1
|
Prioux C, Ferrier-Pagès C, del Campo J, Guillou L, Estaque T, Allemand D, Tignat-Perrier R. Unraveling the impact of marine heatwaves on the Eukaryome of the emblematic Mediterranean red coral Corallium rubrum. ISME COMMUNICATIONS 2025; 5:ycaf035. [PMID: 40071145 PMCID: PMC11894933 DOI: 10.1093/ismeco/ycaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Global warming is intensifying heatwaves worldwide, leading to more frequent and severe temperature extremes. This study investigates the impact of the unprecedented 2022 Mediterranean heatwaves on the coral eukaryome, which has received little attention despite its known importance to coral holobiont functioning. Fifty-six colonies of the iconic red coral Corallium rubrum from the Mediterranean Sea were collected at different sites, depths, and health states. The microeukaryotic communities were analyzed using an 18S rRNA gene metabarcoding approach. Primers were designed to reduce amplification of the 18S rRNA gene sequences of the red coral while being universal for amplification of microeukaryotes. Our results showed that the red coral eukaryome was dominated by Dino-Group I, Licnophoridae, and Labyrinthulomycetes in the control sites that were not affected by the heat waves. In the heat-affected colonies, the composition of the coral eukaryome changed, with the relative abundances of Ephelotidae, Exobasidiomycetes, Corallicolidae, Labyrinthulomycetes, and/or the epibionts Phaeophyceae increasing depending on the intensity of heat stress experienced by the colonies. It was thus possible to link colony health to changes in the eukaryome. Finally, we illustrated putative interactions (competition, predator-prey relationship, and parasitism) occurring within C. rubrum eukaryome that could explain the compositional changes observed in the microeukaryotic communities under heat stress. Our findings improve our understanding of the ecological effects of heatwaves on marine ecosystems.
Collapse
Affiliation(s)
- Camille Prioux
- Sorbonne Université Collège Doctoral, Science de l'environnement d'Ile de France, 75006, Paris, France
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, Monaco, 98000, Principality of Monaco
- Centre Scientifique de Monaco, Quai Antoine 1er, Monaco, 98000, Principality of Monaco
| | | | - Javier del Campo
- Department of Marine Biology and Ecology, Rosenstiel School of Marine Atmospheric and Earth Science, University of Miami, Miami, FL, United States
- Biodiversitat, Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Laure Guillou
- Sorbonne Université CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Roscoff, France
| | - Tristan Estaque
- Septentrion Environnement, Campus Nature Provence, Traverse Parangon, Marseille, France
| | - Denis Allemand
- Centre Scientifique de Monaco, Quai Antoine 1er, Monaco, 98000, Principality of Monaco
| | - Romie Tignat-Perrier
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, Monaco, 98000, Principality of Monaco
- Centre Scientifique de Monaco, Quai Antoine 1er, Monaco, 98000, Principality of Monaco
| |
Collapse
|
2
|
Martínez-García S, Bunse C, Pontiller B, Baltar F, Israelsson S, Fridolfsson E, Lindh MV, Lundin D, Legrand C, Pinhassi J. Seasonal Dynamics in Carbon Cycling of Marine Bacterioplankton Are Lifestyle Dependent. Front Microbiol 2022; 13:834675. [PMID: 36212867 PMCID: PMC9533715 DOI: 10.3389/fmicb.2022.834675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Although free-living (FL) and particle-attached (PA) bacteria are recognized as ecologically distinct compartments of marine microbial food-webs, few, if any, studies have determined their dynamics in abundance, function (production, respiration and substrate utilization) and taxonomy over a yearly cycle. In the Baltic Sea, abundance and production of PA bacteria (defined as the size-fraction >3.0 μm) peaked over 3 months in summer (6 months for FL bacteria), largely coinciding with blooms of Chitinophagales (Bacteroidetes). Pronounced changes in the growth efficiency (range 0.05–0.27) of FL bacteria (defined as the size-fraction <3.0 μm) indicated the magnitude of seasonal variability of ecological settings bacteria experience. Accordingly, 16S rRNA gene analyses of bacterial community composition uncovered distinct correlations between taxa, environmental variables and metabolisms, including Firmicutes associated with elevated hydrolytic enzyme activity in winter and Verrucomicrobia with utilization of algal-derived substrates during summer. Further, our results suggested a substrate-controlled succession in the PA fraction, from Bacteroidetes using polymers to Actinobacteria and Betaproteobacteria using monomers across the spring to autumn phytoplankton bloom transition. Collectively, our findings emphasize pronounced seasonal changes in both the composition of the bacterial community in the PA and FL size-fractions and their contribution to organic matter utilization and carbon cycling. This is important for interpreting microbial ecosystem function-responses to natural and human-induced environmental changes.
Collapse
Affiliation(s)
- Sandra Martínez-García
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Pontevedra, Spain
- *Correspondence: Sandra Martínez-García,
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Institute for the Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Stina Israelsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Markus V. Lindh
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Pascault N, Rué O, Loux V, Pédron J, Martin V, Tambosco J, Bernard C, Humbert JF, Leloup J. Insights into the cyanosphere: capturing the respective metabolisms of cyanobacteria and chemotrophic bacteria in natural conditions? ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:364-374. [PMID: 33763994 DOI: 10.1111/1758-2229.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Specific interactions have been highlighted between cyanobacteria and chemotrophic bacteria within the cyanosphere, suggesting that nutrients recycling could be optimized by cyanobacteria/bacteria exchanges. In order to determine the respective metabolic roles of the cyanobacterial and bacterial consortia (microbiome), a day-night metatranscriptomic analysis was performed on Dolichospermum sp. (N2 -fixer) and Microcystis sp. (non N2 -fixer) natural blooms occurring successively within a French peri-urban lake. The taxonomical and functional analysis of the metatranscriptoms have highlighted specific association of bacteria within the cyanosphere, driven by the cyanobacteria identity, without strongly modifying the functional composition of the microbiomes, suggesting functional redundancy within the cyanosphere. Moreover, the functional composition of these active communities was driven by the living mode. During the two successive bloom events, it appeared that NH4 + (newly fixed and/or allochthonous) was preferentially transformed into amino acids for the both the microbiome and the cyanobacteria, while phosphate metabolism was enhanced, suggesting that due to a high cellular growth, P limitation might take place within the cyanosphere consortium.
Collapse
Affiliation(s)
- Noémie Pascault
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, 78350, France
| | - Valentin Loux
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, 78350, France
| | - Jacques Pédron
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Véronique Martin
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, 78350, France
| | - Jennifer Tambosco
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Cécile Bernard
- UMR 7245 MCAM Muséum National d'Histoire Naturelle - CNRS, 75231 Paris Cedex 05, France
| | - Jean-François Humbert
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Julie Leloup
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| |
Collapse
|
4
|
Sala MM, Ruiz-González C, Borrull E, Azúa I, Baña Z, Ayo B, Álvarez-Salgado XA, Gasol JM, Duarte CM. Prokaryotic Capability to Use Organic Substrates Across the Global Tropical and Subtropical Ocean. Front Microbiol 2020; 11:918. [PMID: 32582044 PMCID: PMC7287293 DOI: 10.3389/fmicb.2020.00918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Prokaryotes play a fundamental role in decomposing organic matter in the ocean, but little is known about how microbial metabolic capabilities vary at the global ocean scale and what are the drivers causing this variation. We aimed at obtaining the first global exploration of the functional capabilities of prokaryotes in the ocean, with emphasis on the under-sampled meso- and bathypelagic layers. We explored the potential utilization of 95 carbon sources with Biolog GN2 plates® in 441 prokaryotic communities sampled from surface to bathypelagic waters (down to 4,000 m) at 111 stations distributed across the tropical and subtropical Atlantic, Indian, and Pacific oceans. The resulting metabolic profiles were compared with biological and physico-chemical properties such as fluorescent dissolved organic matter (DOM) or temperature. The relative use of the individual substrates was remarkably consistent across oceanic regions and layers, and only the Equatorial Pacific Ocean showed a different metabolic structure. When grouping substrates by categories, we observed some vertical variations, such as an increased relative utilization of polymers in bathypelagic layers or a higher relative use of P-compounds or amino acids in the surface ocean. The increased relative use of polymers with depth, together with the increases in humic DOM, suggest that deep ocean communities have the capability to process complex DOM. Overall, the main identified driver of the metabolic structure of ocean prokaryotic communities was temperature. Our results represent the first global depiction of the potential use of a variety of carbon sources by prokaryotic communities across the tropical and the subtropical ocean and show that acetic acid clearly emerges as one of the most widely potentially used carbon sources in the ocean.
Collapse
Affiliation(s)
- Maria Montserrat Sala
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Encarna Borrull
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Iñigo Azúa
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Zuriñe Baña
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Begoña Ayo
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | | | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados-Universitat de les Illes Balears, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| |
Collapse
|
5
|
Sörenson E, Bertos‐Fortis M, Farnelid H, Kremp A, Krüger K, Lindehoff E, Legrand C. Consistency in microbiomes in cultures of Alexandrium species isolated from brackish and marine waters. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:425-433. [PMID: 30672139 PMCID: PMC6563467 DOI: 10.1111/1758-2229.12736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Phytoplankton and bacteria interactions have a significant role in aquatic ecosystem functioning. Associations can range from mutualistic to parasitic, shaping biogeochemical cycles and having a direct influence on phytoplankton growth. How variations in phenotype and sampling location, affect the phytoplankton microbiome is largely unknown. A high-resolution characterization of the bacterial community in cultures of the dinoflagellate Alexandrium was performed on strains isolated from different geographical locations and at varying anthropogenic impact levels. Microbiomes of Baltic Sea Alexandrium ostenfeldii isolates were dominated by Betaproteobacteria and were consistent over phenotypic and genotypic Alexandrium strain variation, resulting in identification of an A. ostenfeldii core microbiome. Comparisons with in situ bacterial communities showed that taxa found in this A. ostenfeldii core were specifically associated to dinoflagellate dynamics in the Baltic Sea. Microbiomes of Alexandrium tamarense and minutum, isolated from the Mediterranean Sea, differed from those of A. ostenfeldii in bacterial diversity and composition but displayed high consistency, and a core set of bacterial taxa was identified. This indicates that Alexandrium isolates with diverse phenotypes host predictable, species-specific, core microbiomes reflecting the abiotic conditions from which they were isolated. These findings enable in-depth studies of potential interactions occurring between Alexandrium and specific bacterial taxa.
Collapse
Affiliation(s)
- Eva Sörenson
- EEMiS, Department of Biology and Environmental Science, Linnaeus UniversityLinnæus University Centre of Ecology and Evolution in Microbial Model Systems39231, KalmarSweden
| | - Mireia Bertos‐Fortis
- EEMiS, Department of Biology and Environmental Science, Linnaeus UniversityLinnæus University Centre of Ecology and Evolution in Microbial Model Systems39231, KalmarSweden
| | - Hanna Farnelid
- EEMiS, Department of Biology and Environmental Science, Linnaeus UniversityLinnæus University Centre of Ecology and Evolution in Microbial Model Systems39231, KalmarSweden
| | - Anke Kremp
- Marine Research CentreFinnish Environment InstituteP.O. Box 140, 00251, HelsinkiFinland
- Leibniz Institute for Baltic Sea Research WarnemundeSeestrasse 15, 18119, RostockGermany
| | - Karen Krüger
- Max Planck Institute for Marine MicrobiologyCelsiusstraße 1, 28359, BremenGermany
| | - Elin Lindehoff
- EEMiS, Department of Biology and Environmental Science, Linnaeus UniversityLinnæus University Centre of Ecology and Evolution in Microbial Model Systems39231, KalmarSweden
- Marine Research CentreFinnish Environment InstituteP.O. Box 140, 00251, HelsinkiFinland
| | - Catherine Legrand
- EEMiS, Department of Biology and Environmental Science, Linnaeus UniversityLinnæus University Centre of Ecology and Evolution in Microbial Model Systems39231, KalmarSweden
| |
Collapse
|
6
|
Guidi F, Pezzolesi L, Vanucci S. Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern. Microbiologyopen 2018; 7:e00584. [PMID: 29484854 PMCID: PMC6079179 DOI: 10.1002/mbo3.584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Algal-bacterial interactions play a major role in shaping diversity of algal associated bacterial communities. Temporal variation in bacterial phylogenetic composition reflects changes of these complex interactions which occur during the algal growth cycle as well as throughout the lifetime of algal blooms. Viruses are also known to cause shifts in bacterial community diversity which could affect algal bloom phases. This study investigated on changes of bacterial and viral abundances, bacterial physiological status, and on bacterial successional pattern associated with the harmful benthic dinoflagellate Ostreopsis cf. ovata in batch cultures over the algal growth cycle. Bacterial community phylogenetic structure was assessed by 16S rRNA gene ION torrent sequencing. A comparison between bacterial community retrieved in cultures and that one co-occurring in situ during the development of the O. cf. ovata bloom from where the algal strain was isolated was also reported. Bacterial community growth was characterized by a biphasic pattern with the highest contributions (~60%) of highly active bacteria found at the two bacterial exponential growth steps. An alphaproteobacterial consortium composed by the Rhodobacteraceae Dinoroseobacter (22.2%-35.4%) and Roseovarius (5.7%-18.3%), together with Oceanicaulis (14.2-40.3%), was strongly associated with O. cf. ovata over the algal growth. The Rhodobacteraceae members encompassed phylotypes with an assessed mutualistic-pathogenic bimodal behavior. Fabibacter (0.7%-25.2%), Labrenzia (5.6%-24.3%), and Dietzia (0.04%-1.7%) were relevant at the stationary phase. Overall, the successional pattern and the metabolic and functional traits of the bacterial community retrieved in culture mirror those ones underpinning O. cf. ovata bloom dynamics in field. Viral abundances increased synoptically with bacterial abundances during the first bacterial exponential growth step while being stationary during the second step. Microbial trends also suggest that viruses induced some shifts in bacterial community composition.
Collapse
Affiliation(s)
- Flavio Guidi
- Department of Biological, Geological and Environmental Sciences (BiGeA)University of BolognaRavennaItaly
| | - Laura Pezzolesi
- Department of Biological, Geological and Environmental Sciences (BiGeA)University of BolognaRavennaItaly
| | - Silvana Vanucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm)University of MessinaMessinaItaly
| |
Collapse
|
7
|
Song L. A multiomics approach to study the microbiome response to phytoplankton blooms. Appl Microbiol Biotechnol 2017; 101:4863-4870. [PMID: 28526980 DOI: 10.1007/s00253-017-8330-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
Abstract
Phytoplankton blooms are predictable features of marine and freshwater habitats. Despite a good knowledge base of the environmental factors controlling blooms, complex interactions between the bacterial and archaeal communities and phytoplankton bloom taxa are only now emerging. Here, the current research on bacterial community's structural and functional response to phytoplankton blooms is reviewed and discussed and further research is proposed. More attention should be paid on structure and function of autotrophic bacteria and archaea during phytoplankton blooms. A multiomics integration approach is needed to investigate bacterial and archaeal communities' diversity, metabolic diversity, and biogeochemical functions of microbial interactions during phytoplankton blooms.
Collapse
Affiliation(s)
- Liyan Song
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| |
Collapse
|
8
|
Alvarado R, Leiva S. Agar-degrading bacteria isolated from Antarctic macroalgae. Folia Microbiol (Praha) 2017; 62:409-416. [PMID: 28283945 DOI: 10.1007/s12223-017-0511-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
This study describes the taxonomic diversity of pigmented, agar-degrading bacteria isolated from the surface of macroalgae collected in King George Island, Antarctica. A total of 30 pigmented, agarolytic bacteria were isolated from the surface of the Antarctic macroalgae Adenocystis utricularis, Monostroma hariotii, Iridaea cordata, and Pantoneura plocamioides. Based on the 16S rRNA data, the agarolytic isolates were affiliated to the genera Algibacter, Arthrobacter, Brachybacterium, Cellulophaga, Citricoccus, Labedella, Microbacterium, Micrococcus, Salinibacterium, Sanguibacter, and Zobellia. Isolates phylogenetically related to Cellulophaga algicola showed the highest agarase activity in culture supernatants when tested at 4 and 37 °C. This is the first investigation of pigmented agar-degrading bacteria, members of microbial communities associated with Antarctic macroalgae, and the results suggest that they represent a potential source of cold-adapted agarases of possible biotechnological interest.
Collapse
Affiliation(s)
- Roxana Alvarado
- Instituto de Bioquímica & Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Casilla, 567, Valdivia, Chile
| | - Sergio Leiva
- Instituto de Bioquímica & Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Casilla, 567, Valdivia, Chile.
| |
Collapse
|
9
|
Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME JOURNAL 2017; 11:999-1010. [PMID: 28045454 DOI: 10.1038/ismej.2016.166] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Depending on their relationship with the pelagic particulate matter, planktonic prokaryotes have traditionally been classified into two types of communities: free-living (FL) or attached (ATT) to particles, and are generally separated using only one pore-size filter in a differential filtration. Nonetheless, particulate matter in the oceans appears in a continuum of sizes. Here we separated this continuum into six discrete size-fractions, from 0.2 to 200 μm, and described the prokaryotes associated to each of them. Each size-fraction presented different bacterial communities, with a range of 23-42% of unique (OTUs) in each size-fraction, supporting the idea that they contained distinct types of particles. An increase in richness was observed from the smallest to the largest size-fractions, suggesting that increasingly larger particles contributed new niches. Our results show that a multiple size-fractionation provides a more exhaustive description of the bacterial diversity and community structure than the use of only one filter. In addition, and based on our results, we propose an alternative to the dichotomy of FL or ATT lifestyles, in which we differentiate the taxonomic groups with preference for the smaller fractions, those that do not show preferences for small or large fractions, and those that preferentially appear in larger fractions.
Collapse
|
10
|
Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. J Microbiol 2015. [PMID: 26224453 DOI: 10.1007/s12275-015-5303-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to isolate and identify bacteria demonstrating an algicidal effect against Alexandrium catenella and to determine the activity and range of any algicide discovered. The morphological and biochemical attributes of an algicidal bacterium, isolate YS-3, and analysis of its 16S rRNA gene sequence revealed it to be a member of the genus Brachybacterium. This organism, designated Brachybacterium sp. YS-3, showed the greatest effect against A. catenella cells of all bacteria isolated, and is assumed to produce secondary metabolites. When 10% solutions of culture filtrates from this strain were applied to A. catenella cultures, over 90% of cells were killed within 9 h. Bioassay-guided isolation of the algicide involved led to the purification and identification of an active compound. Based on physicochemical and spectroscopic data, including nuclear magnetic resonance and mass analyses, this compound was identified as 1-acetyl-β-carboline. This algicide showed significant activity against A. catenella and a wide range of harmful algal bloom (HAB)-forming species. Taken together, our results suggest that Brachybacterium sp. YS-3 and its algicide represent promising candidates for use in HAB control.
Collapse
|
11
|
Barthès A, Ten-Hage L, Lamy A, Rols JL, Leflaive J. Resilience of aggregated microbial communities subjected to drought--small-scale studies. MICROBIAL ECOLOGY 2015; 70:9-20. [PMID: 25403110 DOI: 10.1007/s00248-014-0532-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
The response of microbial communities to disturbance is a major concern for microbial ecologists since potential modifications in their composition and functioning may affect ecosystems to a larger extent. Microbial ecosystems may be resistant (not affected) or may present engineering (return to initial state) or ecological resilience. In the latter case, when the disturbance is released, the ecosystem evolves towards a new equilibrium state. The aim of this study was to determine if variations in the magnitude of a disturbance could induce either engineering or ecological resilience. We used phototrophic biofilms grown in mesocosms as a model of microbial ecosystem and increasing drought duration (1-8 weeks) as a range of disturbances. Biofilm composition (algal and prokaryotic), photosynthetic activity (PhytoPAM), and potential functional diversity (Biolog) were determined at the end of dry phase and after a 2-week rewetting phase in individual aquaria. We only observed an ecological resilience of the biofilm, with a resistance of phototrophic component for the weakest disturbance. After rewetting, the biofilm could fulfill the same functions, but its species composition was highly modified. We observed a shift from cyanobacteria dominance towards diatom dominance. The disturbance caused a transition towards a new steady state of the biofilm. We also observed a positive effect of stress duration on biofilm productivity after resilience.
Collapse
Affiliation(s)
- Amélie Barthès
- EcoLab (Laboratoire d'Ecologie Fonctionnelle et Environnement), INP, UPS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse, France
| | | | | | | | | |
Collapse
|
12
|
Wang H, Hill RT, Zheng T, Hu X, Wang B. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol 2014; 36:341-52. [PMID: 25264573 DOI: 10.3109/07388551.2014.961402] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.
Collapse
Affiliation(s)
- Hui Wang
- a Key Laboratory of Coastal Biology and Bioresource Utilization , Yantai Institute of Costal Zone Research, Chinese Academy of Sciences , Yantai , China .,b Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science , Baltimore , MD , USA and.,c State Key Laboratory of Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coast and Wetland Ecosystem , School of Life Sciences, Xiamen University , Xiamen , China
| | - Russell T Hill
- b Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science , Baltimore , MD , USA and
| | - Tianling Zheng
- c State Key Laboratory of Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coast and Wetland Ecosystem , School of Life Sciences, Xiamen University , Xiamen , China
| | - Xiaoke Hu
- a Key Laboratory of Coastal Biology and Bioresource Utilization , Yantai Institute of Costal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Bin Wang
- a Key Laboratory of Coastal Biology and Bioresource Utilization , Yantai Institute of Costal Zone Research, Chinese Academy of Sciences , Yantai , China
| |
Collapse
|
13
|
Takabe Y, Kameda I, Suzuki R, Nishimura F, Itoh S. Changes of microbial substrate metabolic patterns through a wastewater reuse process, including WWTP and SAT concerning depth. WATER RESEARCH 2014; 60:105-117. [PMID: 24835957 DOI: 10.1016/j.watres.2014.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
In this study, changes of microbial substrate metabolic patterns by BIOLOG assay were discussed through a sequential wastewater reuse process, which includes activated sludge and treated effluent in wastewater treatment plant and soil aquifer treatment (SAT), especially focussing on the surface sand layer in conjunction with the vadose zone, concerning sand depth. A SAT pilot-scale reactor, in which the height of packed sand was 237 cm (vadose zone: 17 cm and saturated zone 220 cm), was operated and fed continuously by discharged anaerobic-anoxic-oxic (A2O) treated water. Continuous water quality measurements over a period of 10 months indicated that the treatment performance of the reactor, such as 83.2% dissolved organic carbon removal, appeared to be stable. Core sampling was conducted for the surface sand to a 30 cm depth, and the sample was divided into six 5 cm sections. Microbial activities, as evaluated by fluorescein diacetate, sharply decreased with increasing distance from the surface of the 30 cm core sample, which included significant decreases only 5 cm from the top surface. A similar microbial metabolic pattern containing a high degree of carbohydrates was obtained among the activated sludge, A2O treated water (influent to the SAT reactor) and the 0-5 cm layer of sand. Meanwhile, the 10-30 cm sand core layers showed dramatically different metabolic patterns containing a high degree of carboxylic acid and esters, and it is possible that the metabolic pattern exhibited by the 5-10 cm layer is at a midpoint of the changing pattern. This suggests that the removal of different organic compounds by biodegradation would be expected to occur in the activated sludge and in the SAT sand layers immediately below 5 cm from the top surface. It is possible that changes in the composition of the organic matter and/or transit of the limiting factor for microbial activities from carbon to phosphorus might have contributed to the observed dramatic changes in SAT metabolic patterns.
Collapse
Affiliation(s)
- Yugo Takabe
- Department of Environmental Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 6158540, Japan; Recycling Research Team, Materials and Resources Research Group, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan.
| | - Ippei Kameda
- Department of Environmental Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 6158540, Japan; Tokyo Engineering Consultants Co., Ltd., 3-7-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Ryosuke Suzuki
- Department of Environmental Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 6158540, Japan
| | - Fumitake Nishimura
- Department of Environmental Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 6158540, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 6158540, Japan
| |
Collapse
|
14
|
A novel algicide: evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense. PLoS One 2014; 9:e91201. [PMID: 24626054 PMCID: PMC3953379 DOI: 10.1371/journal.pone.0091201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Alexandrium tamarense is a notorious bloom-forming dinoflagellate, which adversely impacts water quality and human health. In this study we present a new algicide against A. tamarense, which was isolated from the marine bacterium Vibrio sp. BS02. MALDI-TOF-MS, NMR and algicidal activity analysis reveal that this compound corresponds to palmitoleic acid, which shows algicidal activity against A. tamarense with an EC50 of 40 μg/mL. The effects of palmitoleic acid on the growth of other algal species were also studied. The results indicate that palmitoleic acid has potential for selective control of the Harmful algal blooms (HABs). Over extended periods of contact, transmission electron microscopy shows severe ultrastructural damage to the algae at 40 μg/mL concentrations of palmitoleic acid. All of these results indicate potential for controlling HABs by using the special algicidal bacterium and its active agent.
Collapse
|
15
|
Liu M, Dong Y, Zhang W, Sun J, Zhou F, Ren J, Bao S, Xiao T. Diversity of bacterial community during spring phytoplankton blooms in the central Yellow Sea. Can J Microbiol 2013; 59:324-32. [DOI: 10.1139/cjm-2012-0735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial community diversity and the effects of environmental factors on bacterial community composition during 2 spring phytoplankton blooms in the central Yellow Sea were investigated by using denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analysis. The Shannon–Weaver indices (H′) of bacterial diversity from samples at station B23 were higher than those at station B20. Cluster analysis based on DGGE band patterns indicated temporal variations of bacterial community at the 2 bloom stations but a vertical distribution pattern only at station B20. The predominant bacterial groups were affiliated with Alphaproteobacteria, Gammaproteobacteria, Cytophaga–Flavobacterium–Bacteroides, Deltaproteobacteria, and Actinobacteria. The effects of environmental factors on bacterial community were analyzed by canonical correspondence analysis. Bacterial community structures were significantly affected by silicate at station B20 and by Paralia sulcata and Heterocapsa spp. at station B23. From the results, phytoplankton species composition had a significant effect on bacterial community structure during phytoplankton blooms in the central Yellow Sea.
Collapse
Affiliation(s)
- Min Liu
- Tropical Marine Biological Resources Research Center, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, People’s Republic of China
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao 266071, People’s Republic of China
| | - Yi Dong
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao 266071, People’s Republic of China
| | - Wuchang Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao 266071, People’s Republic of China
| | - Jun Sun
- College of Marine Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People’s Republic of China
| | - Feng Zhou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, People’s Republic of China
| | - Jingling Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao 266100, People’s Republic of China
| | - Shixiang Bao
- Tropical Marine Biological Resources Research Center, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, People’s Republic of China
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao 266071, People’s Republic of China
| |
Collapse
|
16
|
Karydis M, Kitsiou D. Eutrophication and environmental policy in the Mediterranean Sea: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:4931-4984. [PMID: 21956336 DOI: 10.1007/s10661-011-2313-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
The Mediterranean Sea is a semienclosed basin connected with the open sea mainly through the Strait of Gibraltar. Due to the circulation pattern and the long residence time ranging between 80 and 100 years, the Mediterranean Sea is a sensitive environment to eutrophication pressures. The main body of water of the Mediterranean is characterized by very low nutrient concentrations, and therefore, the Mediterranean is classified among the most oligotrophic (very poor waters in nutrients) seas of the world's oceans. However, some coastal areas, mainly in the northern part of the basin, receive excessive loads of nutrients from sewage effluents, river fluxes, aquaculture farms, fertilizers, and industrial facilities, showing intense eutrophic phenomena with many adverse effects for the marine ecosystem and humans. Various national and international authorities, in addition to monitoring, have taken legal and administrative measures to mitigate eutrophication trends in the area. The Mediterranean environment is a good paradigm of integration of extensive legal framework, scientific knowledge, and administrative practices. The Barcelona Convention, the Mediterranean Action Plan, and European Union Directives on water quality and coastal management, together with scientific information derived from international research programs in the Mediterranean, provide a sound background for practical actions in eutrophication problems. In the present work, the problem of coastal eutrophication in the Mediterranean is reviewed in connection with public policies of the Mediterranean States based on national and international legislation and scientific knowledge on Mediterranean oceanography-ecology and actions coordinated by international bodies. These common actions and practices on coastal management are also discussed in relation to the need for sustainable development and protection of the coastal zone in the Mediterranean Sea.
Collapse
Affiliation(s)
- Michael Karydis
- Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos Island 81100, Greece.
| | | |
Collapse
|
17
|
Mouchet MA, Bouvier C, Bouvier T, Troussellier M, Escalas A, Mouillot D. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints. FEMS Microbiol Ecol 2011; 79:568-80. [PMID: 22092438 DOI: 10.1111/j.1574-6941.2011.01241.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/26/2011] [Accepted: 10/26/2011] [Indexed: 11/26/2022] Open
Abstract
Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment.
Collapse
Affiliation(s)
- Maud A Mouchet
- UMR 5119 CNRS-UM2-UM1-IRD-Ifremer Ecologie des systèmes marins côtiers, Université Montpellier 2, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
18
|
Jones KL, Mikulski CM, Barnhorst A, Doucette GJ. Comparative analysis of bacterioplankton assemblages from Karenia brevis bloom and nonbloom water on the west Florida shelf (Gulf of Mexico, USA) using 16S rRNA gene clone libraries. FEMS Microbiol Ecol 2010; 73:468-85. [PMID: 20618855 DOI: 10.1111/j.1574-6941.2010.00914.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The brevetoxin-producing dinoflagellate, Karenia brevis, forms nearly annual blooms off the Florida west coast, severely impacting the region's ecology and economy. Bacteria are often cited as either promoting or interfering with the development of algal blooms, and thus a detailed study of the bacterioplankton assemblages associated with K. brevis was undertaken. We developed sixteen 16S rRNA gene clone libraries from K. brevis bloom and adjacent nonbloom water to determine the bacterial groups present and assess the influence of K. brevis cell number and/or depth on bacterioplankton community composition. Most notably, bacterial groups such as Rhodobacterales (Alphaproteobacteria) and Cytophagales/Sphingobacteriales (Bacteroidetes), reported previously to be associated with other harmful algal species, were often abundant in the presence of K. brevis. Cyanobacteria frequently dominated surface samples containing no detectable K. brevis, consistent with earlier work suggesting that these photosynthetic organisms may be important in promoting the proliferation of these blooms by conditioning the water. Moreover, differences in the abundance/diversity of traditionally more rare and often undocumented phylogenetic groups (e.g. Betaproteobacteria, Deltaproteobacteria, Chloroflexus, Firmicutes) were apparent in bloom vs. nonbloom water. This is the first study to document the association of these phylogenetic groups with natural K. brevis populations and suggests a potential role for these microorganisms in K. brevis bloom dynamics.
Collapse
Affiliation(s)
- Kelly L Jones
- Marine Biotoxins Program, NOAA/National Ocean Service, Charleston, SC 29412, USA
| | | | | | | |
Collapse
|
19
|
|
20
|
Leflaive J, Danger M, Lacroix G, Lyautey E, Oumarou C, Ten-Hage L. Nutrient effects on the genetic and functional diversity of aquatic bacterial communities. FEMS Microbiol Ecol 2008; 66:379-90. [PMID: 18811649 DOI: 10.1111/j.1574-6941.2008.00593.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on the effects of biodiversity on ecosystem functioning have generally revealed a positive asymptotic relationship between biodiversity and single functions, suggesting species redundancy with respect to these functions. However, most research was performed on specific processes and did not consider ecosystem 'multifunctionality'. There is also little information on the relationship between genetic and functional diversity. To analyze this relationship, we performed a microcosm experiment on a complex lake assemblage of decomposers, in the presence of the green alga Scenedesmus obliquus, which acted as carbon source for decomposers. By manipulating nutrient enrichment and the N : P input ratio, we observed that the structures of particle-associated and free bacterial assemblages were highly predictable in response to stoichiometric constraints. For a given treatment, the taxonomic compositions of free and particle-associated bacterial communities appeared close to each other only when phosphorus was not depleted. A coinertia analysis revealed a clear coupling between the genetic diversity of the microbial community, assessed using PCR-denatured gradient gel electrophoresis, and its potential functional diversity, studied with Biolog Ecoplates. This suggests that an ecologically relevant fraction of bacterial communities is characterized by lower level of redundancy than frequently thought, highlighting the necessity of exploring further the role of biodiversity in multifunctionality within ecosystems.
Collapse
Affiliation(s)
- Joséphine Leflaive
- Ecolab, Laboratoire d'Ecologie Fonctionnelle, UMR 5245 (CNRS, UPS, INPT), Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | |
Collapse
|
21
|
Mayali X, Franks PJS, Azam F. Cultivation and ecosystem role of a marine roseobacter clade-affiliated cluster bacterium. Appl Environ Microbiol 2008; 74:2595-603. [PMID: 18326670 PMCID: PMC2394886 DOI: 10.1128/aem.02191-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 02/29/2008] [Indexed: 11/20/2022] Open
Abstract
Isolation and cultivation are a crucial step in elucidating the physiology, biogeochemistry, and ecosystem role of microorganisms. Many abundant marine bacteria, including the widespread Roseobacter clade-affiliated (RCA) cluster group, have not been cultured with traditional methods. Using novel techniques of cocultivation with algal cultures, we have accomplished successful isolation and propagation of a strain of the RCA cluster. Our experiments revealed that, in addition to growing on alga-excreted organic matter, additions of washed bacterial cells led to significant biomass decrease of dinoflagellate cultures as measured by in vivo fluorescence. Bacterial filtrate did not adversely affect the algal cultures, suggesting attachment-mediated activity. Using an RCA cluster-specific rRNA probe, we documented increasing attachment of these algicidal bacteria during a dinoflagellate bloom, with a maximum of 70% of the algal cells colonized just prior to bloom termination. Cross-correlation analyses between algal abundances and RCA bacterial colonization were statistically significant, in agreement with predator-prey models suggesting that RCA cluster bacteria caused algal bloom decline. Further investigation of molecular databases revealed that RCA cluster bacteria were numerically abundant during algal blooms sampled worldwide. Our findings suggest that the widespread RCA cluster bacteria may exert significant control over phytoplankton biomass and community structure in the oceans. We also suggest that coculture with phytoplankton may be a useful strategy to isolate and successfully grow previously uncultured but ecologically abundant marine heterotrophs.
Collapse
MESH Headings
- Animals
- Bacterial Adhesion
- Coculture Techniques
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dinoflagellida/microbiology
- Ecosystem
- Eukaryota/growth & development
- Eukaryota/metabolism
- Eutrophication
- Genes, rRNA
- Molecular Sequence Data
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Roseobacter/genetics
- Roseobacter/growth & development
- Roseobacter/isolation & purification
- Roseobacter/physiology
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Xavier Mayali
- Marine Biology Research Division, UCSD Mail Code 0202, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
22
|
Sala MM, Terrado R, Lovejoy C, Unrein F, Pedrós-Alió C. Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean. Environ Microbiol 2008; 10:942-9. [DOI: 10.1111/j.1462-2920.2007.01513.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Sekar R, Mills DK, Remily ER, Voss JD, Richardson LL. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl Environ Microbiol 2006; 72:5963-73. [PMID: 16957217 PMCID: PMC1563687 DOI: 10.1128/aem.00843-06] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by gamma-proteobacteria (53 to 64%), followed by beta-proteobacteria (18 to 21%) and alpha-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by alpha-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of delta-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals.
Collapse
Affiliation(s)
- Raju Sekar
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | | | | | | | | |
Collapse
|