1
|
Vijayrajratnam S, Milek S, Maggi S, Ashen K, Ferrell M, Hasanovic A, Holgerson A, Kannaiah S, Singh M, Ghosal D, Jensen GJ, Vogel JP. Membrane association and polar localization of the Legionella pneumophila T4SS DotO ATPase mediated by two nonredundant receptors. Proc Natl Acad Sci U S A 2024; 121:e2401897121. [PMID: 39352935 PMCID: PMC11474061 DOI: 10.1073/pnas.2401897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
The Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS) is a large, multisubunit complex that exports a vast array of substrates into eukaryotic host cells. DotO, a distant homolog of the T4ASS ATPase VirB4, associates with the bacterial inner membrane despite lacking hydrophobic transmembrane domains. Employing a genetic approach, we found DotO's membrane association is mediated by three inner-membrane Dot/Icm components, IcmT, and a combined DotJ-DotI complex (referred to as DotJI). Although deletion of icmT or dotJI individually does not affect DotO's membrane association, the simultaneous inactivation of all three genes results in increased amounts of soluble DotO. Nevertheless, deleting each receptor separately profoundly affects positioning of DotO, disrupting its link with the Dot/Icm complex at the bacterial poles, rendering the receptors nonredundant. Furthermore, a collection of dotO point mutants that we isolated established that DotO's N-terminal domain interacts with the membrane receptors and is involved in dimerization, whereas DotO's C-terminal ATPase domain primarily contributes to the protein's formation of oligomers. Modeling data revealed the complex interaction between DotO and its receptors is responsible for formation of DotO's unique "hexamer of dimers" configuration, which is a defining characteristic of VirB4 family members.
Collapse
Affiliation(s)
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich8008, Switzerland
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT84602
| | - Kaleigh Ashen
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | - Micah Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI48824
| | - Ahmet Hasanovic
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | - Agnieszka Holgerson
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | | | - Manpreet Singh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT84602
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| |
Collapse
|
2
|
Murik O, Zeevi DA, Mann T, Kashat L, Assous MV, Megged O, Yagupsky P. Whole-Genome Sequencing Reveals Differences among Kingella kingae Strains from Carriers and Patients with Invasive Infections. Microbiol Spectr 2023; 11:e0389522. [PMID: 37195188 PMCID: PMC10269580 DOI: 10.1128/spectrum.03895-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
As a result of the increasing use of sensitive nucleic acid amplification tests, Kingella kingae is being recognized as a common pathogen of early childhood, causing medical conditions ranging from asymptomatic oropharyngeal colonization to bacteremia, osteoarthritis, and life-threatening endocarditis. However, the genomic determinants associated with the different clinical outcomes are unknown. Employing whole-genome sequencing, we studied 125 international K. kingae isolates derived from 23 healthy carriers and 102 patients with invasive infections, including bacteremia (n = 23), osteoarthritis (n = 61), and endocarditis (n = 18). We compared their genomic structures and contents to identify genomic determinants associated with the different clinical conditions. The mean genome size of the strains was 2,024,228 bp, and the pangenome comprised 4,026 predicted genes, of which 1,460 (36.3%) were core genes shared by >99% of the isolates. No single gene discriminated between carried and invasive strains; however, 43 genes were significantly more frequent in invasive isolates, compared to asymptomatically carried organisms, and a few showed a significant differential distribution among isolates from skeletal system infections, bacteremia, and endocarditis. The gene encoding the iron-regulated protein FrpC was uniformly absent in all 18 endocarditis-associated strains but was present in one-third of other invasive isolates. Similar to other members of the Neisseriaceae family, the K. kingae differences in invasiveness and tropism for specific body tissues appear to depend on combinations of multiple virulence-associated determinants that are widely distributed throughout the genome. The potential role of the absence of the FrpC protein in the pathogenesis of endocardial invasion deserves further investigation. IMPORTANCE The wide range of clinical severities exhibited by invasive Kingella kingae infections strongly suggests that isolates differ in their genomic contents, and strains associated with life-threatening endocarditis may harbor distinct genomic determinants that result in cardiac tropism and severe tissue damage. The results of the present study show that no single gene discriminated between asymptomatically carried isolates and invasive strains. However, 43 putative genes were significantly more frequent among invasive isolates than among pharyngeal colonizers. In addition, several genes displayed a significant differential distribution among isolates from bacteremia, skeletal system infections, and endocarditis, suggesting that the virulence and tissue tropism of K. kingae are multifactorial and polygenic, depending on changes in the allele content and genomic organization. Further analysis of these putative genes may identify genomic determinants of the invasiveness of K. kingae and its affinity for specific body tissues and potential targets for a future protective vaccine.
Collapse
Affiliation(s)
- Omer Murik
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - David A. Zeevi
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tzvia Mann
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Livnat Kashat
- Microbiology Laboratory, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Marc V. Assous
- Microbiology Laboratory, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orli Megged
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Pediatric Department and Infectious Diseases Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Pablo Yagupsky
- Clinical Microbiology Laboratory, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Comparative Genomics of Legionella pneumophila Isolates from the West Bank and Germany Support Molecular Epidemiology of Legionnaires' Disease. Microorganisms 2023; 11:microorganisms11020449. [PMID: 36838414 PMCID: PMC9965269 DOI: 10.3390/microorganisms11020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium and clinical pathogen that causes many life-threating outbreaks of an atypical pneumonia called Legionnaires' disease (LD). Studies of this pathogen have focused mainly on Europe and the United States. A shortage in L. pneumophila data is clearly observed for developing countries. To reduce this knowledge gap, L. pneumophila isolates were studied in two widely different geographical areas, i.e., the West Bank and Germany. For this study, we sequenced and compared the whole genome of 38 clinical and environmental isolates of L. pneumophila covering different MLVA-8(12) genotypes in the two areas. Sequencing was conducted using the Illumina HiSeq 2500 platform. In addition, two isolates (A194 and H3) were sequenced using a Pacific Biosciences (PacBio) RSII platform to generate complete reference genomes from each of the geographical areas. Genome sequences from 55 L. pneumophila strains, including 17 reference strains, were aligned with the genome sequence of the closest strain (L. pneumophila strain Alcoy). A whole genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using the ParSNP software v 1.0. The reference genomes obtained for isolates A194 and H3 consisted of circular chromosomes of 3,467,904 bp and 3,691,263 bp, respectively. An average of 36,418 SNPs (min. 8569, max. 70,708 SNPs) against our reference strain L. pneumophila str. Alcoy, and 2367 core-genes were identified among the fifty-five strains. An analysis of the genomic population structure by SNP comparison divided the fifty-five L. pneumophila strains into six branches. Individual isolates in sub-lineages in these branches differed by less than 120 SNPs if they had the same MLVA genotype and were isolated from the same location. A bioinformatics analysis identified the genomic islands (GIs) for horizontal gene transfer and mobile genetic elements, demonstrating that L. pneumophila showed high genome plasticity. Four L. pneumophila isolates (H3, A29, A129 and L10-091) contained well-defined plasmids. On average, only about half of the plasmid genes could be matched to proteins in databases. In silico phage findings suggested that 43 strains contained at least one phage. However, none of them were found to be complete. BLASTp analysis of proteins from the type IV secretion Dot/Icm system showed those proteins highly conserved, with less than 25% structural differences in the new L. pneumophila isolates. Overall, we demonstrated that whole genome sequencing provides a molecular surveillance tool for L. pneumophila at the highest conceivable discriminatory level, i.e., two to eight SNPs were observed for isolates from the same location but several years apart.
Collapse
|
4
|
Zayed AR, Bunk B, Jaber L, Abu-Teer H, Ali M, Steinert M, Höfle MG, Brettar I, Bitar DM. Whole-genome sequencing of the clinical isolate of Legionella pneumophila ALAW1 from the West Bank allows high-resolution typing and determination of pathogenicity mechanisms. Eur Clin Respir J 2023; 10:2168346. [PMID: 36698751 PMCID: PMC9869991 DOI: 10.1080/20018525.2023.2168346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Legionella pneumophila is water-based bacterium causing Legionnaires' disease (LD). We describe the first documented case of nosocomial LD caused by L. pneumophila sequence type (ST) 461 and serogroup 6. The etiology of LD was confirmed by culturing the bronchoalveolar lavage sample retrieving L. pneumophila strain ALAW1. A 7-days treatment of the LD patient with Azithromycin and Levofloxacin allowed complete recovery. Methods In details, we sequenced the whole genome of the L. pneumophila ALAW1 using Illumina HiSeq platform. The sequence of ALAW1 was aligned with the genome sequence from the closely related reference strain Alcoy 2300/99 and a whole-genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using Parsnp software. Also, the TYGS web-server was used in order to compare the genome with type strain. Results An analysis of the population structure by SNP and TYGS comparison clustered ALAW1 with the reference genome Alcoy 2300/99. Blastp analysis of the type IV secretion Dot/Icm system genes showed that these genes were highly conserved with (≤25%) structural differences at the protein level. Conclusions Overall, this study provides insights into detailed genome structure and demonstrated the value of whole-genome sequencing as the ultimate typing tool for Legionella.
Collapse
Affiliation(s)
- Ashraf R. Zayed
- CONTACT Ashraf R. Zayed Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P. O. Box. 7, Palestine;Microbiology Research laboratory Faculty of Medicine Al-Quds University Abu-Dies, East Jerusalem 9993100, Palestine Zayed
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cytotoxicity, Intracellular Replication, and Contact-Dependent Pore Formation of Genotyped Environmental Legionella pneumophila Isolates from Hospital Water Systems in the West Bank, Palestine. Pathogens 2021; 10:pathogens10040417. [PMID: 33915921 PMCID: PMC8066006 DOI: 10.3390/pathogens10040417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires’ disease. Due to the hot climate and intermittent water supply, the West Bank, Palestine, can be considered a high-risk area for this often fatal atypical pneumonia. L. pneumophila occurs in biofilms of natural and man-made freshwater environments, where it infects and replicates intracellularly within protozoa. To correlate the genetic diversity of the bacteria in the environment with their virulence properties for protozoan and mammalian host cells, 60 genotyped isolates from hospital water systems in the West Bank were analyzed. The L. pneumophila isolates were previously genotyped by high resolution Multi Locus Variable Number of Tandem Repeat Analysis (MLVA-8(12)) and sorted according to their relationship in clonal complexes (VACC). Strains of relevant genotypes and VACCs were compared according to their capacity to infect Acanthamoeba castellanii and THP-1 macrophages, and to mediate pore-forming cytotoxicity in sheep red blood cells (sRBCs). Based on a previous detailed analysis of the biogeographic distribution and abundance of the MLVA-8(12)-genotypes, the focus of the study was on the most abundant L. pneumophila- genotypes Gt4(17), Gt6 (18) and Gt10(93) and the four relevant clonal complexes [VACC1, VACC2, VACC5 and VACC11]. The highly abundant genotypes Gt4(17) and Gt6(18) are affiliated with VACC1 and sequence type (ST)1 (comprising L. pneumophila str. Paris), and displayed seroroup (Sg)1. Isolates of these two genotypes exhibited significantly higher virulence potentials compared to other genotypes and clonal complexes in the West Bank. Endemic for the West Bank was the clonal complex VACC11 (affiliated with ST461) represented by three relevant genotypes that all displayed Sg6. These genotypes unique for the West Bank showed a lower infectivity and cytotoxicity compared to all other clonal complexes and their affiliated genotypes. Interestingly, the L. pneumophila serotypes ST1 and ST461 were previously identified by in situ-sequence based typing (SBT) as main causative agents of Legionnaires’ disease (LD) in the West Bank at a comparable level. Overall, this study demonstrates the site-specific regional diversity of L. pneumophila genotypes in the West Bank and suggests that a combination of MLVA, cellular infection assays and hierarchical agglomerative cluster analysis allows an improved genotype-based risk assessment.
Collapse
|
6
|
Di Venanzio G, Lazzaro M, Morales ES, Krapf D, García Véscovi E. A pore-forming toxin enables Serratia a nonlytic egress from host cells. Cell Microbiol 2016; 19. [PMID: 27532510 DOI: 10.1111/cmi.12656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023]
Abstract
Several pathogens co-opt host intracellular compartments to survive and replicate, and they thereafter disperse progeny to prosper in a new niche. Little is known about strategies displayed by Serratia marcescens to defeat immune responses and disseminate afterwards. Upon invasion of nonphagocytic cells, Serratia multiplies within autophagosome-like vacuoles. These Serratia-containing vacuoles (SeCV) circumvent progression into acidic/degradative compartments, avoiding elimination. In this work, we show that ShlA pore-forming toxin (PFT) commands Serratia escape from invaded cells. While ShlA-dependent, Ca2+ local increase was shown in SeCVs tight proximity, intracellular Ca2+ sequestration prevented Serratia exit. Accordingly, a Ca2+ surge rescued a ShlA-deficient strain exit capacity, demonstrating that Ca2+ mobilization is essential for egress. As opposed to wild-type-SeCV, the mutant strain-vacuole was wrapped by actin filaments, showing that ShlA expression rearranges host actin. Moreover, alteration of actin polymerization hindered wild-type Serratia escape, while increased intracellular Ca2+ reorganized the mutant strain-SeCV actin distribution, restoring wild-type-SeCV phenotype. Our results demonstrate that, by ShlA expression, Serratia triggers a Ca2+ signal that reshapes cytoskeleton dynamics and ends up pushing the SeCV load out of the cell, in an exocytic-like process. These results disclose that PFTs can be engaged in allowing bacteria to exit without compromising host cell integrity.
Collapse
Affiliation(s)
| | | | - Enrique S Morales
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
7
|
Zhao BB, Li XH, Zeng YL, Lu YJ. ClpP-deletion impairs the virulence of Legionella pneumophila and the optimal translocation of effector proteins. BMC Microbiol 2016; 16:174. [PMID: 27484084 PMCID: PMC4969725 DOI: 10.1186/s12866-016-0790-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
Background The opportunistic bacterial pathogen Legionella pneumophila uses substrate effectors of Dot/Icm type IVB secretion system (T4BSS) to accomplish survival and replication in amoebae cells and mammalian alveolar macrophages. During the conversion between its highly resistant, infectious dormant form and vigorously growing, uninfectious replicative form, L. pneumophila utilizes a complicated regulatory network in which proteolysis may play a significant role. As a highly conserved core protease, ClpP is involved in various cellular processes as well as virulence in bacteria, and has been proved to be required for the expression of transmission traits and cell division of L. pneumophila. Results The clpP-deficient L. pneumophila strain failed to replicate and was digested in the first 3 h post-infection in mammalian cells J774A.1. Further investigation demonstrates that the clpP deficient mutant strain was unable to escape the endosome-lysosomal pathway in host cells. We also found that the clpP deficient mutant strain still expresses T4BSS components, induces contact-dependent cytotoxicity and translocate effector proteins RalF and LegK2, indicating that its T4BSS was overall functional. Interestingly, we further found that the translocation of several effector proteins is significantly reduced without ClpP. Conclusions The data indicate that ClpP plays an important role in regulating the virulence and effector translocation of Legionella pneumophila. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0790-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bei-Bei Zhao
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China
| | - Xiang-Hui Li
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.,Present address: Jiangsu Information Institute of Science and Technology, Nanjing, 210042, China
| | - Yong-Lun Zeng
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.,Present address: School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yong-Jun Lu
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.
| |
Collapse
|
8
|
Fredlund J, Enninga J. Cytoplasmic access by intracellular bacterial pathogens. Trends Microbiol 2014; 22:128-37. [PMID: 24530174 DOI: 10.1016/j.tim.2014.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 02/08/2023]
Abstract
Entry into host cells is a strategy widely used by bacterial pathogens, after which they either remain within membrane-bound compartments or rupture the endocytic vacuole to reach the cytoplasm. During recent years, cytoplasmic access has been documented for an increasing number of pathogens. Here we review how classical cytoplasmic bacterial pathogens rupture their endocytic vacuoles as well as the mechanisms used to accomplish this task by bacterial species for which host cytoplasmic localization has only recently been identified. We also discuss the consequences for pathogenesis resulting from this change in intracellular localization, with a particular focus on the role of the host. What emerges is that cytoplasmic access plays an important role in the pathophysiology of an increasing number of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Jennifer Fredlund
- Unité 'Dynamique des interactions hôte-pathogène', Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France
| | - Jost Enninga
- Unité 'Dynamique des interactions hôte-pathogène', Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France.
| |
Collapse
|
9
|
Molmeret M, Jones S, Santic M, Habyarimana F, Esteban MTG, Kwaik YA. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ Microbiol 2009; 12:704-15. [PMID: 19958381 DOI: 10.1111/j.1462-2920.2009.02114.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two-component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two-component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, Room MS-410, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
10
|
Isberg RR, O'Connor TJ, Heidtman M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 2009; 7:13-24. [PMID: 19011659 PMCID: PMC2631402 DOI: 10.1038/nrmicro1967] [Citation(s) in RCA: 538] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pathogenesis of Legionella pneumophila is derived from its growth within lung macrophages after aerosols are inhaled from contaminated water sources. Interest in this bacterium stems from its ability to manipulate host cell vesicular-trafficking pathways and establish a membrane-bound replication vacuole, making it a model for intravacuolar pathogens. Establishment of the replication compartment requires a specialized translocation system that transports a large cadre of protein substrates across the vacuolar membrane. These substrates regulate vesicle traffic and survival pathways in the host cell. This Review focuses on the strategies that L. pneumophila uses to establish intracellular growth and evaluates why this microorganism has accumulated an unprecedented number of translocated substrates that are targeted at host cells.
Collapse
Affiliation(s)
- Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
11
|
Vincent CD, Friedman JR, Jeong KC, Buford EC, Miller JL, Vogel JP. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 2006; 62:1278-91. [PMID: 17040490 DOI: 10.1111/j.1365-2958.2006.05446.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Type IV secretion systems (T4SS) are utilized by a wide range of Gram negative bacteria to deliver protein and DNA substrates to recipient cells. The best characterized T4SS are the type IVA systems, which exhibit extensive similarity to the Agrobacterium VirB T4SS. In contrast, type IVB secretion systems share almost no sequence homology to the type IVA systems, are composed of approximately twice as many proteins, and remain largely uncharacterized. Type IVB systems include the Dot/Icm systems found in the pathogens Legionella and Coxiella and the conjugative apparatus of IncI plasmids. Here we report the first extensive characterization of a type IVB system, the Legionella Dot/Icm secretion apparatus. Based on biochemical and genetic analysis, we discerned the existence of a critical five-protein subassembly that spans both bacterial membranes and comprises the core of the secretion complex. This transmembrane connection is mediated by protein dimer pairs consisting of two inner membrane proteins, DotF and DotG, which are able to independently associate with DotH/DotC/DotD in the outer membrane. The Legionella core subcomplex appears to be functionally analogous to the Agrobacterium VirB7-10 subcomplex, suggesting a remarkable conservation of the core subassembly in these evolutionarily distant type IV secretion machines.
Collapse
Affiliation(s)
- Carr D Vincent
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
12
|
Santic M, Molmeret M, Abu Kwaik Y. Maturation of the Legionella pneumophila-containing phagosome into a phagolysosome within gamma interferon-activated macrophages. Infect Immun 2005; 73:3166-71. [PMID: 15845527 PMCID: PMC1087382 DOI: 10.1128/iai.73.5.3166-3171.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen that modulates the biogenesis of its phagosome to evade endocytic vesicle traffic. The Legionella-containing phagosome (LCP) does not acquire any endocytic markers and is remodeled by the endoplasmic reticulum during early stages. Here we show that intracellular replication of L. pneumophila is inhibited in gamma interferon (IFN-gamma)-activated, bone marrow-derived mouse macrophages and IFN-gamma-activated, human monocyte-derived macrophages in a dose-dependent manner. This inhibition of intracellular replication is associated with the maturation of the LCP into a phagolysosome, as documented by the acquisition of LAMP-2, cathepsin D, and lysosomal tracer Texas Red ovalbumin, and with the failure of the LCP to be remodeled by the rough endoplasmic reticulum. We conclude that IFN-gamma-activated macrophages override the ability of L. pneumophila to evade endocytic fusion and that the LCP is processed through the "default" endosomal-lysosomal degradation pathway.
Collapse
Affiliation(s)
- Marina Santic
- Department of Microbiology and Immunology, Room 316, University of Louisville College of Medicine, 319 Abraham Flexner Way 55A, Louisville, KY 40202, USA
| | | | | |
Collapse
|