1
|
Zhang F, Yang D, Li J, Du C, Sun X, Li W, Liu F, Yang Y, Li Y, Fu L, Li R, Zhang CX. Synaptotagmin-11 regulates immune functions of microglia in vivo. J Neurochem 2023; 167:680-695. [PMID: 37924268 DOI: 10.1111/jnc.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1β, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
Collapse
Affiliation(s)
- Feifan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dong Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jingchen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinran Sun
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiwei Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
2
|
Zhang J, Sheng H, Zhang L, Li X, Guo Y, Wang Y, Guo H, Ding X. Bta-miR-206 and a Novel lncRNA-lncA2B1 Promote Myogenesis of Skeletal Muscle Satellite Cells via Common Binding Protein HNRNPA2B1. Cells 2023; 12:cells12071028. [PMID: 37048101 PMCID: PMC10093610 DOI: 10.3390/cells12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Skeletal muscle satellite cells (MuSCs) can proliferate, differentiate, and self-renew, and can also participate in muscle formation and muscle injury repair. Long noncoding RNAs (lncRNAs) can play an important role with the RNA binding protein and microRNAs (miRNAs) to regulate the myogenesis of bovine MuSCs, however, its molecular mechanism is still being explored. In this study, differentially expressed 301 lncRNAs were identified during the myogenic differentiation of cells based on an in vitro model of induced differentiation of bovine MuSCs using RNA sequencing (RNA-seq). Based on the ability of miR-206 to regulate myogenic cell differentiation, a new kind of lncRNA-lncA2B1 without protein-coding ability was found, which is expressed in the nucleus and cytoplasm. Subsequently, lncA2B1 inhibited cell proliferation by downregulating the expression of the proliferation marker Pax7 and promoted myogenic differentiation by upregulating the expression of the differentiation marker MyHC, whose regulatory function is closely related to miR-206. By RNA pulldown/LC-MS experiments, heterogeneous ribonucleoprotein A2/B1 (HNRNPA2B1), and DExH-Box Helicase 9 (DHX9) were identified as common binding proteins of lncA2B1 and miR-206. Overexpression of lncA2B1 and miR-206 significantly upregulated the expression level of HNRNPA2B1. Downregulation of HNRNPA2B1 expression significantly decreased the expression level of the differentiation marker MyHC, which indicates that miR-206 and lncA2B1 regulate myogenic differentiation of bovine MuSCs by acting on HNRNPA2B1. This study screened and identified a novel lncRNA-lncA2B1, which functions with miR-206 to regulate myogenesis via the common binding proteins HNRNPA2B1. The results of this study provide a new way to explore the molecular mechanisms by which lncRNAs and miRNAs regulate muscle growth and development.
Collapse
Affiliation(s)
- Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yimin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence:
| |
Collapse
|
3
|
Kim BK, Kim DM, Park H, Kim SK, Hwang MA, Lee J, Kang MJ, Byun JE, Im JY, Kang M, Park KC, Yeom YI, Kim SY, Jung H, Kweon DH, Cheong JH, Won M. Synaptotagmin 11 scaffolds MKK7-JNK signaling process to promote stem-like molecular subtype gastric cancer oncogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:212. [PMID: 35768842 PMCID: PMC9241269 DOI: 10.1186/s13046-022-02420-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
Background Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. Methods In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient’s survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. Results SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. Conclusion SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02420-3.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| | - Da-Mi Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyunkyung Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Mi-Aie Hwang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jungwoon Lee
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Environmental Diseases Research Center, KRIBB, Daejeon, South Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jae-Eun Byun
- Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Seon-Young Kim
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Korea Bioinformation Center, KRIBB, Daejeon, South Korea
| | - Haiyoung Jung
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea. .,Serverance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| |
Collapse
|
4
|
Ofori JK, Karagiannopoulos A, Barghouth M, Nagao M, Andersson ME, Salunkhe VA, Zhang E, Wendt A, Eliasson L. The highly expressed calcium-insensitive synaptotagmin-11 and synaptotagmin-13 modulate insulin secretion. Acta Physiol (Oxf) 2022; 236:e13857. [PMID: 35753051 PMCID: PMC9541707 DOI: 10.1111/apha.13857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
AIM SYT11 and SYT13, two calcium-insensitive synaptotagmins, are downregulated in islets from type-2 diabetic donors, but their function in insulin secretion is unknown. To address this, we investigated the physiological role of these two synaptotagmins in insulin secreting cells. METHODS Correlations between gene expression levels were performed using previously described RNA-seq data on islets from 188 human donors. SiRNA knockdown was performed in EndoC-βH1 and INS-1 832/13 cells. Insulin secretion was measured with ELISA. Patch clamp was used for single cell electrophysiology. Confocal microscopy was used to determine intra-cellular localization. RESULTS Human islet expression of the transcription factor PDX-1 was positively correlated with SYT11 (p = 2.4e-10 ) and SYT13 (p<2.2 e-16 ). Syt11 and Syt13 both co-localized with insulin, indicating their localization in insulin granules. Downregulation of Syt11 in INS-1 832/13 cells (siSYT11) resulted in increased basal and glucose-induced insulin secretion. Downregulation of Syt13 (siSYT13) decreased insulin secretion induced by glucose and K+ .Interestingly, the cAMP raising agent forskolin was unable to enhance insulin secretion in siSYT13 cells. There was no difference in insulin content, exocytosis, or voltage-gated Ca2+ currents in the two models. Double knockdown of Syt11 and Syt13 (DKD) resembled the results in siSYT13 cells. CONCLUSION SYT11 and SYT13 have similar localization and transcriptional regulation but they regulate insulin secretion differentially. While downregulation of SYT11 might be a compensatory mechanism in type-2 diabetes, downregulation of SYT13 reduces the insulin secretory response and overrules the compensatory regulation of SYT11 in a way that could aggravate the disease.
Collapse
Affiliation(s)
- Jones K Ofori
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Alexandros Karagiannopoulos
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Mohammad Barghouth
- Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University, Diabetes Centre, Lund University, Malmö, Sweden
| | - Mototsugu Nagao
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.,Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Markus E Andersson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Vishal A Salunkhe
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.,Institute of Neuroscience and Physiology, Department of Physiology, Metabolism research unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Enming Zhang
- Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University, Diabetes Centre, Lund University, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Yang H, Yue B, Yang Y, Tang J, Yang S, Qi A, Qu K, Lan X, Lei C, Wei Z, Huang B, Chen H. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. BIOLOGY 2022; 11:biology11020223. [PMID: 35205089 PMCID: PMC8869484 DOI: 10.3390/biology11020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary It is known that many different breeds of cattle are widely distributed in China. However, due to a lengthy selection of draught direction, there are obvious shortcomings in Chinese cattle, such as less meat production, slow weight gain, poor meat quality, and a lack of specialized beef cattle breeds. Animal breeding heavily benefits from molecular technologies, among which molecular genetic markers were widely used to improve the economic traits of beef cattle. Because the copy number variation (CNV) involves a longer DNA sequence or even the entire functional gene, it may have a greater impact on the phenotype. Recent studies have indicated that CNVs are widespread in the Chinese cattle genome. By investigating the effects of CNVs on gene expression and cattle traits, we aim to find those genomic variations which could significantly affect cattle traits, and which could provide a basis for genetic selection and molecular breeding of local Chinese cattle. Abstract Currently, studies of the SYT11 gene mainly focus on neurological diseases such as schizophrenia and Parkinson’s disease. However, some studies have shown that the C2B domain of SYT11 can interact with RISC components and affect the gene regulation of miRNA, which is important for cell differentiation, proliferation, and apoptosis, and therefore has an impact on muscle growth and development in animals. The whole-genome resequencing data detected a CNV in the SYT11 gene, and this may affect cattle growth traits. In this study, CNV distribution of 672 individuals from four cattle breeds, Yunling, Pinan, Xianan, and Qinchuan, were detected by qPCR. The relationship between CNV, gene expression and growth traits was further investigated. The results showed that the proportion of multiple copy types was the largest in all cattle breeds, but there were some differences among different breeds. The normal type had higher gene expression than the abnormal copy type. The CNVs of the SYT11 gene were significantly correlated with body length, cannon circumference, chest depth, rump length, and forehead size of Yunling cattle, and was significantly correlated with the bodyweight of Xianan cattle, respectively. These data improve our understanding of the effects of CNV on cattle growth traits. Our results suggest that the CNV of SYT11 gene is a protentional molecular marker, which may be used to improve growth traits in Chinese cattle.
Collapse
Affiliation(s)
- Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Zehui Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| |
Collapse
|
6
|
Li WR, Wang YL, Li C, Gao P, Zhang FF, Hu M, Li JC, Zhang S, Li R, Zhang CX. Synaptotagmin-11 inhibits spontaneous neurotransmission through vti1a. J Neurochem 2021; 159:729-741. [PMID: 34599505 DOI: 10.1111/jnc.15523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/25/2020] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Recent work has revealed that spontaneous release plays critical roles in the central nervous system, but how it is regulated remains elusive. Here, we report that synaptotagmin-11 (Syt11), a Ca2+ -independent Syt isoform associated with schizophrenia and Parkinson's disease, suppressed spontaneous release. Syt11-knockout hippocampal neurons showed an increased frequency of miniature excitatory post-synaptic currents while over-expression of Syt11 inversely decreased the frequency. Neither knockout nor over-expression of Syt11 affected the average amplitude, suggesting the pre-synaptic regulation of spontaneous neurotransmission by Syt11. Glutathione S-transferase pull-down, co-immunoprecipitation, and affinity-purification experiments demonstrated a direct interaction of Syt11 with vps10p-tail-interactor-1a (vti1a), a non-canonical SNARE protein that maintains spontaneous release. Importantly, knockdown of vti1a reversed the phenotype of Syt11 knockout, identifying vti1a as the main target of Syt11 inhibition. Domain analysis revealed that the C2A domain of Syt11 bound vti1a with high affinity. Consistently, expression of the C2A domain alone rescued the phenotype of elevated spontaneous release in Syt11-knockout neurons similar to the full-length protein. Altogether, our results suggest that Syt11 inhibits vti1a-containing vesicles during spontaneous release.
Collapse
Affiliation(s)
- Wan-Ru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ya-Long Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Chao Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fei-Fan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jing-Chen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
7
|
Davidson RK, Kanojia S, Spaeth JM. The Contribution of Transcriptional Coregulators in the Maintenance of β-cell Function and Identity. Endocrinology 2021; 162:5992209. [PMID: 33211800 PMCID: PMC7749714 DOI: 10.1210/endocr/bqaa213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 02/02/2023]
Abstract
Islet β-cell dysfunction that leads to impaired insulin secretion is a principal source of pathology of diabetes. In type 2 diabetes, this breakdown in β-cell health is associated with compromised islet-enriched transcription factor (TF) activity that disrupts gene expression programs essential for cell function and identity. TF activity is modulated by recruited coregulators that govern activation and/or repression of target gene expression, thereby providing a supporting layer of control. To date, more than 350 coregulators have been discovered that coordinate nucleosome rearrangements, modify histones, and physically bridge general transcriptional machinery to recruited TFs; however, relatively few have been attributed to β-cell function. Here, we will describe recent findings on those coregulators with direct roles in maintaining islet β-cell health and identity and discuss how disruption of coregulator activity is associated with diabetes pathogenesis.
Collapse
Affiliation(s)
- Rebecca K Davidson
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sukrati Kanojia
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason M Spaeth
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Correspondence: Jason M. Spaeth, PhD, Department of Pediatrics, Indiana University School of Medicine, MS 2047, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Navarro-Imaz H, Ochoa B, García-Arcos I, Martínez MJ, Chico Y, Fresnedo O, Rueda Y. Molecular and cellular insights into the role of SND1 in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158589. [DOI: 10.1016/j.bbalip.2019.158589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
9
|
Salunkhe VA, Ofori JK, Gandasi NR, Salö SA, Hansson S, Andersson ME, Wendt A, Barg S, Esguerra JLS, Eliasson L. MiR-335 overexpression impairs insulin secretion through defective priming of insulin vesicles. Physiol Rep 2018; 5:5/21/e13493. [PMID: 29122960 PMCID: PMC5688784 DOI: 10.14814/phy2.13493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs contribute to the maintenance of optimal cellular functions by fine‐tuning protein expression levels. In the pancreatic β‐cells, imbalances in the exocytotic machinery components lead to impaired insulin secretion and type 2 diabetes (T2D). We hypothesize that dysregulated miRNA expression exacerbates β‐cell dysfunction, and have earlier shown that islets from the diabetic GK‐rat model have increased expression of miRNAs, including miR‐335‐5p (miR‐335). Here, we aim to determine the specific role of miR‐335 during development of T2D, and the influence of this miRNA on glucose‐stimulated insulin secretion and Ca2+‐dependent exocytosis. We found that the expression of miR‐335 negatively correlated with secretion index in human islets of individuals with prediabetes. Overexpression of miR‐335 in human EndoC‐βH1 and in rat INS‐1 832/13 cells (OE335) resulted in decreased glucose‐stimulated insulin secretion, and OE335 cells showed concomitant reduction in three exocytotic proteins: SNAP25, Syntaxin‐binding protein 1 (STXBP1), and synaptotagmin 11 (SYT11). Single‐cell capacitance measurements, complemented with TIRF microscopy of the granule marker NPY‐mEGFP demonstrated a significant reduction in exocytosis in OE335 cells. The reduction was not associated with defective docking or decreased Ca2+ current. More likely, it is a direct consequence of impaired priming of already docked granules. Earlier reports have proposed reduced granular priming as the cause of reduced first‐phase insulin secretion during prediabetes. Here, we show a specific role of miR‐335 in regulating insulin secretion during this transition period. Moreover, we can conclude that miR‐335 has the capacity to modulate insulin secretion and Ca2+‐dependent exocytosis through effects on granular priming.
Collapse
Affiliation(s)
- Vishal A Salunkhe
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sofia A Salö
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sofia Hansson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Markus E Andersson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jonathan L S Esguerra
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Monyak RE, Emerson D, Schoenfeld BP, Zheng X, Chambers DB, Rosenfelt C, Langer S, Hinchey P, Choi CH, McDonald TV, Bolduc FV, Sehgal A, McBride SM, Jongens TA. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol Psychiatry 2017; 22:1140-1148. [PMID: 27090306 PMCID: PMC5071102 DOI: 10.1038/mp.2016.51] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
Abstract
Fragile X syndrome (FXS) is an undertreated neurodevelopmental disorder characterized by low intelligence quotent and a wide range of other symptoms including disordered sleep and autism. Although FXS is the most prevalent inherited cause of intellectual disability, its mechanistic underpinnings are not well understood. Using Drosophila as a model of FXS, we showed that select expression of dfmr1 in the insulin-producing cells (IPCs) of the brain was sufficient to restore normal circadian behavior and to rescue the memory deficits in the fragile X mutant fly. Examination of the insulin signaling (IS) pathway revealed elevated levels of Drosophila insulin-like peptide 2 (Dilp2) in the IPCs and elevated IS in the dfmr1 mutant brain. Consistent with a causal role for elevated IS in dfmr1 mutant phenotypes, the expression of dfmr1 specifically in the IPCs reduced IS, and genetic reduction of the insulin pathway also led to amelioration of circadian and memory defects. Furthermore, we showed that treatment with the FDA-approved drug metformin also rescued memory. Finally, we showed that reduction of IS is required at different time points to rescue circadian behavior and memory. Our results indicate that insulin misregulation underlies the circadian and cognitive phenotypes displayed by the Drosophila fragile X model, and thus reveal a metabolic pathway that can be targeted by new and already approved drugs to treat fragile X patients.
Collapse
Affiliation(s)
- Rachel E. Monyak
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Danielle Emerson
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Brian P. Schoenfeld
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158,Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Xiangzhong Zheng
- Department of Neuroscience and Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Daniel B. Chambers
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Cory Rosenfelt
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Steven Langer
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Paul Hinchey
- Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Catherine H. Choi
- Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461,Department of Dermatology, Drexel University College of Medicine, 219 N. Broad Street, Philadelphia, PA, 19107
| | - Thomas V. McDonald
- Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Francois V. Bolduc
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Amita Sehgal
- Department of Neuroscience and Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Sean M.J. McBride
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158,To whom correspondence should be addressed: and , phone: 215-573-9332, fax: 215-573-9411
| | - Thomas A. Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158,To whom correspondence should be addressed: and , phone: 215-573-9332, fax: 215-573-9411
| |
Collapse
|
11
|
Du C, Wang Y, Zhang F, Yan S, Guan Y, Gong X, Zhang T, Cui X, Wang X, Zhang CX. Synaptotagmin-11 inhibits cytokine secretion and phagocytosis in microglia. Glia 2017; 65:1656-1667. [PMID: 28686317 DOI: 10.1002/glia.23186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Cytokine secretion and phagocytosis are key functions of activated microglia. However, the molecular mechanisms underlying their regulation in microglia remain largely unknown. Here, we report that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt implicated in Parkinson disease and schizophrenia, inhibits cytokine secretion and phagocytosis in microglia. We found Syt11 expression in microglia in brain slices and primary microglia. Interestingly, Syt11-knockdown (KD) increased cytokine secretion and NO release in primary microglia both in the absence and presence of lipopolysaccharide. NF-κB was activated in untreated KD microglia together with enhanced synthesis of IL-6, TNF-α, IL-1β, and iNOS. When the release capacity was assessed by the ratio of extracellular to intracellular levels, only the IL-6 and TNF-α secretion capacity was increased in Syt11-KD cells, suggesting that Syt11 specifically regulates conventional secretion. Consistently, Syt11 localized to the trans-Golgi network and recycling endosomes. In addition, Syt11 was recruited to phagosomes and its deficiency enhanced microglial phagocytosis. All the KD phenotypes were rescued by expression of an shRNA-resistant Syt11, while overexpression of Syt11 suppressed cytokine secretion and phagocytosis. Importantly, Syt11 also inhibited microglial phagocytosis of α-synuclein fibrils, supporting its association with Parkinson disease. Taken together, we propose that Syt11 suppresses microglial activation under both physiological and pathological conditions through the inhibition of cytokine secretion and phagocytosis.
Collapse
Affiliation(s)
- Cuilian Du
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Yalong Wang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Feifan Zhang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuxin Yan
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Guan
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ting Zhang
- Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Xiuyu Cui
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Dalgaard LT, Eliasson L. An 'alpha-beta' of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 2017; 88:208-219. [PMID: 28122254 DOI: 10.1016/j.biocel.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
Collapse
Affiliation(s)
| | - Lena Eliasson
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
| |
Collapse
|
13
|
Tudor staphylococcal nuclease: biochemistry and functions. Cell Death Differ 2016; 23:1739-1748. [PMID: 27612014 DOI: 10.1038/cdd.2016.93] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022] Open
Abstract
Tudor staphylococcal nuclease (TSN, also known as Tudor-SN, SND1 or p100) is an evolutionarily conserved protein with invariant domain composition, represented by tandem repeat of staphylococcal nuclease domains and a tudor domain. Conservation along significant evolutionary distance, from protozoa to plants and animals, suggests important physiological functions for TSN. It is known that TSN is critically involved in virtually all pathways of gene expression, ranging from transcription to RNA silencing. Owing to its high protein-protein binding affinity coexistent with enzymatic activity, TSN can exert its biochemical function by acting as both a scaffolding molecule of large multiprotein complexes and/or as a nuclease. TSN is indispensible for normal development and stress resistance, whereas its increased expression is closely associated with various types of cancer. Thus, TSN is an attractive target for anti-cancer therapy and a potent tumor marker. Considering ever increasing interest to further understand a multitude of TSN-mediated processes and a mechanistic role of TSN in these processes, here we took an attempt to summarize and update the available information about this intriguing multifunctional protein.
Collapse
|
14
|
Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C, Allred AL, Bradfield CA, Dinner AR, Barish GD, Bass J. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 2015; 350:aac4250. [PMID: 26542580 PMCID: PMC4669216 DOI: 10.1126/science.aac4250] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic β cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that β cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.
Collapse
Affiliation(s)
- Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alan L Hutchison
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA. Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Clara Bien Peek
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenyu Huang
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amanda L Allred
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Aaron R Dinner
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Grant D Barish
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Sreetama SC, Takano T, Nedergaard M, Simon SM, Jaiswal JK. Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis. Cell Death Differ 2015; 23:596-607. [PMID: 26450452 DOI: 10.1038/cdd.2015.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are known to facilitate repair following brain injury; however, little is known about how injured astrocytes repair themselves. Repair of cell membrane injury requires Ca(2+)-triggered vesicle exocytosis. In astrocytes, lysosomes are the main Ca(2+)-regulated exocytic vesicles. Here we show that astrocyte cell membrane injury results in a large and rapid calcium increase. This triggers robust lysosome exocytosis where the fusing lysosomes release all luminal contents and merge fully with the plasma membrane. In contrast to this, receptor stimulation produces a small sustained calcium increase, which is associated with partial release of the lysosomal luminal content, and the lysosome membrane does not merge into the plasma membrane. In most cells, lysosomes express the synaptotagmin (Syt) isoform Syt VII; however, this isoform is not present on astrocyte lysosomes and exogenous expression of Syt VII on lysosome inhibits their exocytosis. Deletion of one of the most abundant Syt isoform in astrocyte--Syt XI--suppresses astrocyte lysosome exocytosis. This identifies lysosome as Syt XI-regulated exocytic vesicle in astrocytes. Further, inhibition of lysosome exocytosis (by Syt XI depletion or Syt VII expression) prevents repair of injured astrocytes. These results identify the lysosomes and Syt XI as the sub-cellular and molecular regulators, respectively of astrocyte cell membrane repair.
Collapse
Affiliation(s)
- S C Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
| | - T Takano
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - M Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - S M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - J K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC, USA
| |
Collapse
|
16
|
Arretxe E, Armengol S, Mula S, Chico Y, Ochoa B, Martínez MJ. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells. Nucleic Acids Res 2015; 43:10673-88. [PMID: 26323317 PMCID: PMC4678849 DOI: 10.1093/nar/gkv858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
Abstract
The NF-κB-inducible Staphylococcal nuclease and tudor domain-containing 1 gene (SND1) encodes a coactivator involved in inflammatory responses and tumorigenesis. While SND1 is known to interact with certain transcription factors and activate client gene expression, no comprehensive mapping of SND1 target genes has been reported. Here, we have approached this question by performing ChIP-chip assays on human hepatoma HepG2 cells and analyzing SND1 binding modulation by proinflammatory TNFα. We show that SND1 binds 645 gene promoters in control cells and 281 additional genes in TNFα-treated cells. Transcription factor binding site analysis of bound probes identified motifs for established partners and for novel transcription factors including HSF, ATF, STAT3, MEIS1/AHOXA9, E2F and p300/CREB. Major target genes were involved in gene expression and RNA metabolism regulation, as well as development and cellular metabolism. We confirmed SND1 binding to 21 previously unrecognized genes, including a set of glycerolipid genes. Knocking-down experiments revealed that SND1 deficiency compromises the glycerolipid gene reprogramming and lipid phenotypic responses to TNFα. Overall, our findings uncover an unexpected large set of potential SND1 target genes and partners and reveal SND1 to be a determinant downstream effector of TNFα that contributes to support glycerophospholipid homeostasis in human hepatocellular carcinoma during inflammation.
Collapse
Affiliation(s)
- Enara Arretxe
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Sandra Armengol
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Sarai Mula
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Yolanda Chico
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - María José Martínez
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
17
|
Jariwala N, Rajasekaran D, Srivastava J, Gredler R, Akiel MA, Robertson CL, Emdad L, Fisher PB, Sarkar D. Role of the staphylococcal nuclease and tudor domain containing 1 in oncogenesis (review). Int J Oncol 2014; 46:465-73. [PMID: 25405367 PMCID: PMC4277250 DOI: 10.3892/ijo.2014.2766] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/03/2014] [Indexed: 12/26/2022] Open
Abstract
The staphylococcal nuclease and tudor domain containing 1 (SND1) is a multifunctional protein overexpressed in breast, prostate, colorectal and hepatocellular carcinomas and malignant glioma. Molecular studies have revealed the multifaceted activities of SND1 involved in regulating gene expression at transcriptional as well as post-transcriptional levels. Early studies identified SND1 as a transcriptional co-activator. SND1 is also a component of RNA-induced silencing complex (RISC) thus mediating RNAi function, a regulator of mRNA splicing, editing and stability, and plays a role in maintenance of cell viability. Such diverse actions allow the SND1 to modulate a complex array of molecular networks, thereby promoting carcinogenesis. Here, we describe the crucial role of SND1 in cancer development and progression, and highlight SND1 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jyoti Srivastava
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Maaged A Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5:491. [PMID: 25339958 PMCID: PMC4188125 DOI: 10.3389/fimmu.2014.00491] [Citation(s) in RCA: 1513] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| |
Collapse
|