein-coupled receptor kinase 2 (GRK2). Amino Acids 2016; 48:2875-2880. [PMID: 27714516 DOI: 10.1007/s00726-016-2345-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
A series of amino acid substitutions was made in a previously identified β-tubulin-derived GRK2 substrate peptide (404DEMEFTEAESNMN416) to examine the role of amino acid residues surrounding the phosphorylation site. Anionic amino acid residues surrounding the phosphorylation site played an important role in the affinity for GRK2. Compared to the original peptide, a modified peptide (Ac-EEMEFSEAEANMN-NH2) exhibited markedly higher affinity for GRK2, but very low affinity for GRK5, suggesting that it can be a sensitive and selective peptide for GRK2.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Sugao 2-16-1 Miyamae, Kawasaki, 216-8511, Japan.
| | - Masaharu Murata
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka, 563-8577, Japan
| | - Takahito Kawano
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, Sugao 2-16-1 Miyamae, Kawasaki, 216-8511, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
12
|
Zhao Z, Lee RTH, Pusapati GV, Iyu A, Rohatgi R, Ingham PW. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened. EMBO Rep 2016; 17:739-52. [PMID: 27113758 PMCID: PMC5341524 DOI: 10.15252/embr.201541532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
The G‐protein‐coupled receptor kinase 2 (adrbk2/GRK2) has been implicated in vertebrate Hedgehog (Hh) signalling based on the effects of its transient knock‐down in mammalian cells and zebrafish embryos. Here, we show that the response to Hh signalling is effectively abolished in the absence of Grk2 activity. Zebrafish embryos lacking all Grk2 activity are refractory to both Sonic hedgehog (Shh) and oncogenic Smoothened (Smo) activity, but remain responsive to inhibition of cAMP‐dependent protein kinase (PKA) activity. Mutation of the kinase domain abrogates the rescuing activity of grk2 mRNA, suggesting that Grk2 acts in a kinase‐dependent manner to regulate the response to Hh. Previous studies have suggested that Grk2 potentiates Smo activity by phosphorylating its C‐terminal tail (CTT). In the zebrafish embryo, however, phosphomimetic Smo does not display constitutive activity, whereas phospho‐null mutants retain activity, implying phosphorylation is neither sufficient nor necessary for Smo function. Since Grk2 rescuing activity requires the integrity of domains essential for its interaction with GPCRs, we speculate that Grk2 may regulate Hh pathway activity by downregulation of a GPCR.
Collapse
Affiliation(s)
- Zhonghua Zhao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Raymond Teck Ho Lee
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Audrey Iyu
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| |
Collapse
|
13
|
Monitoring of phosphorylated peptides by radioactive assay and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Amino Acids 2015; 47:2377-83. [DOI: 10.1007/s00726-015-2025-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023]
|
14
|
Bray L, Froment C, Pardo P, Candotto C, Burlet-Schiltz O, Zajac JM, Mollereau C, Moulédous L. Identification and functional characterization of the phosphorylation sites of the neuropeptide FF2 receptor. J Biol Chem 2014; 289:33754-66. [PMID: 25326382 DOI: 10.1074/jbc.m114.612614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, (412)TNST(415) at the end of the C terminus of the receptor, and additional sites involved in desensitization ((372)TS(373)) and internalization (Ser(395)). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns.
Collapse
Affiliation(s)
- Lauriane Bray
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Carine Froment
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Pierre Pardo
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Cédric Candotto
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Jean-Marie Zajac
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Lionel Moulédous
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|