1
|
Response of Tomato-Pseudomonas Pathosystem to Mild Heat Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Higher plants suffer from mild heat stress when temperatures increase by 5 °C above optimum growth temperatures. This produces changes at the cellular and metabolic levels, allowing plants to adapt to heat conditions. This study investigated an increase of 5 °C above the optimum growth temperature (26 °C) of tomato plants in the tomato–Pseudomonas syringae pv. tomato pathosystem. A temperature increase above 26 °C affects plant development, the defensive pathways activated against Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000), and the bacterial growth and virulence machinery. The results demonstrated that tomato plants were able to acclimate to mild heat stress, showing no symptoms of damage. Moreover, plants subjected to a 5 °C increase (T31 °C plants) showed higher basal levels of metabolites such as proline and putrescine, which probably act as compatible osmolytes. This demonstrates their importance as key components of thermotolerance. When grown under mild heat stress, plants were less susceptible to PstDC3000 and showed increased accumulation of abscisic acid, jasmonic acid-isoleucine, and spermine. In addition, the temperature increase negatively affected the infectivity of PstDC3000. Inhibition of the genes responsible for quorum sensing establishment and synthesis of flagellin and coronatine was observed in bacteria extracted from T31 °C plants. Analysis of the genes involved in the synthesis of the type III secretion system indicates the important role of this system in bacterial growth under these conditions. As the known resistance mechanisms involved in the defense against PstDC3000 were not activated, the changes in its virulence mechanisms under high temperatures may explain the lower infection observed in the T31 °C plants.
Collapse
|
2
|
Bergeau D, Mazurier S, Barbey C, Merieau A, Chane A, Goux D, Bernard S, Driouich A, Lemanceau P, Vicré M, Latour X. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. PLoS One 2019; 14:e0221025. [PMID: 31461454 PMCID: PMC6713353 DOI: 10.1371/journal.pone.0221025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas fluorescens is considered to be a typical plant-associated saprophytic bacterium with no pathogenic potential. Indeed, some P. fluorescens strains are well-known rhizobacteria that promote plant growth by direct stimulation, by preventing the deleterious effects of pathogens, or both. Pseudomonas fluorescens C7R12 is a rhizosphere-competent strain that is effective as a biocontrol agent and promotes plant growth and arbuscular mycorrhization. This strain has been studied in detail, but no visual evidence has ever been obtained for extracellular structures potentially involved in its remarkable fitness and biocontrol performances. On transmission electron microscopy of negatively stained C7R12 cells, we observed the following appendages: multiple polar flagella, an inducible putative type three secretion system typical of phytopathogenic Pseudomonas syringae strains and densely bundled fimbria-like appendages forming a broad fractal-like dendritic network around single cells and microcolonies. The deployment of one or other of these elements on the bacterial surface depends on the composition and affinity for the water of the microenvironment. The existence, within this single strain, of machineries known to be involved in motility, chemotaxis, hypersensitive response, cellular adhesion and biofilm formation, may partly explain the strong interactions of strain C7R12 with plants and associated microflora in addition to the type three secretion system previously shown to be implied in mycorrhizae promotion.
Collapse
Affiliation(s)
- Dorian Bergeau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Didier Goux
- Centre de Microscopie Appliquée à la biologie, SFR 4206 ICORE Université de Caen Normandie (CMAbio3), Caen, France
| | - Sophie Bernard
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Maïté Vicré
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- * E-mail:
| |
Collapse
|
3
|
Dharampuriya PR, Scapin G, Wong C, John Wagner K, Cillis JL, Shah DI. Tracking the origin, development, and differentiation of hematopoietic stem cells. Curr Opin Cell Biol 2018; 49:108-115. [PMID: 29413969 DOI: 10.1016/j.ceb.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The hierarchical nature of the hematopoietic system provides an ideal model system to illustrate the features of lineage tracing. We have outlined the utility of lineage tracing methods in establishing the origin and development of hematopoietic cells. RECENT FINDINGS Methods such as CRISPR/Cas9, Polylox barcoding, and single-cell RNA-sequencing have improved our understanding of hematopoiesis. SUMMARY This review chronicles the fate of the hematopoietic cells emerging from the mesoderm that subsequently develops into the adult blood lineages. Specifically, we explain classic techniques utilized in lineage tracing for the hematopoietic system, as well as novel state-of-the-art methods to elucidate clonal hematopoiesis and cell fate mapping at a single-cell level.
Collapse
Affiliation(s)
- Priyanka R Dharampuriya
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Giorgia Scapin
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA
| | - Colline Wong
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Boston College, Chestnut Hill, MA 02467, USA
| | - K John Wagner
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Boston College, Chestnut Hill, MA 02467, USA
| | - Jennifer L Cillis
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA
| | - Dhvanit I Shah
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD. The Ecological Role of Type Three Secretion Systems in the Interaction of Bacteria with Fungi in Soil and Related Habitats Is Diverse and Context-Dependent. Front Microbiol 2017; 8:38. [PMID: 28197129 PMCID: PMC5282467 DOI: 10.3389/fmicb.2017.00038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve efficient association strategies. The purpose of this review is to examine the mechanisms that underpin the bacterial interactions with fungi in soil and other systems, with special focus on the type III secretion system (T3SS). Starting with a brief description of the versatility of the T3SS as an interaction system with diverse eukaryotic hosts, we subsequently examine the recent advances made in our understanding of its contribution to interactions with soil fungi. The analysis used data sets ranging from circumstantial evidence to gene-knockout-based experimental data. The initial finding that the abundance of T3SSs in microbiomes is often enhanced in fungal-affected habitats like the mycosphere and the mycorrhizosphere is now substantiated with in-depth knowledge of the specific systems involved. Different fungal–interactive bacteria, in positive or negative associations with partner fungi, harbor and express T3SSs, with different ecological outcomes. In some particular cases, bacterial T3SSs have been shown to modulate the physiology of its fungal partner, affecting its ecological characteristics and consequently shaping its own habitat. Overall, the analyses of the collective data set revealed that diverse T3SSs have assumed diverse roles in the interactions of bacteria with host fungi, as driven by ecological and evolutionary niche requirements.
Collapse
Affiliation(s)
- Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan; Department of Soil Environmental Science, Research Centre for Eco-environmental Sciences - Chinese Academy of SciencesBeijing, China
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Pu Yang
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| |
Collapse
|
5
|
Viollet A, Pivato B, Mougel C, Cleyet-Marel JC, Gubry-Rangin C, Lemanceau P, Mazurier S. Pseudomonas fluorescens C7R12 type III secretion system impacts mycorrhization of Medicago truncatula and associated microbial communities. MYCORRHIZA 2017; 27:23-33. [PMID: 27549437 DOI: 10.1007/s00572-016-0730-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/11/2016] [Indexed: 05/20/2023]
Abstract
Type three secretion systems (T3SSs) mediate cell-to-cell interactions between Gram-negative bacteria and eukaryotes. We hypothesized that fluorescent pseudomonads harboring T3SS (T3SS+) would be beneficial to arbuscular mycorrhizal symbiosis because non-pathogenic fluorescent pseudomonads have been previously shown to be much more abundant in mycorrhizal than in non-mycorrhizal roots. We tested this hypothesis by comparing mycorrhization and the associated rhizosphere microbial communities of Medicago truncatula grown in a non-sterile soil inoculated with either the T3SS+ mycorrhiza helper bacterium Pseudomonas fluorescens (C7R12) or a T3SS- mutant of the strain. Results showed that the bacterial secretion system was responsible for the promotion of mycorrhization because root colonization by arbuscular mycorrhizal fungi was not promoted by the T3SS- mutant. The observed T3SS-mediated promotion of mycorrhization was associated with changes in the rhizosphere bacterial communities and the increased occurrence of Claroidoglomeraceae within the intraradical arbuscular mycorrhizal fungi. Furthermore, both pseudomonad strains promoted the host-free growth of a model arbuscular mycorrhizal fungus in vitro, suggesting that T3SS-mediated promotion of mycorrhization occurs during plant-fungal interactions rather than during the pre-symbiotic phase of fungal growth. Taken together, these data provide evidence for the involvement of T3SS in promoting arbuscular mycorrhization by a model fluorescent pseudomonad and suggest the implication of interactions between the bacterium and mycorrhizas.
Collapse
Affiliation(s)
- Amandine Viollet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Barbara Pivato
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Christophe Mougel
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France
- INRA, UMR1349 IGEPP, 35653, Le Rheu, France
| | - Jean-Claude Cleyet-Marel
- INRA, UMR 113 'Laboratoire des Symbioses Tropicales et Méditerranéennes', Campus International de Baillarguet, TA-A82/J, 34398, Montpellier Cedex 5, France
| | - Cécile Gubry-Rangin
- INRA, UMR 113 'Laboratoire des Symbioses Tropicales et Méditerranéennes', Campus International de Baillarguet, TA-A82/J, 34398, Montpellier Cedex 5, France
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
6
|
Type III secretion system and virulence markers highlight similarities and differences between human- and plant-associated pseudomonads related to Pseudomonas fluorescens and P. putida. Appl Environ Microbiol 2015; 81:2579-90. [PMID: 25636837 DOI: 10.1128/aem.04160-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas fluorescens is commonly considered a saprophytic rhizobacterium devoid of pathogenic potential. Nevertheless, the recurrent isolation of strains from clinical human cases could indicate the emergence of novel strains originating from the rhizosphere reservoir, which could be particularly resistant to the immune system and clinical treatment. The importance of type three secretion systems (T3SSs) in the related Pseudomonas aeruginosa nosocomial species and the occurrence of this secretion system in plant-associated P. fluorescens raise the question of whether clinical isolates may also harbor T3SSs. In this study, isolates associated with clinical infections and identified in hospitals as belonging to P. fluorescens were compared with fluorescent pseudomonads harboring T3SSs isolated from plants. Bacterial isolates were tested for (i) their genetic relationships based on their 16S rRNA phylogeny, (ii) the presence of T3SS genes by PCR, and (iii) their infectious potential on animals and plants under environmental or physiological temperature conditions. Two groups of bacteria were delineated among the clinical isolates. The first group encompassed thermotolerant (41°C) isolates from patients suffering from blood infections; these isolates were finally found to not belong to P. fluorescens but were closely related and harbored highly conserved T3SS genes belonging to the Ysc-T3SS family, like the T3SSs from P. aeruginosa. The second group encompassed isolates from patients suffering from cystic fibrosis; these isolates belonged to P. fluorescens and harbored T3SS genes belonging to the Hrp1-T3SS family found commonly in plant-associated P. fluorescens.
Collapse
|
7
|
Liu P, Zhang W, Zhang LQ, Liu X, Wei HL. Supramolecular Structure and Functional Analysis of the Type III Secretion System in Pseudomonas fluorescens 2P24. FRONTIERS IN PLANT SCIENCE 2015; 6:1190. [PMID: 26779224 PMCID: PMC4700148 DOI: 10.3389/fpls.2015.01190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/11/2015] [Indexed: 05/14/2023]
Abstract
The type III secretion system (T3SS) of plant and animal bacterial pathogens directs the secretion and injection of proteins into host cells. Some homologous genes of T3SS were found also in non-pathogenic bacteria, but the organization of its machinery and basic function are still unknown. In this study, we identified a T3SS gene cluster from the plant growth-promoting Pseudomonas fluorescens 2P24 and isolated the corresponding T3SS apparatus. The T3SS gene cluster of strain 2P24 is similar organizationally to that of pathogenic P. syringae, except that it lacks the regulator hrpR and the hrpK1 and hrpH genes, which are involved in translocation of proteins. Electron microscopy revealed that the T3SS supramolecular structure of strain 2P24 was comprised of two distinctive substructures: a long extracellular, filamentous pilus, and a membrane-embedded base. We show that strain 2P24 deploys a harpin homolog protein, RspZ1, to elicit a hypersensitive response when infiltrated into Nicotiana tabacum cv. xanthi leaves with protein that is partially purified, and by complementing the hrpZ1 mutation of pHIR11. The T3SS of strain 2P24 retained ability to secrete effectors, whereas its effector translocation activity appeared to be excessively lost. Mutation of the rscC gene from 2P24 T3SS abolished the secretion of effectors, but the general biocontrol properties were unaffected. Remarkably, strain 2P24 induced functional MAMP-triggered immunity that included a burst of reactive oxygen species, strong suppression of challenge cell death, and disease expansion, while it was not associated with the secretion functional T3SS.
Collapse
Affiliation(s)
- Ping Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Wei Zhang
- Department of Plant Pathology, China Agricultural UniversityBeijing, China
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power UniversityBeijing, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural UniversityBeijing, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Hai-Lei Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Hai-Lei Wei,
| |
Collapse
|
8
|
Almario J, Gobbin D, Défago G, Moënne-Loccoz Y, Rezzonico F. Prevalence of type III secretion system in effective biocontrol pseudomonads. Res Microbiol 2014; 165:300-4. [DOI: 10.1016/j.resmic.2014.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/27/2014] [Indexed: 11/28/2022]
|
9
|
Tampakaki AP. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:114. [PMID: 24723933 PMCID: PMC3973906 DOI: 10.3389/fpls.2014.00114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 05/19/2023]
Abstract
Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.
Collapse
Affiliation(s)
- Anastasia P. Tampakaki
- *Correspondence: Anastasia P. Tampakaki, Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece e-mail:
| |
Collapse
|
10
|
Pseudomonas fluorescens: A Potential Biocontrol Agent for Management of Fungal Diseases of Crop Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Barret M, Egan F, Moynihan J, Morrissey JP, Lesouhaitier O, O'Gara F. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:377-86. [PMID: 23754718 DOI: 10.1111/1758-2229.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/10/2013] [Indexed: 05/21/2023]
Abstract
Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar beet rhizosphere. The recent annotation of the F113 genome sequence has revealed that this strain encodes a wide array of secretion systems, including two complete type three secretion systems (T3SSs) belonging to the Hrp1 and SPI-1 families. While Hrp1 T3SSs are frequently encoded in other P. fluorescens strains, the presence of a SPI-1 T3SS in a plant-beneficial bacterial strain was unexpected. In this work, the genetic organization and expression of these two T3SS loci have been analysed by a combination of transcriptional reporter fusions and transcriptome analyses. Overexpression of two transcriptional activators has shown a number of genes encoding putative T3 effectors. In addition, the influence of these two T3SSs during the interaction of P. fluorescens F113 with some bacterial predators was also assessed. Our data revealed that the transcriptional activator hilA is induced by amoeba and that the SPI-1 T3SS could potentially be involved in resistance to amoeboid grazing.
Collapse
Affiliation(s)
- Matthieu Barret
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
12
|
Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One 2013; 8:e58640. [PMID: 23516524 PMCID: PMC3596284 DOI: 10.1371/journal.pone.0058640] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.
Collapse
Affiliation(s)
- Jin Duan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | |
Collapse
|
13
|
Barret M, Egan F, O'Gara F. Distribution and diversity of bacterial secretion systems across metagenomic datasets. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:117-26. [PMID: 23757140 DOI: 10.1111/j.1758-2229.2012.00394.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/29/2012] [Indexed: 05/21/2023]
Abstract
Bacteria can manipulate their surrounding environment through the secretion of proteins into other living organisms and into the extracellular milieu. In Gram stain negative bacteria this process is mediated by different types of secretion systems from type I through type VI secretion system (T1SS-T6SS). In this study the prevalence of these secretion systems in 312 publicly available microbiomes derived from a wide range of ecosystems was investigated by a gene-centric approach. Our analysis demonstrates that some secretion systems are over-represented in some specific samples. In addition, some T3SS and T6SS phylogenetic clusters were specifically enriched in particular ecological niches, which could indicate specific bacterial adaptation to these environments.
Collapse
Affiliation(s)
- Matthieu Barret
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
14
|
Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, Lemanceau P. Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. MICROBIAL ECOLOGY 2012; 64:725-737. [PMID: 22576821 DOI: 10.1007/s00248-012-0065-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/21/2012] [Indexed: 05/31/2023]
Abstract
Rhizosphere competence of fluorescent pseudomonads is a prerequisite for the expression of their beneficial effects on plant growth and health. To date, knowledge on bacterial traits involved in rhizosphere competence is fragmented and derived mostly from studies with model strains. Here, a population approach was taken by investigating a representative collection of 23 Pseudomonas species and strains from different origins for their ability to colonize the rhizosphere of tomato plants grown in natural soil. Rhizosphere competence of these strains was related to phenotypic traits including: (1) their carbon and energetic metabolism represented by the ability to use a wide range of organic compounds, as electron donors, and iron and nitrogen oxides, as electron acceptors, and (2) their ability to produce antibiotic compounds and N-acylhomoserine lactones (N-AHSL). All these data including origin of the strains (soil/rhizosphere), taxonomic identification, phenotypic cluster based on catabolic profiles, nitrogen dissimilating ability, siderovars, susceptibility to iron starvation, antibiotic and N-AHSL production, and rhizosphere competence were submitted to multiple correspondence analyses. Colonization assays revealed a significant diversity in rhizosphere competence with survival rates ranging from approximately 0.1 % to 61 %. Multiple correspondence analyses indicated that rhizosphere competence was associated with siderophore-mediated iron acquisition, substrate utilization, and denitrification. However, the catabolic profile of one rhizosphere-competent strain differed from the others and its competence was associated with its ability to produce antibiotics phenazines and N-AHSL. Taken together, these data suggest that competitive strains have developed two types of strategies to survive in the rhizosphere.
Collapse
Affiliation(s)
- Sandrine Ghirardi
- INRA, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sperandio D, Decoin V, Latour X, Mijouin L, Hillion M, Feuilloley MGJ, Orange N, Merieau A. Virulence of the Pseudomonas fluorescens clinical strain MFN1032 towards Dictyostelium discoideum and macrophages in relation with type III secretion system. BMC Microbiol 2012; 12:223. [PMID: 23020706 PMCID: PMC3489880 DOI: 10.1186/1471-2180-12-223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/25/2012] [Indexed: 01/10/2023] Open
Abstract
Background Pseudomonas fluorescens biovar I MFN1032 is a clinical isolate able to grow at 37°C. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides, and a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis is independent of biosurfactant production and remains in a gacA mutant. Disruption of the hrpU-like operon (the basal part of type III secretion system from rhizospheric strains) suppresses this activity. We hypothesized that this phenotype could reflect evolution of an ancestral mechanism involved in the survival of this species in its natural niche. In this study, we evaluated the hrpU-like operon’s contribution to other virulence mechanisms using a panel of Pseudomonas strains from various sources. Results We found that MFN1032 inhibited the growth of the amoebae Dictyostelium discoideum and that this inhibition involved the hrpU-like operon and was absent in a gacA mutant. MFN1032 was capable of causing macrophage lysis, if the hrpU-like operon was intact, and this cytotoxicity remained in a gacA mutant. Cell-associated hemolytic activity and macrophage necrosis were found in other P. fluorescens clinical isolates, but not in biocontrol P. fluorescens strains harbouring hrpU-like operon. The growth of Dictyostelium discoideum was inhibited to a different extent by P. fluorescens strains without correlation between this inhibition and hrpU-like operon sequences. Conclusions In P. fluorescens MFN1032, the basal part of type III secretion system plays a role in D. discoideum growth inhibition and macrophage necrosis. The inhibition of D. discoideum growth is dependent on the GacS/GacA system, while cell-associated hemolytic activity and macrophage lysis are not. Virulence against eukaryotic cells based on the hrpU-like operon may be more than just a stochastic evolution of a conserved system dedicated to survival in competition with natural predators such as amoebae. It may also mean that there are some important modifications of other type III secretion system components, which remain unknown. Cell-associated hemolysis might be a good indicator of the virulence of Pseudomonas fluorescens strain.
Collapse
Affiliation(s)
- Daniel Sperandio
- Laboratoire de Microbiologie Signaux et Micro-Environnement, Université de Rouen, Evreux, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:139-50. [PMID: 21995763 DOI: 10.1094/mpmi-06-11-0179] [Citation(s) in RCA: 436] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and Rhizobium bacteria that fix atmospheric nitrogen for the plant. Several other types of beneficial soilborne microbes, such as plant-growth-promoting rhizobacteria and fungi with biological control activity, can stimulate plant growth by directly suppressing deleterious soilborne pathogens or by priming aboveground plant parts for enhanced defense against foliar pathogens or insect herbivores. The establishment of beneficial associations requires mutual recognition and substantial coordination of plant and microbial responses. A growing body of evidence suggests that beneficial microbes are initially recognized as potential invaders, after which an immune response is triggered, whereas, at later stages of the interaction, mutualists are able to short-circuit plant defense responses to enable successful colonization of host roots. Here, we review our current understanding of how symbiotic and nonsymbiotic beneficial soil microbes modulate the plant immune system and discuss the role of local and systemic defense responses in establishing the delicate balance between the two partners.
Collapse
|
17
|
Pseudomonas and other Microbes in Disease-Suppressive Soils. SUSTAINABLE AGRICULTURE REVIEWS 2012. [DOI: 10.1007/978-94-007-4113-3_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Blakney AJC, Patten CL. A plant growth-promoting pseudomonad is closely related to the Pseudomonas syringae complex of plant pathogens. FEMS Microbiol Ecol 2011; 77:546-57. [PMID: 21609343 DOI: 10.1111/j.1574-6941.2011.01136.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas putida GR12-2 is well known as a plant growth-promoting rhizobacterium; however, phylogenetic analysis using the 16S rRNA gene and four housekeeping genes indicated that this strain forms a monophyletic group with the Pseudomonas syringae complex, which is composed of several species of plant pathogens. On the basis of these sequence analyses, we suggest that P. putida GR12-2 be redesignated as P. syringae GR12-2. To compare the ecological roles of P. syringae GR12-2 with its close relatives P. syringae pathovar (pv.) tomato DC3000 and P. syringae pv. syringae B728a, we investigated their ability to cause disease and promote plant growth. When introduced on tobacco or tomato leaves, P. syringae GR12-2 was unable to elicit a hypersensitive response or cause disease, which are characteristic responses of P. syringae DC3000 and B728a, nor were type III secretion system genes required for virulence detected in P. syringae GR12-2 by PCR or DNA hybridization. In contrast to P. syringae GR12-2, neither of the phytopathogens was able to promote root growth when inoculated onto canola seeds. Although commensals and nonpathogens have been reported among the strains of the P. syringae complex, P. syringae GR12-2 is a mutualist and a phytostimulator.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | |
Collapse
|
19
|
Cusano AM, Burlinson P, Deveau A, Vion P, Uroz S, Preston GM, Frey-Klett P. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:203-210. [PMID: 23761252 DOI: 10.1111/j.1758-2229.2010.00209.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Mycorrhiza Helper Bacterium (MHB) Pseudomonas fluorescens BBc6R8 promotes the ectomycorrhizal symbiosis between Douglas fir roots and Laccaria bicolor. In this study, we identified a non-flagellar type III secretion system (T3SS) in the draft genome of BBc6R8 similar to that described in the biocontrol strain P. fluorescens SBW25. We examined whether this T3SS plays a role in the BBc6R8 mycorrhizal helper effect by creating a deletion in the rscRST genes encoding the central channel of the injectisome. The in vitro effect of BBc6R8 T3SS mutants on the radial growth rate of L. bicolor was unchanged compared with the parental strain. In contrast, T3SS mutants were unable to promote mycorrhization, suggesting that type III secretion plays an important role in the mycorrhizal helper effect of P. fluorescens BBc6R8 independent of the promotion of hyphal growth that BBc6R8 exhibits in vitro.
Collapse
Affiliation(s)
- Angela M Cusano
- INRA, UMR1136 INRA-Nancy Université, «Interactions Arbres/Micro-organismes», Centre de Nancy, IFR110, 54280 Champenoux, France. Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. Department of Microbiology and Immunology, Dartmouth Medical School, 208 Vail Building, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Viollet A, Corberand T, Mougel C, Robin A, Lemanceau P, Mazurier S. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol Ecol 2011; 75:457-67. [PMID: 21204867 DOI: 10.1111/j.1574-6941.2010.01021.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type III secretion systems (T3SSs) of Gram-negative bacteria mediate direct interactions with eukaryotic cells. Pseudomonas spp. harboring T3SS genes (T3SS+) were previously shown to be more abundant in the rhizosphere than in bulk soil. To discriminate the contribution of roots and associated arbuscular mycorrhizal fungi (AMF) on the enrichment of T3SS+ fluorescent pseudomonads in the rhizosphere of Medicago truncatula, their frequency was assessed among pseudomonads isolated from mycorrhizal and nonmycorrhizal roots and from bulk soil. T3SS genes were identified by PCR targeting a conserved hrcRST DNA fragment. Polymorphism of hrcRST in T3SS+ isolates was assessed by PCR-restriction fragment length polymorphism and sequencing. Genotypic diversity of all pseudomonads isolated, whether or not harboring T3SS, was described by BOX-PCR. T3SS+ pseudomonads were significantly more abundant in mycorrhizal than in nonmycorrhizal roots and in bulk soil, and all were shown to belong to the phylogenetic group of Pseudomonas fluorescens on the basis of 16S rRNA gene identity. Four hrcRST genotypes were described; two only included isolates from mycorrhizal roots. T3SS+ and T3SS- pseudomonads showed different genetic backgrounds as indicated by their different BOX-PCR types. Taken together, these data suggest that T3SSs are implicated in interactions between fluorescent pseudomonads and AM in medic rhizosphere.
Collapse
Affiliation(s)
- Amandine Viollet
- INRA, Université de Bourgogne, UMR 1229 Microbiologie du Sol et de l'Environnement, CMSE, Dijon, France
| | | | | | | | | | | |
Collapse
|
21
|
Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol 2010; 193:177-89. [PMID: 20971913 DOI: 10.1128/jb.00895-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas fluorescens Q8r1-96 represents a group of rhizosphere strains responsible for the suppressiveness of agricultural soils to take-all disease of wheat. It produces the antibiotic 2,4-diacetylphloroglucinol and aggressively colonizes the roots of cereal crops. In this study, we analyzed the genome of Q8r1-96 and identified a type III protein secretion system (T3SS) gene cluster that has overall organization similar to that of the T3SS gene cluster of the plant pathogen Pseudomonas syringae. We also screened a collection of 30 closely related P. fluorescens strains and detected the T3SS genes in all but one of them. The Q8r1-96 genome contained ropAA and ropM type III effector genes, which are orthologs of the P. syringae effector genes hopAA1-1 and hopM1, as well as a novel type III effector gene designated ropB. These type III effector genes encoded proteins that were secreted in culture and injected into plant cells by both P. syringae and Q8r1-96 T3SSs. The Q8r1-96 T3SS was expressed in the rhizosphere, but mutants lacking a functional T3SS were not altered in their rhizosphere competence. The Q8r1-96 type III effectors RopAA, RopB, and RopM were capable of suppressing the hypersensitive response and production of reactive oxygen species, two plant immune responses.
Collapse
|
22
|
Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, Garbaye J, Sarniguet A, Frey-Klett P. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:560-568. [PMID: 23766226 DOI: 10.1111/j.1758-2229.2010.00145.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The mycorrhiza helper bacterial strain Pseudomonas fluorescens BBc6R8 enhances the establishment of Laccaria bicolor S238N ectomycorrhizae by improving the pre-symbiotic growth and survival of the fungus. Nothing is known about the effect of the ectomycorrhizal fungus on the helper bacteria or the molecules that are involved in the interaction. In this study, we have monitored the population density of the helper strain P. fluorescens BBc6R8 in soils inoculated with L. bicolor and in control soils and found that the ectomycorhizal fungus improves the survival of the helper bacteria. We investigated the identity of the fungal and bacterial metabolites involved in this reciprocal growth-promoting effect using a combination of growth measurements, chemoattractant assays, HPLC and in silico genome analyses. We showed that trehalose, a disaccharide that accumulates to high levels in the fungal hyphae, chemoattracted and promoted the growth of the helper bacteria. Meanwhile, P. fluorescens BBc6R8 produced thiamine at concentrations that enhanced the fungal growth in vitro. Altogether our data indicate that the interaction between the two microorganisms is beneficial for both species and relies, at least in part, on trophic mutualism.
Collapse
Affiliation(s)
- A Deveau
- INRA, UMR1136 INRA-Nancy Université«Interactions Arbres/Micro-organismes», Centre de Nancy, IFR110, 54280 Champenoux, France. SRSMC (Structure et Réactivité des Systèmes Moléculaires Complexes) UMR7565, Université Henri Poincaré- Nancy 1, Nancy-Université, France. INRA, UMR1099 'Biologie des Organismes et des Populations appliquée à la Protection des Plantes', 35 653 Le Rheu Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sperandio D, Rossignol G, Guerillon J, Connil N, Orange N, Feuilloley MGJ, Merieau A. Cell-associated hemolysis activity in the clinical strain of Pseudomonas fluorescens MFN1032. BMC Microbiol 2010; 10:124. [PMID: 20416103 PMCID: PMC2871272 DOI: 10.1186/1471-2180-10-124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/24/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MFN1032 is a clinical Pseudomonas fluorescens strain able to grow at 37 degrees C. MFN1032 cells induce necrosis and apoptosis in rat glial cells at this temperature. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides. Under laboratory conditions, this activity is not expressed at 37 degrees C. This activity is tightly regulated and is subject to phase variation. RESULTS We found that MFN1032 displays a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis was expressed at 37 degrees C and was only detected in vitro in mid log growth phase in the presence of erythrocytes. We studied the regulation of this activity in the wild-type strain and in a mutant defective in the Gac two-component pathway. GacS/GacA is a negative regulator of this activity. In contrast to the Pseudomonas fluorescens strains PfO-1 and Pf5, whose genomes have been sequenced, the MFN1032 strain has the type III secretion-like genes hrcRST belonging to the hrpU operon. We showed that disruption of this operon abolished cell-associated hemolytic activity. This activity was not detected in P.fluorescens strains carrying similar hrc genes, as for the P. fluorescens psychrotrophic strain MF37. CONCLUSIONS To our knowledge this the first demonstration of cell-associated hemolytic activity of a clinical strain of Pseudomonas fluorescens. Moreover, this activity seems to be related to a functional hrpU operon and is independent of biosurfactant production. Precise link between a functional hrpU operon and cell-associated hemolytic activity remains to be elucidated.
Collapse
Affiliation(s)
- Daniel Sperandio
- Laboratory of cold microbiology signals and the microenvironment, LMDF-SME, UPRES EA 4312, University of Rouen, 55 rue Saint Germain, 27000 Evreux, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME JOURNAL 2008; 2:887-900. [DOI: 10.1038/ismej.2008.41] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Loper JE, Kobayashi DY, Paulsen IT. The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. PHYTOPATHOLOGY 2007; 97:233-8. [PMID: 18944380 DOI: 10.1094/phyto-97-2-0233] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogens.
Collapse
|
26
|
Mavrodi OV, Mavrodi DV, Weller DM, Thomashow LS. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Environ Microbiol 2006; 72:7111-22. [PMID: 16936061 PMCID: PMC1636191 DOI: 10.1128/aem.01215-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | | | | | | |
Collapse
|
27
|
Mavrodi OV, Mavrodi DV, Park AA, Weller DM, Thomashow LS. The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96. MICROBIOLOGY-SGM 2006; 152:863-872. [PMID: 16514165 DOI: 10.1099/mic.0.28545-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain well-conserved genes in fluorescent Pseudomonas spp. are involved in pathogenic interactions between the bacteria and evolutionarily diverse hosts including plants, insects and vertebrate animals. One such gene, dsbA, encodes a periplasmic disulfide-bond-forming enzyme implicated in the biogenesis of exported proteins and cell surface structures. This study focused on the role of dsbA in Pseudomonas fluorescens Q8r1-96, a biological control strain that produces the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and is known for its exceptional ability to colonize the roots of wheat and pea. The deduced DsbA protein from Q8r1-96 is similar to other predicted thiol : disulfide interchange proteins and contains a conserved DsbA catalytic site, a pattern associated with the thioredoxin family active site, and a signal peptide and cleavage site. A dsbA mutant of Q8r1-96 exhibited decreased motility and fluorescence, and altered colony morphology; however, it produced more 2,4-DAPG and total phloroglucinol-related compounds and was more inhibitory in vitro to the fungal root pathogen Gaeumannomyces graminis var. tritici than was the parental strain. When introduced separately into a natural soil, Q8r1-96 and the dsbA mutant did not differ in their ability to colonize the rhizosphere of wheat in greenhouse experiments lasting 12 weeks. However, when the two strains were co-inoculated, the parental strain consistently out-competed the dsbA mutant. It was concluded that dsbA does not contribute to the exceptional rhizosphere competence of Q8r1-96, although the dsbA mutation reduces competitiveness when the mutant competes with the parental strain in the same niche in the rhizosphere. The results also suggest that exoenzymes and multimeric cell surface structures are unlikely to have a critical role in root colonization by this strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Dmitri V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Amanda A Park
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - David M Weller
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - Linda S Thomashow
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
28
|
Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 2006; 56:455-70. [PMID: 16689877 DOI: 10.1111/j.1574-6941.2006.00082.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in plant growth-promoting rhizobacteria (PGPR) and phytosymbiotic bacteria, but the diversity of the corresponding gene (acdS) is poorly documented. Here, acdS sequences were obtained by screening putative ACC deaminase sequences listed in databases, based on phylogenetic properties and key residues. In addition, acdS was sought in 71 proteobacterial strains by PCR amplification and/or hybridization using colony dot blots. The presence of acdS was confirmed in established AcdS+ bacteria and evidenced noticeably in Azospirillum (previously reported as AcdS-), in 10 species of Burkholderia and six Burkholderia cepacia genomovars (which included PGPR, phytopathogens and opportunistic human pathogens), and in five Agrobacterium genomovars. The occurrence of acdS in true and opportunistic pathogens raises new questions concerning their ecology in plant-associated habitats. Many (but not all) acdS+ bacteria displayed ACC deaminase activity in vitro, including two Burkholderia clinical isolates. Phylogenetic analysis of partial acdS and deduced AcdS sequences evidenced three main phylogenetic clusters, each gathering pathogens and plant-beneficial strains of contrasting geographic and habitat origins. The acdS phylogenetic tree was only partly congruent with the rrs tree. Two clusters gathered both Betaprotobacteria and Gammaproteobacteria, suggesting extensive horizontal transfers of acdS, noticeably between plant-associated Proteobacteria.
Collapse
Affiliation(s)
- Didier Blaha
- UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard, Villeurbanne, France
| | | | | | | |
Collapse
|
29
|
Toth IK, Pritchard L, Birch PRJ. Comparative genomics reveals what makes an enterobacterial plant pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:305-36. [PMID: 16704357 DOI: 10.1146/annurev.phyto.44.070505.143444] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The bacterial family Enterobacteriaceae contains some of the most devastating human and animal pathogens, including Escherichia coli, Salmonella enterica and species of Yersinia and Shigella. These are among the best-studied of any organisms, yet there is much to be learned about the nature and evolution of interactions with their hosts and with the wider environment. Comparative and functional genomics have fundamentally improved our understanding of their modes of adaptation to different ecological niches and the genes that determine their pathogenicity. In addition to animal pathogens, Enterobacteriaceae include important plant pathogens, such as Erwinia carotovora subsp. atroseptica (Eca), the first plant-pathogenic enterobacterium to be sequenced. This review focuses on genomic comparisons between Eca and other enterobacteria, with particular emphasis on the differences that exemplify or explain the plant-associated lifestyle(s) of Eca. Horizontal gene transfer in Eca may directly have led to the acquisition of a number of determinants that mediate its interactions, pathogenic or otherwise, with plants, offering a glimpse into its evolutionary divergence from animal-pathogenic enterobacteria.
Collapse
Affiliation(s)
- Ian K Toth
- Plant Pathology Program, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| | | | | |
Collapse
|
30
|
Rezzonico F, Binder C, Défago G, Moënne-Loccoz Y. The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:991-1001. [PMID: 16167769 DOI: 10.1094/mpmi-18-0991] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The type III secretion system (TTSS) is used by Proteobacteria for pathogenic or symbiotic interaction with plant and animal hosts. Recently, TTSS genes thought to originate from the phytopathogen Pseudomonas syringae were evidenced in Pseudomonas fluorescens KD, which protects cucumber from the oomycete Pythium ultimum (kingdom Chromista/Stramenopila). However, it is not known whether the TTSS contributes to plant protection by the bacterium and, if so, whether it targets the plant or the phytopathogen. Inactivation of TTSS gene hrcV following the insertion of an omega cassette strongly reduced the biocontrol activity of the pseudomonad against P. ultimum on cucumber when compared with the wild type, but had no effect on its root-colonization ability. Analysis of a plasmid-based transcriptional hrpJ'-inaZ reporter fusion revealed that expression in strain KD of the operon containing hrcV was strongly stimulated in vitro and in situ by the oomycete and not by the plant. In vitro, both strain KD and its hrcV mutant reduced the activity level of the pectinase polygalacturonase (a key pathogenicity factor) from P. ultimum, but the reduction was much stronger with the wild type. Together, these results show that the target range of bacterial TTSS is not restricted to plants and animals but also can include members of Chromista/Stramenopila, and suggest that virulence genes acquired horizontally from phytopathogenic bacteria were functionally recycled in biocontrol saprophytic Pseudomonas spp., resulting in enhanced plant protection by the latter.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Phytopathology Group, Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
31
|
Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69:217-61. [PMID: 15944455 PMCID: PMC1197422 DOI: 10.1128/mmbr.69.2.217-261.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | |
Collapse
|