1
|
Wang W, Xu J, Wang N. Functional Characterization of Transcriptional Regulator Rem in ' Candidatus Liberibacter asiaticus'. PHYTOPATHOLOGY 2025; 115:454-468. [PMID: 39891894 DOI: 10.1094/phyto-10-24-0339-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Citrus Huanglongbing, caused by 'Candidatus Liberibacter asiaticus' (CLas), is the most devastating citrus disease worldwide. The CLas genome is much smaller than those of its relatives, such as Sinorhizobium meliloti, due to its reductive evolution. Because CLas has not been cultured in artificial media, despite some progress in co-cultivating, and because genetic manipulation of CLas remains impossible, the understanding of CLas biology is very limited. Usually, 10% of total genes in bacteria are regulatory genes, but only 2% of CLas genes encode transcriptional factors. Here, 20 transcriptional regulators were predicted, including nine genes (lsrB, ldtR, rem, visR, visN, ctrA, mucR, pelD, and atoC) directly or indirectly involved in regulating motility, and five genes (rpoH, prbP, phrR, rirA, and lsrB) involved in oxidative stress response. We demonstrated that rem, lsrB, and visNR of CLas can complement the corresponding mutants of S. meliloti in their reduced motility. We further investigated traits controlled by Rem in S. meliloti and CLas using RNA sequencing analyses of rem mutant versus complementation strains with remSmc or remLas. Transcriptomic analysis showed that RemLas significantly regulates the expression of genes in S. meliloti, which was used to infer its regulation of CLas genes by identification of homologous genes. We found that Rem is involved in regulating motility, chemotaxis, transporters, and oxidative phosphorylation in S. meliloti and regulating flagellar and transporter genes in CLas. Among the 39 putative RemLas-regulated genes in CLas, 16 contain the Rem-binding motif, including 10 genes involved in flagellar assembly. Taken together, this study offers valuable insights regarding CLas regulatory genes, with many of them involved in regulating motility and oxidative stress response. The regulation of flagellar genes by Rem in CLas unravels critical information regarding motility in CLas infection of hosts.
Collapse
Affiliation(s)
- Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
2
|
Contreras-Moreno FJ, Moraleda-Muñoz A, Marcos-Torres FJ, Cuéllar V, Soto MJ, Pérez J, Muñoz-Dorado J. Siderophores and competition for iron govern myxobacterial predation dynamics. THE ISME JOURNAL 2024; 18:wrae077. [PMID: 38696719 PMCID: PMC11388931 DOI: 10.1093/ismejo/wrae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation. However, competition for iron plays an important role in the outcome of predatory interactions. Using combinations of predator and prey mutants (nonproducers and overproducers of siderophores), we have investigated the importance of competition for iron in predation. The results demonstrate that the competitor that, via the production of siderophores, obtains sufficient iron for growth and depletes metal availability for the opponent will prevail in the interaction. Consequently, iron fluctuations in soils may modify the composition of microbial communities by altering the activity of myxobacterial predators. In addition, siderophore overproduction during predation can alter soil properties, affecting the productivity and sustainability of agricultural operations.
Collapse
Affiliation(s)
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | | | - Virginia Cuéllar
- Departamento de Biotecnología y Protección Ambiental, Estación Experimental del Zaidín, CSIC, E-18008 Granada, Spain
| | - María José Soto
- Departamento de Biotecnología y Protección Ambiental, Estación Experimental del Zaidín, CSIC, E-18008 Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| |
Collapse
|
3
|
Chen D, Feng Q, Zhang Y. Enrichment and response of iron-metabolizing microorganisms and metabolic genes in the contaminated area of stratified stacking coal gangue dumps, Northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63603-63619. [PMID: 37046168 DOI: 10.1007/s11356-023-26775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023]
Abstract
In the Xishan coalfield of northern China, the stratified stacking of soil and gangue was applied to limit the acid pollution from high-sulfur coal gangue. In this study, we found that stratified stacking can effectively neutralize the acidity, with the pH value of gangue-leaching water being 6.02-8.13. In contrast to the acidic contaminated area, most of the microorganisms in the study area sediment were neutrophilic, with the main genera being Arthrobacter, Pseudorhodobacter, Pseudomonas, and Rhodoferax. A variety of iron- and sulfur-metabolizing bacteria was discovered in the gangue-leaching sediment, with the total relative abundance ranging from 4.20 to 23.75%, of which the iron-reducing bacteria (FeRB) accounted for the highest percentage. The distributions of these functional microorganisms in the samples were significantly influenced by Fe and S. The co-occurrence network analysis revealed a significant positive correlation between the iron- and sulfur-metabolizing bacteria in the sediment (93.75%), indicating a strong reciprocal symbiotic relationship between these bacteria. The iron and sulfur metabolism genes in the sediment were predicted and compared based on the Tax4Fun functional prediction method. Results showed that functional genes related to iron metabolism were highly expressed in the gangue-leaching sediment. This study enhances the understanding of iron and sulfur metabolism in gangue-leaching contaminated areas.
Collapse
Affiliation(s)
- Di Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| | - Qiyan Feng
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
| | - Yun Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| |
Collapse
|
4
|
Identification of Ensifer meliloti genes required for survival during peat-based bioinoculant maturation by STM-seq. J Biotechnol 2023; 362:12-23. [PMID: 36535417 DOI: 10.1016/j.jbiotec.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Rhizobial inoculants are sold either as rhizobia within a liquid matrix; or as rhizobia adhered to granules composed of peat prill or finely ground peat moss. During the production of peat-based inoculants, a series of physiological changes occur that result in an increased capability of the rhizobia to survive on the seeds. The number of viable rhizobia on preinoculated seeds at the point of sale, however, is often a limiting factor, as is the inefficiency of the inoculant bacteria to compete with the local rhizobia for the host colonization. In the present work, we used STM-seq for the genome-wide screening of Ensifer meliloti mutants affected in the survival during the maturation of peat-based inoculant formulations. Through this approach, we were able to identify a set of mutants whose behavior suggests that persistence in peat inoculants involves a complex phenotype that is connected to diverse cellular activities, mainly related to satisfying the requirements of bacterial nutrition (e.g., carbon sources, ions) and to coping with specific stresses (e.g., oxidative, mutational). These results also provide a base knowledge that could be used to more completely understand the survival mechanisms used by rhizobia during the maturation of peat-based inoculants, as well as for the design and implementation of practical strategies to improve inoculant formulations.
Collapse
|
5
|
Comparative Genomics across Three Ensifer Species Using a New Complete Genome Sequence of the Medicago Symbiont Sinorhizobium ( Ensifer) meliloti WSM1022. Microorganisms 2021; 9:microorganisms9122428. [PMID: 34946030 PMCID: PMC8706082 DOI: 10.3390/microorganisms9122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.
Collapse
|
6
|
Rhizobiales-Specific RirA Represses a Naturally "Synthetic" Foreign Siderophore Gene Cluster To Maintain Sinorhizobium-Legume Mutualism. mBio 2021; 13:e0290021. [PMID: 35130720 PMCID: PMC8822346 DOI: 10.1128/mbio.02900-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron homeostasis is strictly regulated in cellular organisms. The Rhizobiales order enriched with symbiotic and pathogenic bacteria has evolved a lineage-specific regulator, RirA, responding to iron fluctuations. However, the regulatory role of RirA in bacterium-host interactions remains largely unknown. Here, we report that RirA is essential for mutualistic interactions of Sinorhizobium fredii with its legume hosts by repressing a gene cluster directing biosynthesis and transport of petrobactin siderophore. Genes encoding an inner membrane ABC transporter (fat) and the biosynthetic machinery (asb) of petrobactin siderophore are sporadically distributed in Gram-positive and Gram-negative bacteria. An outer membrane siderophore receptor gene (fprA) was naturally assembled with asb and fat, forming a long polycistron in S. fredii. An indigenous regulation cascade harboring an inner membrane protease (RseP), a sigma factor (FecI), and its anti-sigma protein (FecR) were involved in direct activation of the fprA-asb-fat polycistron. Operons harboring fecI and fprA-asb-fat, and those encoding the indigenous TonB-ExbB-ExbD complex delivering energy to the outer membrane transport activity, were directly repressed by RirA under iron-replete conditions. The rirA deletion led to upregulation of these operons and iron overload in nodules, impaired intracellular persistence, and symbiotic nitrogen fixation of rhizobia. Mutualistic defects of the rirA mutant can be rescued by blocking activities of this naturally "synthetic" circuit for siderophore biosynthesis and transport. These findings not only are significant for understanding iron homeostasis of mutualistic interactions but also provide insights into assembly and integration of foreign machineries for biosynthesis and transport of siderophores, horizontal transfer of which is selected in microbiota. IMPORTANCE Iron is a public good explored by both eukaryotes and prokaryotes. The abundant ferric form is insoluble under neutral and basic pH conditions, and many bacteria secrete siderophores forming soluble ferric siderophore complexes, which can be then taken up by specific receptors and transporters. Siderophore biosynthesis and uptake machineries can be horizontally transferred among bacteria in nature. Despite increasing attention on the importance of siderophores in host-microbiota interactions, the regulatory integration process of transferred siderophore biosynthesis and transport genes is poorly understood in an evolutionary context. By focusing on the mutualistic rhizobium-legume symbiosis, here, we report how a naturally synthetic foreign siderophore gene cluster was integrated with the rhizobial indigenous regulation cascade, which is essential for maintaining mutualistic interactions.
Collapse
|
7
|
Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics 2020; 11:735-755. [PMID: 30734808 DOI: 10.1039/c8mt00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.
Collapse
Affiliation(s)
- Isidro Abreu
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
8
|
Pellicer Martinez MT, Crack JC, Stewart MYY, Bradley JM, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Mechanisms of iron- and O 2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA. eLife 2019; 8:e47804. [PMID: 31526471 PMCID: PMC6748827 DOI: 10.7554/elife.47804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Melissa YY Stewart
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | | | - Andrew WB Johnston
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan D Todd
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| |
Collapse
|
9
|
Amarelle V, Koziol U, Fabiano E. Highly conserved nucleotide motifs present in the 5'UTR of the heme-receptor gene shmR are required for HmuP-dependent expression of shmR in Ensifer meliloti. Biometals 2019; 32:273-291. [PMID: 30810877 DOI: 10.1007/s10534-019-00184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/28/2022]
Abstract
Heme may represent a major iron-source for bacteria. In the symbiotic nitrogen-fixing bacterium Ensifer meliloti 1021, iron acquisition from heme depends on the outer-membrane heme-receptor ShmR. Expression of shmR gene is repressed by iron in a RirA dependent manner while under iron-limitation its expression requires the small protein HmuP. In this work, we identified highly conserved nucleotide motifs present upstream the shmR gene. These motifs are widely distributed among Alpha and Beta Proteobacteria, and correlate with the presence of HmuP coding sequences in bacterial genomes. According to data presented in this work, we named these new motifs as HmuP-responsive elements (HPREs). In the analyzed genomes, the HPREs were always present upstream of genes encoding putative heme-receptors. Moreover, in those Alpha and Beta Proteobacteria where transcriptional start sites for shmR homologs are known, HPREs were located in the 5'UTR region. In this work we show that in E. meliloti 1021, HPREs are involved in HmuP-dependent shmR expression. Moreover, we show that changes in sequence composition of the HPREs correlate with changes in a predicted RNA secondary structure element and affect shmR gene expression.
Collapse
Affiliation(s)
- Vanesa Amarelle
- Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Uriel Koziol
- Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Elena Fabiano
- Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
10
|
Crespo-Rivas JC, Navarro-Gómez P, Alias-Villegas C, Shi J, Zhen T, Niu Y, Cuéllar V, Moreno J, Cubo T, Vinardell JM, Ruiz-Sainz JE, Acosta-Jurado S, Soto MJ. Sinorhizobium fredii HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean. Int J Mol Sci 2019; 20:E787. [PMID: 30759803 PMCID: PMC6386902 DOI: 10.3390/ijms20030787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 11/28/2022] Open
Abstract
Members of Rhizobiaceae contain a homologue of the iron-responsive regulatory protein RirA. In different bacteria, RirA acts as a repressor of iron uptake systems under iron-replete conditions and contributes to ameliorate cell damage during oxidative stress. In Rhizobium leguminosarum and Sinorhizobium meliloti, mutations in rirA do not impair symbiotic nitrogen fixation. In this study, a rirA mutant of broad host range S. fredii HH103 has been constructed (SVQ780) and its free-living and symbiotic phenotypes evaluated. No production of siderophores could be detected in either the wild-type or SVQ780. The rirA mutant exhibited a growth advantage under iron-deficient conditions and hypersensitivity to hydrogen peroxide in iron-rich medium. Transcription of rirA in HH103 is subject to autoregulation and inactivation of the gene upregulates fbpA, a gene putatively involved in iron transport. The S. fredii rirA mutant was able to nodulate soybean plants, but symbiotic nitrogen fixation was impaired. Nodules induced by the mutant were poorly infected compared to those induced by the wild-type. Genetic complementation reversed the mutant's hypersensitivity to H₂O₂, expression of fbpA, and symbiotic deficiency in soybean plants. This is the first report that demonstrates a role for RirA in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Juan Carlos Crespo-Rivas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Jie Shi
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163000, China.
| | - Tao Zhen
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150001, China.
| | - Yanbo Niu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150001, China.
| | - Virginia Cuéllar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain.
| | - Javier Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José Enrique Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Sebastián Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María José Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
11
|
Pellicer Martinez MT, Martinez AB, Crack JC, Holmes JD, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Sensing iron availability via the fragile [4Fe-4S] cluster of the bacterial transcriptional repressor RirA. Chem Sci 2017; 8:8451-8463. [PMID: 29619193 PMCID: PMC5863699 DOI: 10.1039/c7sc02801f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
The global iron regulator RirA controls transcription of iron metabolism genes via the binding of a fragile [4Fe–4S] cluster.
Rhizobial iron regulator A (RirA) is a global regulator of iron homeostasis in many nitrogen-fixing Rhizobia and related species of α-proteobacteria. It belongs to the widespread Rrf2 super-family of transcriptional regulators and features three conserved Cys residues that characterise the binding of an iron–sulfur cluster in other Rrf2 family regulators. Here we report biophysical studies demonstrating that RirA contains a [4Fe–4S] cluster, and that this form of the protein binds RirA-regulated DNA, consistent with its function as a repressor of expression of many genes involved in iron uptake. Under low iron conditions, [4Fe–4S] RirA undergoes a cluster conversion reaction resulting in a [2Fe–2S] form, which exhibits much lower affinity for DNA. Under prolonged low iron conditions, the [2Fe–2S] cluster degrades to apo-RirA, which does not bind DNA and can no longer function as a repressor of the cell's iron-uptake machinery. [4Fe–4S] RirA was also found to be sensitive to O2, suggesting that both iron and O2 are important signals for iron metabolism. Consistent with this, in vivo data showed that expression of RirA-regulated genes is also affected by O2. These data lead us to propose a novel regulatory model for iron homeostasis, in which RirA senses iron via the incorporation of a fragile iron–sulfur cluster that is sensitive to iron and O2 concentrations.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Ana Bermejo Martinez
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - John D Holmes
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Dimitri A Svistunenko
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester CO4 3SQ , UK
| | - Andrew W B Johnston
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Jonathan D Todd
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| |
Collapse
|
12
|
The Irr and RirA Proteins Participate in a Complex Regulatory Circuit and Act in Concert To Modulate Bacterioferritin Expression in Ensifer meliloti 1021. Appl Environ Microbiol 2017. [PMID: 28625986 DOI: 10.1128/aem.00895-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this work we found that the bfr gene of the rhizobial species Ensifer meliloti, encoding a bacterioferritin iron storage protein, is involved in iron homeostasis and the oxidative stress response. This gene is located downstream of and overlapping the smc03787 open reading frame (ORF). No well-predicted RirA or Irr boxes were found in the region immediately upstream of the bfr gene although two presumptive RirA boxes and one presumptive Irr box were present in the putative promoter of smc03787 We demonstrate that bfr gene expression is enhanced under iron-sufficient conditions and that Irr and RirA modulate this expression. The pattern of bfr gene expression as well as the response to Irr and RirA is inversely correlated to that of smc03787 Moreover, our results suggest that the small RNA SmelC759 participates in RirA- and Irr-mediated regulation of bfr expression and that additional unknown factors are involved in iron-dependent regulation.IMPORTANCEE. meliloti belongs to the Alphaproteobacteria, a group of bacteria that includes several species able to associate with eukaryotic hosts, from mammals to plants, in a symbiotic or pathogenic manner. Regulation of iron homeostasis in this group of bacteria differs from that found in the well-studied Gammaproteobacteria In this work we analyzed the effect of rirA and irr mutations on bfr gene expression. We demonstrate the effect of an irr mutation on iron homeostasis in this bacterial genus. Moreover, results obtained indicate a complex regulatory circuit where multiple regulators, including RirA, Irr, the small RNA SmelC759, and still unknown factors, act in concert to balance bfr gene expression.
Collapse
|
13
|
A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation. J Bacteriol 2016; 198:2297-306. [PMID: 27297881 DOI: 10.1128/jb.00287-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Sinorhizobium meliloti, RpoH-type sigma factors have a global impact on gene expression during heat shock and play an essential role in symbiosis with leguminous plants. Using mutational analysis of a set of genes showing highly RpoH-dependent expression during heat shock, we identified a gene indispensable for effective symbiosis. This gene, designated sufT, was located downstream of the sufBCDS homologs that specify the iron-sulfur (Fe/S) cluster assembly pathway. The identified transcription start site was preceded by an RpoH-dependent promoter consensus sequence. SufT was related to a conserved protein family of unknown molecular function, of which some members are involved in Fe/S cluster metabolism in diverse organisms. A sufT mutation decreased bacterial growth in both rich and minimal media, tolerance to stresses such as iron starvation, and activities of some Fe/S cluster-dependent enzymes. These results support the involvement of SufT in SUF (sulfur mobilization) system-mediated Fe/S protein metabolism. Furthermore, we isolated spontaneous pseudorevertants of the sufT mutant with partially recovered growth; each of them had a mutation in rirA This gene encodes a global iron regulator whose loss increases the intracellular iron content. Deletion of rirA in the original sufT mutant improved growth and restored Fe/S enzyme activities and effective symbiosis. These results suggest that enhanced iron availability compensates for the lack of SufT in the maintenance of Fe/S proteins. IMPORTANCE Although RpoH-type sigma factors of the RNA polymerase are present in diverse proteobacteria, their role as global regulators of protein homeostasis has been studied mainly in the enteric gammaproteobacterium Escherichia coli In the soil alphaproteobacterium Sinorhizobium meliloti, the rpoH mutations have a strong impact on symbiosis with leguminous plants. We found that sufT is a unique member of the S. meliloti RpoH regulon; sufT contributes to Fe/S protein metabolism and effective symbiosis under intrinsic iron limitation exerted by RirA, a global iron regulator. Our study provides insights into the RpoH regulon function in diverse proteobacteria adapted to particular ecological niches and into the mechanism of conserved Fe/S protein biogenesis.
Collapse
|
14
|
Hohle TH, O'Brian MR. Metal-specific control of gene expression mediated by Bradyrhizobium japonicum Mur and Escherichia coli Fur is determined by the cellular context. Mol Microbiol 2016; 101:152-66. [PMID: 26998998 DOI: 10.1111/mmi.13381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/21/2023]
Abstract
Bradyrhizobium japonicum Mur and Escherichia coli Fur are manganese- and iron-responsive transcriptional regulators, respectively, that belong to the same protein family. Here, we show that neither Mur nor Fur discriminate between Fe(2+) and Mn(2+) in vitro nor is there a metal preference for conferral of DNA-binding activity on the purified proteins. When expressed in E. coli, B. japonicum Mur responded to iron, but not manganese, as determined by in vivo promoter occupancy and transcriptional repression activity. Moreover, E. coli Fur activity was manganese-dependent in B. japonicum. Total and chelatable iron levels were higher in E. coli than in B. japonicum under identical growth conditions, and Mur responded to iron in a B. japonicum iron export mutant that accumulated high levels of the metal. However, elevated manganese content in E. coli did not confer activity on Fur or Mur, suggesting a regulatory pool of manganese in B. japonicum that is absent in E. coli. We conclude that the metal selectivity of Mur and Fur depends on the cellular context in which they function, not on intrinsic properties of the proteins. Also, the novel iron sensing mechanism found in the rhizobia may be an evolutionary adaptation to the cellular manganese status.
Collapse
Affiliation(s)
- Thomas H Hohle
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
15
|
HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo. Biometals 2016; 29:333-47. [DOI: 10.1007/s10534-016-9919-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/20/2022]
|
16
|
Lira MA, Nascimento LRS, Fracetto GGM. Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol 2015; 6:945. [PMID: 26441880 PMCID: PMC4561803 DOI: 10.3389/fmicb.2015.00945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022] Open
Abstract
Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.
Collapse
Affiliation(s)
- Mario A. Lira
- Agronomy Department, Federal Rural University of PernambucoRecife, Brazil
- National Council for Research and Scientific and Technological DevelopmentBrasília, Brazil
| | - Luciana R. S. Nascimento
- Agronomy Department, Federal Rural University of PernambucoRecife, Brazil
- National Council for Research and Scientific and Technological DevelopmentBrasília, Brazil
| | | |
Collapse
|
17
|
Abstract
Iron is an essential nutrient, but it can also be toxic. Therefore, iron homeostasis must be strictly regulated. Transcriptional control of iron-dependent gene expression in the rhizobia and other taxa of the Alphaproteobacteria is fundamentally different from the Fur paradigm in Escherichia coli and other model systems. Rather than sense iron directly, the rhizobia employ the iron response regulator (Irr) to monitor and respond to the status of an iron-dependent process, namely, heme biosynthesis. This novel control mechanism allows iron homeostasis to be integrated with other cellular processes, and it permits differential control of iron regulon genes in a manner not readily achieved by Fur. Moreover, studies of Irr have defined a role for heme in conditional protein stability that has been subsequently described in eukaryotes. Finally, Irr-mediated control of iron metabolism may reflect a cellular strategy that accommodates a greater reliance on manganese.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, New York 14214;
| |
Collapse
|
18
|
Amaya-Gómez CV, Hirsch AM, Soto MJ. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiol 2015; 15:58. [PMID: 25887945 PMCID: PMC4381460 DOI: 10.1186/s12866-015-0390-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/18/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Swarming motility and biofilm formation are opposite, but related surface-associated behaviors that allow various pathogenic bacteria to colonize and invade their hosts. In Sinorhizobium meliloti, the alfalfa endosymbiont, these bacterial processes and their relevance for host plant colonization are largely unexplored. Our previous work demonstrated distinct swarming abilities in two S. meliloti strains (Rm1021 and GR4) and revealed that both environmental cues (iron concentration) and bacterial genes (fadD, rhb, rirA) play crucial roles in the control of surface motility in this rhizobial species. In the current study, we investigate whether these factors have an impact on the ability of S. meliloti to establish biofilms and to colonize host roots. RESULTS We found that strain GR4, which is less prone to translocate on solid surfaces than strain Rm1021, is more efficient in developing biofilms on glass and plant root surfaces. High iron conditions, known to prevent surface motility in a wild-type strain of S. meliloti, promote biofilm development in Rm1021 and GR4 strains by inducing the formation of more structured and thicker biofilms than those formed under low iron levels. Moreover, three different S. meliloti mutants (fadD, rhb, and rirA) that exhibit an altered surface translocation behavior compared with the wild-type strain, establish reduced biofilms on both glass and alfalfa root surfaces. Iron-rich conditions neither rescue the defect in biofilm formation shown by the rhb mutant, which is unable to produce the siderophore rhizobactin 1021 (Rhb1021), nor have any impact on biofilms formed by the iron-response regulator rirA mutant. On the other hand, S. meliloti FadD loss-of-function mutants do not establish normal biofilms irrespective of iron levels. CONCLUSIONS Our studies show that siderophore Rhb1021 is not only required for surface translocation, but also for biofilm formation on glass and root surfaces by strain Rm1021. In addition, we present evidence for the existence of control mechanisms that inversely regulate swarming and biofilm formation in S. meliloti, and that contribute to efficient plant root colonization. One of these mechanisms involves iron levels and the iron global regulator RirA. The other mechanism involves the participation of the fatty acid metabolism-related enzyme FadD.
Collapse
Affiliation(s)
- Carol V Amaya-Gómez
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| | - Ann M Hirsch
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095-1606, USA.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
19
|
Avenhaus U, Cabeza RA, Liese R, Lingner A, Dittert K, Salinas-Riester G, Pommerenke C, Schulze J. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration. FRONTIERS IN PLANT SCIENCE 2015; 6:1133. [PMID: 26779207 PMCID: PMC4702478 DOI: 10.3389/fpls.2015.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 05/19/2023]
Abstract
Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be induced by increased formation of NCR peptides and necessitates an efficient iron supply to the bacteroid, which is probably mediated by nicotianamine. The paper is dedicated to the 85th birthday of Prof. Dr. Günther Schilling, University of Halle/Wittenberg, Germany, https://de.wikipedia.org/wiki/Günther_Schilling.
Collapse
Affiliation(s)
- Ulrike Avenhaus
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Ricardo A. Cabeza
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de ChileLa Pintana, Chile
| | - Rebecca Liese
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Annika Lingner
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Klaus Dittert
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- *Correspondence: Joachim Schulze,
| |
Collapse
|
20
|
Mettert EL, Kiley PJ. Fe-S proteins that regulate gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1284-93. [PMID: 25450978 DOI: 10.1016/j.bbamcr.2014.11.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Erin L Mettert
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| | - Patricia J Kiley
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Brear EM, Day DA, Smith PMC. Iron: an essential micronutrient for the legume-rhizobium symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:359. [PMID: 24062758 PMCID: PMC3772312 DOI: 10.3389/fpls.2013.00359] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 05/19/2023]
Abstract
Legumes, which develop a symbiosis with nitrogen-fixing bacteria, have an increased demand for iron. Iron is required for the synthesis of iron-containing proteins in the host, including the highly abundant leghemoglobin, and in bacteroids for nitrogenase and cytochromes of the electron transport chain. Deficiencies in iron can affect initiation and development of the nodule. Within root cells, iron is chelated with organic acids such as citrate and nicotianamine and distributed to other parts of the plant. Transport to the nitrogen-fixing bacteroids in infected cells of nodules is more complicated. Formation of the symbiosis results in bacteroids internalized within root cortical cells of the legume where they are surrounded by a plant-derived membrane termed the symbiosome membrane (SM). This membrane forms an interface that regulates nutrient supply to the bacteroid. Consequently, iron must cross this membrane before being supplied to the bacteroid. Iron is transported across the SM as both ferric and ferrous iron. However, uptake of Fe(II) by both the symbiosome and bacteroid is faster than Fe(III) uptake. Members of more than one protein family may be responsible for Fe(II) transport across the SM. The only Fe(II) transporter in nodules characterized to date is GmDMT1 (Glycine max divalent metal transporter 1), which is located on the SM in soybean. Like the root plasma membrane, the SM has ferric iron reductase activity. The protein responsible has not been identified but is predicted to reduce ferric iron accumulated in the symbiosome space prior to uptake by the bacteroid. With the recent publication of a number of legume genomes including Medicago truncatula and G. max, a large number of additional candidate transport proteins have been identified. Members of the NRAMP (natural resistance-associated macrophage protein), YSL (yellow stripe-like), VIT (vacuolar iron transporter), and ZIP (Zrt-, Irt-like protein) transport families show enhanced expression in nodules and are expected to play a role in the transport of iron and other metals across symbiotic membranes.
Collapse
Affiliation(s)
- Ella M. Brear
- School of Biological Sciences, The University of SydneySydney, NSW, Australia
| | - David A. Day
- School of Biological Sciences, Flinders UniversityBedford Park, Adelaide, SA, Australia
| | | |
Collapse
|
22
|
Bélanger L, Charles TC. Members of the Sinorhizobium meliloti ChvI regulon identified by a DNA binding screen. BMC Microbiol 2013; 13:132. [PMID: 23758731 PMCID: PMC3687685 DOI: 10.1186/1471-2180-13-132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/08/2013] [Indexed: 11/28/2022] Open
Abstract
Background The Sinorhizobium meliloti ExoS/ChvI two component regulatory system is required for N2-fixing symbiosis and exopolysaccharide synthesis. Orthologous systems are present in other Alphaproteobacteria, and in many instances have been shown to be necessary for normal interactions with corresponding eukaryotic hosts. Only a few transcriptional regulation targets have been determined, and as a result there is limited understanding of the mechanisms that are controlled by the system. Results In an attempt to better define the members of the regulon, we have applied a simple in vitro electrophoretic screen for DNA fragments that are bound by the ChvI response regulator protein. Several putative transcriptional targets were identified and three were further examined by reporter gene fusion experiments for transcriptional regulation. Two were confirmed to be repressed by ChvI, while one was activated by ChvI. Conclusions Our results suggest a role for ChvI as both a direct activator and repressor of transcription. The identities and functions of many of these genes suggest explanations for some aspects of the pleiotropic phenotype of exoS and chvI mutants. This work paves the way for in depth characterization of the ExoS/ChvI regulon and its potential role in directing bacteria-host relationships.
Collapse
Affiliation(s)
- Louise Bélanger
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
23
|
Abstract
Symbiotic nitrogen fixation by rhizobia in legume root nodules injects approximately 40 million tonnes of nitrogen into agricultural systems each year. In exchange for reduced nitrogen from the bacteria, the plant provides rhizobia with reduced carbon and all the essential nutrients required for bacterial metabolism. Symbiotic nitrogen fixation requires exquisite integration of plant and bacterial metabolism. Central to this integration are transporters of both the plant and the rhizobia, which transfer elements and compounds across various plant membranes and the two bacterial membranes. Here we review current knowledge of legume and rhizobial transport and metabolism as they relate to symbiotic nitrogen fixation. Although all legume-rhizobia symbioses have many metabolic features in common, there are also interesting differences between them, which show that evolution has solved metabolic problems in different ways to achieve effective symbiosis in different systems.
Collapse
Affiliation(s)
- Michael Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | |
Collapse
|
24
|
Role of the Irr protein in the regulation of iron metabolism in Rhodobacter sphaeroides. PLoS One 2012; 7:e42231. [PMID: 22879920 PMCID: PMC3413700 DOI: 10.1371/journal.pone.0042231] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 07/05/2012] [Indexed: 12/21/2022] Open
Abstract
In Rhizobia the Irr protein is an important regulator for iron-dependent gene expression. We studied the role of the Irr homolog RSP_3179 in the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides. While Irr had little effect on growth under iron-limiting or non-limiting conditions its deletion resulted in increased resistance to hydrogen peroxide and singlet oxygen. This correlates with an elevated expression of katE for catalase in the Irr mutant compared to the wild type under non-stress conditions. Transcriptome studies revealed that Irr affects the expression of genes for iron metabolism, but also has some influence on genes involved in stress response, citric acid cycle, oxidative phosphorylation, transport, and photosynthesis. Most genes showed higher expression levels in the wild type than in the mutant under normal growth conditions indicating an activator function of Irr. Irr was however not required to activate genes of the iron metabolism in response to iron limitation, which showed even stronger induction in the absence of Irr. This was also true for genes mbfA and ccpA, which were verified as direct targets for Irr. Our results suggest that in R. sphaeroides Irr diminishes the strong induction of genes for iron metabolism under iron starvation.
Collapse
|
25
|
HmuP is a coactivator of Irr-dependent expression of heme utilization genes in Bradyrhizobium japonicum. J Bacteriol 2012; 194:3137-43. [PMID: 22505680 DOI: 10.1128/jb.00071-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Utilization of heme as an iron source by Bradyrhizobium japonicum involves induction of the outer membrane heme receptor gene hmuR and other genes within the heme utilization locus. Here, we discovered the hmuP gene located upstream of hmuR and transcribed divergently from it along with hmuTUV. hmuP encodes a small protein that accumulated under iron limitation and is transcriptionally controlled by the global iron-responsive regulator Irr, as were all genes within the heme utilization locus. Cross-linking and immunoprecipitation experiments showed that Irr occupies the hmuR-hmuP promoter in vivo. An hmuP mutant did not grow on heme as an iron source, but retained the ability to use ferric chloride. Correspondingly, induction of hmuR mRNA under iron limitation was severely diminished in an hmuP strain, but other genes within the Irr regulon were unaffected. HmuP occupied the hmuR-hmuP promoter, and thus it plays a direct regulatory role in gene expression. HmuP was not required for Irr occupancy, nor was ectopic expression of hmuP from an Irr-independent promoter sufficient to induce the hmuR gene. Thus, both HmuP and Irr occupancy are necessary for hmuR induction. We suggest that HmuP is a coactivator of Irr-dependent expression of hmuR.
Collapse
|
26
|
Peuser V, Metz S, Klug G. Response of the photosynthetic bacterium Rhodobacter sphaeroides to iron limitation and the role of a Fur orthologue in this response. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:397-404. [PMID: 23761286 DOI: 10.1111/j.1758-2229.2011.00245.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We studied the response of the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides to iron limitation in order to get first insights into the underlying mechanisms and the link between iron metabolism and oxidative stress. Our data reveal the production of elevated levels of reactive oxygen species upon iron limitation, nevertheless the response to iron limitation shows clear differences to the oxidative stress response of R. sphaeroides. While most genes of the oxidative stress response were not induced by iron limitation, we observed an upregulation of the alternative sigma factor RpoE, which has a main role in the regulation of the defence to singlet oxygen. Deletion of the Fur orthologue RSP_2494, which was designated Mur as a result of a proposed regulatory role in manganese metabolism, revealed that this protein is involved in regulation of the iron metabolism in R. sphaeroides. One predicted target of Fur/Mur is the sit operon encoding a Mn(2+) /Fe(2+) transport system. The basal level of sitA was higher in a fur/mur deletion strain compared with the wild type, which is in agreement with a repressor function of the Fur/Mur protein. In addition, we could also demonstrate a function of the Fur/Mur protein in manganese homeostasis.
Collapse
Affiliation(s)
- Verena Peuser
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|
27
|
Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J Bacteriol 2010; 192:4192-204. [PMID: 20562310 DOI: 10.1128/jb.00319-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria synthesize specific organelles, the magnetosomes, which are membrane-enveloped crystals of the magnetic mineral magnetite (Fe(3)O(4)). The biomineralization of magnetite involves the uptake and intracellular accumulation of large amounts of iron. However, it is not clear how iron uptake and biomineralization are regulated and balanced with the biochemical iron requirement and intracellular homeostasis. In this study, we identified and analyzed a homologue of the ferric uptake regulator Fur in Magnetospirillum gryphiswaldense, which was able to complement a fur mutant of Escherichia coli. A fur deletion mutant of M. gryphiswaldense biomineralized fewer and slightly smaller magnetite crystals than did the wild type. Although the total cellular iron accumulation of the mutant was decreased due to reduced magnetite biomineralization, it exhibited an increased level of free intracellular iron, which was bound mostly to a ferritin-like metabolite that was found significantly increased in Mössbauer spectra of the mutant. Compared to that of the wild type, growth of the fur mutant was impaired in the presence of paraquat and under aerobic conditions. Using a Fur titration assay and proteomic analysis, we identified constituents of the Fur regulon. Whereas the expression of most known magnetosome genes was unaffected in the fur mutant, we identified 14 proteins whose expression was altered between the mutant and the wild type, including five proteins whose genes constitute putative iron uptake systems. Our data demonstrate that Fur is a regulator involved in global iron homeostasis, which also affects magnetite biomineralization, probably by balancing the competing demands for biochemical iron supply and magnetite biomineralization.
Collapse
|
28
|
Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ. Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics 2010; 11:157. [PMID: 20210991 PMCID: PMC2848241 DOI: 10.1186/1471-2164-11-157] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swarming is a multicellular phenomenom characterized by the coordinated and rapid movement of bacteria across semisolid surfaces. In Sinorhizobium meliloti this type of motility has been described in a fadD mutant. To gain insights into the mechanisms underlying the process of swarming in rhizobia, we compared the transcriptome of a S. meliloti fadD mutant grown under swarming inducing conditions (semisolid medium) to those of cells grown under non-swarming conditions (broth and solid medium). RESULTS More than a thousand genes were identified as differentially expressed in response to growth on agar surfaces including genes for several metabolic activities, iron uptake, chemotaxis, motility and stress-related genes. Under swarming-specific conditions, the most remarkable response was the up-regulation of iron-related genes. We demonstrate that the pSymA plasmid and specifically genes required for the biosynthesis of the siderophore rhizobactin 1021 are essential for swarming of a S. meliloti wild-type strain but not in a fadD mutant. Moreover, high iron conditions inhibit swarming of the wild-type strain but not in mutants lacking either the iron limitation response regulator RirA or FadD. CONCLUSIONS The present work represents the first transcriptomic study of rhizobium growth on surfaces including swarming inducing conditions. The results have revealed major changes in the physiology of S. meliloti cells grown on a surface relative to liquid cultures. Moreover, analysis of genes responding to swarming inducing conditions led to the demonstration that iron and genes involved in rhizobactin 1021 synthesis play a role in the surface motility shown by S. meliloti which can be circumvented in a fadD mutant. This work opens a way to the identification of new traits and regulatory networks involved in swarming by rhizobia.
Collapse
Affiliation(s)
- Joaquina Nogales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Amarelle V, Koziol U, Rosconi F, Noya F, O'Brian MR, Fabiano E. A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2010; 156:1873-1882. [PMID: 20167620 PMCID: PMC3068671 DOI: 10.1099/mic.0.037713-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sinorhizobium meliloti has multiple systems for iron acquisition, including the use of haem as an iron source. Haem internalization involves the ShmR haem outer membrane receptor and the hmuTUV locus, which participates in haem transport across the cytoplasmic membrane. Previous studies have demonstrated that expression of the shmR gene is negatively regulated by iron through RirA. Here, we identify hmuP in a genetic screen for mutants that displayed aberrant control of shmR. The normal induction of shmR in response to iron limitation was lost in the hmuP mutant, showing that this gene positively affects shmR expression. Moreover, the HmuP protein is not part of the haemin transporter system. Analysis of gene expression and siderophore production indicates that disruption of hmuP does not affect other genes related to the iron-restriction response. Our results strongly indicate that the main function of HmuP is the transcriptional regulation of shmR. Sequence alignment of HmuP homologues and comparison with the NMR structure of Rhodopseudomonas palustris CGA009 HmuP protein revealed that certain amino acids localized within predicted β-sheets are well conserved. Our data indicate that at least one of the β-sheets is important for HmuP activity.
Collapse
Affiliation(s)
- Vanesa Amarelle
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Uriel Koziol
- Sección Bioquímica, Facultad de Ciencias, Iguá 4225, Montevideo 11400, Uruguay.,Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Federico Rosconi
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Francisco Noya
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Mark R O'Brian
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Elena Fabiano
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| |
Collapse
|
30
|
Ngok-Ngam P, Ruangkiattikul N, Mahavihakanont A, Virgem SS, Sukchawalit R, Mongkolsuk S. Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol 2009; 191:2083-90. [PMID: 19168612 PMCID: PMC2655498 DOI: 10.1128/jb.01380-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 01/09/2009] [Indexed: 12/26/2022] Open
Abstract
The analysis of genetics and physiological functions of Agrobacterium tumefaciens RirA (rhizobial iron regulator) has shown that it is a transcription regulator and a repressor of iron uptake systems. The rirA mutant strain (NTLrirA) overproduced siderophores and exhibited a highly constitutive expression of genes involved in iron uptake (fhuA, irp6A, and fbpA) compared to that of the wild-type strain (NTL4). The deregulation in the iron control of iron uptake in NTLrirA led to iron overload in the cell, which was supported by the observation that the NTLrirA mutant was more sensitive than wild-type NTL4 to an iron-activated antibiotic, streptonigrin. The NTLrirA mutant was more sensitive than the parental strain to oxidants, including hydrogen peroxide, organic hydroperoxide, and a superoxide generator, menadione. However, the addition of an iron chelator, 2,2'-dipyridyl, reversed the mutant hypersensitivity to H(2)O(2) and organic hydroperoxide, indicating the role of iron in peroxide toxicity. Meanwhile, the reduced level of superoxide dismutase (SodBIII) was partly responsible for the menadione-sensitive phenotype of the NTLrirA mutant. The NTLrirA mutant showed a defect in tumorigenesis on tobacco leaves, which likely resulted from the increased sensitivity of NTLrirA to oxidants and the decreased ability of NTLrirA to induce virulence genes (virB and virE). These data demonstrated that RirA is important for A. tumefaciens during plant-pathogen interactions.
Collapse
|
31
|
Small SK, Puri S, O’Brian MR. Heme-dependent metalloregulation by the iron response regulator (Irr) protein in Rhizobium and other Alpha-proteobacteria. Biometals 2009; 22:89-97. [PMID: 19093075 PMCID: PMC2659648 DOI: 10.1007/s10534-008-9192-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
Abstract
Perception and response to nutritional iron by bacteria is essential for viability, and for the ability to adapt to the environment. The iron response regulator (Irr) is part of a novel regulatory scheme employed by Rhizobium and other Alpha-Proteobacteria to control iron-dependent gene expression. Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to regulate gene expression, thus it responds to an iron-dependent process rather than to iron directly. Irr mediates this response by interacting directly with ferrochelatase, the enzyme that catalyzes the final step in heme biosynthesis. Irr is expressed under iron limitation to both positively and negatively modulate gene expression, but degrades in response to direct binding to heme in iron-sufficient cells. Studies with Rhizobium reveal that the regulation of iron homeostasis in bacteria is more diverse than has been generally assumed.
Collapse
Affiliation(s)
- Sandra K. Small
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Sumant Puri
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Mark R. O’Brian
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214 USA
| |
Collapse
|
32
|
Cuív PÓ, Keogh D, Clarke P, O'Connell M. ThehmuUVgenes ofSinorhizobium meliloti2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B. Mol Microbiol 2008; 70:1261-73. [DOI: 10.1111/j.1365-2958.2008.06479.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Wang W, Richardson AR, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J Bacteriol 2008; 190:7762-72. [PMID: 18820017 PMCID: PMC2583601 DOI: 10.1128/jb.01032-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/17/2008] [Indexed: 01/02/2023] Open
Abstract
Growth of Moraxella catarrhalis in a biofilm resulted in marked upregulation of two open reading frames (ORFs), aniA and norB, predicted to encode a nitrite reductase and a nitric oxide reductase, respectively (W. Wang, L. Reitzer, D. A. Rasko, M. M. Pearson, R. J. Blick, C. Laurence, and E. J. Hansen, Infect. Immun. 75:4959-4971, 2007). An ORF designated nsrR, which was located between aniA and norB, was shown to encode a predicted transcriptional regulator. Inactivation of nsrR resulted in increased expression of aniA and norB in three different M. catarrhalis strains, as measured by both DNA microarray analysis and quantitative reverse transcriptase PCR. Provision of a wild-type nsrR gene in trans in an nsrR mutant resulted in decreased expression of the AniA protein. DNA microarray analysis revealed that two other ORFs (MC ORF 683 and MC ORF 1550) were also consistently upregulated in an nsrR mutant. Consumption of both nitrite and nitric oxide occurred more rapidly with cells of an nsrR mutant than with wild-type cells. However, growth of nsrR mutants was completely inhibited by a low level of sodium nitrite. This inhibition of growth by nitrite was significantly reversed by introduction of an aniA mutation into the nsrR mutant and was completely reversed by the presence of a wild-type nsrR gene in trans. NsrR regulation of the expression of aniA was sensitive to nitrite, whereas NsrR regulation of norB was sensitive to nitric oxide.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tanous C, Soutourina O, Raynal B, Hullo MF, Mervelet P, Gilles AM, Noirot P, Danchin A, England P, Martin-Verstraete I. The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis. J Biol Chem 2008; 283:35551-60. [PMID: 18974048 DOI: 10.1074/jbc.m805951200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Several enzymes have evolved as sensors in signal transduction pathways to control gene expression, thereby allowing bacteria to adapt efficiently to environmental changes. We recently identified the master regulator of cysteine metabolism in Bacillus subtilis, CymR, which belongs to the poorly characterized Rrf2 family of regulators. We now report that the signal transduction mechanism controlling CymR activity in response to cysteine availability involves the formation of a stable complex with CysK, a key enzyme for cysteine biosynthesis. We carried out a comprehensive quantitative characterization of this regulator-enzyme interaction by surface plasmon resonance and analytical ultracentrifugation. We also showed that O-acetylserine plays a dual role as a substrate of CysK and as an effector modulating the CymR-CysK complex formation. The ability of B. subtilis CysK to bind to CymR appears to be correlated to the loss of its capacity to form a cysteine synthase complex with CysE. We propose an original model, supported by the determination of the intracellular concentrations of the different partners, by which CysK positively regulates CymR in sensing the bacterial cysteine pool.
Collapse
Affiliation(s)
- Catherine Tanous
- Institut Pasteur, UnitédeGénétique des Génomes Bactériens, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sangwan I, Small SK, O'Brian MR. The Bradyrhizobium japonicum Irr protein is a transcriptional repressor with high-affinity DNA-binding activity. J Bacteriol 2008; 190:5172-7. [PMID: 18539736 PMCID: PMC2493276 DOI: 10.1128/jb.00495-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/23/2008] [Indexed: 12/25/2022] Open
Abstract
The Irr protein is a global regulator of iron homeostasis in Bradyrhizobium japonicum, and a subset of genes within the Irr regulon are negatively controlled under iron limitation. However, repressor function, high-affinity DNA binding in vitro, or promoter occupancy in vivo of Irr for a negatively regulated gene has not been demonstrated. Here, we show that the blr7895 and bll6680 genes are negatively regulated by Irr as determined by derepression of transcript levels in iron-limited cells of an irr mutant strain. Electrophoretic gel mobility shift analysis showed that a component in extracts of wild-type cells grown under iron limitation bound the iron control elements (ICE) within the promoters of blr7895 and bll6680 identified previously (G. Rudolph, G. Semini, F. Hauser, A. Lindemann, M. Friberg, H. Hennecke, and H. M. Fischer, J. Bacteriol. 188:733-744, 2006). Binding was not observed with extracts of cells from the parent strain grown under high iron conditions or with those from an irr mutant. Furthermore, gel mobility supershift experiments identified Irr as a component of the binding complex. Purified recombinant Irr bound to ICE DNA with high affinity in the presence of divalent metal, with K(d) values of 7 to 19 nM, consistent with a physiological role for Irr as a transcriptional regulator. In addition, in vitro transcription initiated from the blr7895 promoter was inhibited by Irr. Whole-cell cross-linking and immunoprecipitation experiments showed that Irr occupies the promoters of blr7895 and bll6680 in vivo in an iron-dependent manner. The findings demonstrate that Irr is a transcriptional repressor that binds DNA with high affinity.
Collapse
Affiliation(s)
- Indu Sangwan
- Department of Biochemistry, 140 Farber Hall, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
36
|
Battisti JM, Smitherman LS, Sappington KN, Parrow NL, Raghavan R, Minnick MF. Transcriptional regulation of the heme binding protein gene family of Bartonella quintana is accomplished by a novel promoter element and iron response regulator. Infect Immun 2007; 75:4373-85. [PMID: 17576755 PMCID: PMC1951173 DOI: 10.1128/iai.00497-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 06/08/2007] [Indexed: 01/18/2023] Open
Abstract
We previously identified a five-member family of hemin-binding proteins (Hbp's) of Bartonella quintana that bind hemin on the outer surface but share no homology with known bacterial heme receptors. Subsequently, we demonstrated that expression of the hbp family is significantly influenced by oxygen, heme, and temperature conditions encountered by the pathogen in the human host and the body louse vector; e.g., we observed a dramatic (>100-fold) increase in hbpC transcript levels in response to the "louse-like" temperature of 30 degrees C. The goal of the present study was to identify a transcription factor(s) involved in the coordinated and differential regulation of the hbp family. First, we used quantitative real-time PCR (qRT-PCR) to show that the same environmental conditions generate parallels in the transcript profiles of four candidate transcriptional regulators (Irr, Fur, RirA, and BatR) described in the order Rhizobiales, with the greatest overall change in the transcription of irr (a >5-fold decrease) at a "louse-like" temperature, suggesting that Irr may function as an hbpC repressor. Second, a B. quintana strain hyperexpressing Irr was constructed; it exhibits a "bloodstream-like" hbp transcript profile in the absence of an environmental stimulus (i.e., hbpC is repressed and hbpA, hbpD, and hbpE mRNAs are relatively abundant). Furthermore, when this strain is grown at a "louse-like" temperature, an inversion of the transcript profile occurs, where derepression of hbpC and repression of hbpA, hbpD, and hbpE are readily evident, strongly suggesting that Irr and temperature influence hbp family expression. Third, electrophoretic mobility shift analyses show that recombinant Irr binds specifically to the hbpC promoter region at a sequence that is highly conserved in Bartonella hbp genes, which we designated the hbp family box, or "H-box." Fourth, we used the H-box to search the B. quintana genome and discovered a number of intriguing open reading frames, e.g., five members of a six-member family of cohemolysin autotransporters. Finally, qRT-PCR data regarding the effects of Fur and RirA overexpression on the hbp family are provided; they show that Fur's effect on the hbp family is relatively minor but RirA generates a "bloodstream-like" hbp transcript profile in the absence of an environmental stimulus, as observed for the Irr-hyperexpressing strain.
Collapse
Affiliation(s)
- James M Battisti
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kitphati W, Ngok-Ngam P, Suwanmaneerat S, Sukchawalit R, Mongkolsuk S. Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl Environ Microbiol 2007; 73:4760-8. [PMID: 17545320 PMCID: PMC1951035 DOI: 10.1128/aem.00531-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/20/2007] [Indexed: 01/14/2023] Open
Abstract
In Agrobacterium tumefaciens, the balance between acquiring enough iron and avoiding iron-induced toxicity is regulated in part by Fur (ferric uptake regulator). A fur mutant was constructed to address the physiological role of the regulator. Atypically, the mutant did not show alterations in the levels of siderophore biosynthesis and the expression of iron transport genes. However, the fur mutant was more sensitive than the wild type to an iron chelator, 2,2'-dipyridyl, and was also more resistant to an iron-activated antibiotic, streptonigrin, suggesting that Fur has a role in regulating iron concentrations. A. tumefaciens sitA, the periplasmic binding protein of a putative ABC-type iron and manganese transport system (sitABCD), was strongly repressed by Mn(2+) and, to a lesser extent, by Fe(2+), and this regulation was Fur dependent. Moreover, the fur mutant was more sensitive to manganese than the wild type. This was consistent with the fact that the fur mutant showed constitutive up-expression of the manganese uptake sit operon. Fur(At) showed a regulatory role under iron-limiting conditions. Furthermore, Fur has a role in determining oxidative resistance levels. The fur mutant was hypersensitive to hydrogen peroxide and had reduced catalase activity. The virulence assay showed that the fur mutant had a reduced ability to cause tumors on tobacco leaves compared to wild-type NTL4.
Collapse
Affiliation(s)
- Worawan Kitphati
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
38
|
Johnston AWB, Todd JD, Curson AR, Lei S, Nikolaidou-Katsaridou N, Gelfand MS, Rodionov DA. Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 2007; 20:501-11. [PMID: 17310401 DOI: 10.1007/s10534-007-9085-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
The alpha-proteobacteria include several important genera, including the symbiotic N(2)-fixing "rhizobia", the plant pathogen Agrobacterium, the mammalian pathogens Brucella, Bartonella as well as many others that are of environmental or other interest--including Rhodobacter, Caulobacter and the hugely abundant marine genus Pelagibacter. Only a few species--mainly different members of the rhizobia--have been analyzed directly for their ability to use and to respond to iron. These studies, however, have shown that at least some of the "alphas" differ fundamentally in the ways in which they regulate their genes in response to Fe availability. In this paper, we build on our own work on Rhizobium leguminosarum (the symbiont of peas, beans and clovers) and on Bradyrhizobium japonicum, which nodulates soybeans and which has been studied in Buffalo and Zürich. In the former species, the predominant Fe-responsive regulator is not Fur, but RirA, a member of the Rrf2 protein family and which likely has an FeS cluster cofactor. In addition, there are several R. leguminosarum genes that are expressed at higher levels in Fe-replete conditions and at least some of these are regulated by Irr, a member of the Fur superfamily and which has the unusual property of being degraded by the presence of heme. In silico analyses of the genome sequences of other bacteria indicate that Irr occurs in all members of the Rhizobiales and the Rhodobacterales and that RirA is found in all but one branch of these two lineages, the exception being the clade that includes B. japonicum. Nearly all the Rhizobiales and the Rhodobacterales contain a gene whose product resembles bona fide Fur. However, direct genetic studies show that in most of the Rhizobiales and in the Rhodobacterales it is a "Mur" (a manganese responsive repressor of a small number of genes involved in Mn uptake) or, in Bradyrhizobium, it recognizes the operator sequences of only a few genes that are involved in Fe metabolism. We propose that the Rhizobiales and the Rhodobacterales have relegated Fur to a far more minor role than in (say) E. coli and that they employ Irr and, in the Rhizobiales, RirA as their global Fe-responsive transcriptional regulators. In contrast to the direct interaction between Fe2+ and conventional Fur, we suggest that these bacteria sense Fe more indirectly as functions of the intracellular concentrations of FeS clusters and of heme. Thus, their "iron-omes" may be more accurately linked to the real-time needs for the metal and not just to its absolute concentration in the environment.
Collapse
Affiliation(s)
- Andrew W B Johnston
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Rodionov DA, Gelfand MS, Todd JD, Curson ARJ, Johnston AWB. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2006; 2:e163. [PMID: 17173478 PMCID: PMC1698941 DOI: 10.1371/journal.pcbi.0020163] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/18/2006] [Indexed: 01/08/2023] Open
Abstract
We used comparative genomics to investigate the distribution of conserved DNA-binding motifs in the regulatory regions of genes involved in iron and manganese homeostasis in alpha-proteobacteria. Combined with other computational approaches, this allowed us to reconstruct the metal regulatory network in more than three dozen species with available genome sequences. We identified several classes of cis-acting regulatory DNA motifs (Irr-boxes or ICEs, RirA-boxes, Iron-Rhodo-boxes, Fur-alpha-boxes, Mur-box or MRS, MntR-box, and IscR-boxes) in regulatory regions of various genes involved in iron and manganese uptake, Fe-S and heme biosynthesis, iron storage, and usage. Despite the different nature of the iron regulons in selected lineages of alpha-proteobacteria, the overall regulatory network is consistent with, and confirmed by, many experimental observations. This study expands the range of genes involved in iron homeostasis and demonstrates considerable interconnection between iron-responsive regulatory systems. The detailed comparative and phylogenetic analyses of the regulatory systems allowed us to propose a theory about the possible evolution of Fe and Mn regulons in alpha-proteobacteria. The main evolutionary event likely occurred in the common ancestor of the Rhizobiales and Rhodobacterales, where the Fur protein switched to regulating manganese transporters (and hence Fur had become Mur). In these lineages, the role of global iron homeostasis was taken by RirA and Irr, two transcriptional regulators that act by sensing the physiological consequence of the metal availability rather than its concentration per se, and thus provide for more flexible regulation.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
40
|
Yang J, Sangwan I, O'brian MR. The Bradyrhizobium japonicum Fur protein is an iron-responsive regulator in vivo. Mol Genet Genomics 2006; 276:555-64. [PMID: 17039378 DOI: 10.1007/s00438-006-0162-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 08/29/2006] [Indexed: 11/27/2022]
Abstract
The Fur protein is a global regulator of iron metabolism in many bacterial species. However, Fur homologs from some rhizobia appear not to mediate iron-dependent gene expression in vivo. Here, transcriptional profiling analysis showed that more than one-fourth of the genes within the iron stimulon of Bradyrhizobium japonicum were aberrantly controlled by iron in a fur mutant. However, Fur has only a modest role in regulating iron transport genes. Quantitative real time reverse transcriptase PCR measurements confirmed abnormal gene expression in iron-limited cells of the fur strain, thereby demonstrating that Fur must function under those conditions. The findings show that B. japonicum Fur is involved in iron-dependent gene expression, and support the conclusion that rhizobial Fur proteins have novel functions compared with well studied model systems.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Biochemistry, State University of New York at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
41
|
Rudolph G, Hennecke H, Fischer HM. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 2006; 30:631-48. [PMID: 16774589 DOI: 10.1111/j.1574-6976.2006.00030.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Iron is critical for bacterial growth, but problems arise from the toxicity of excess iron; thus, iron uptake is subject to tight control. The most widely found and best-studied iron-responsive regulator in Gram-negative bacteria is the ferric uptake regulator Fur. In recent years, however, it has become apparent that iron regulation in rhizobia differs from that in many other bacteria. New regulators (RirA, Irr, Mur) were identified which appear to mediate functions that in other bacteria are accomplished by Fur. Even though some of them belong to the Fur family, they exhibit properties that clearly separate them from genuine Fur proteins. This article surveys the principal mechanisms of iron acquisition and uptake in rhizobia, and puts particular emphasis on recent findings on transcriptional regulators and their means to sense the cellular iron status and to regulate gene expression. In this context, we point out differences and similarities with regard to the operators, regulons and structure of the discussed iron regulatory proteins.
Collapse
Affiliation(s)
- Gesine Rudolph
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
42
|
Todd JD, Sawers G, Rodionov DA, Johnston AWB. The Rhizobium leguminosarum regulator IrrA affects the transcription of a wide range of genes in response to Fe availability. Mol Genet Genomics 2006; 275:564-77. [PMID: 16625355 DOI: 10.1007/s00438-006-0115-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 02/20/2006] [Indexed: 01/01/2023]
Abstract
We show that an unusual transcriptional regulator, called IrrA, regulates many genes in the symbiotic N2-fixing bacterium Rhizobium leguminosarum in response to iron availability. Several operons in R. leguminosarum are expressed at lower levels in cells grown in Fe-depleted compared to Fe-replete medium. These include hemA1, which encodes the haem biosynthesis enzyme amino-levulinic acid synthase; sufS2BCDS1XA, which specify enzymes for FeS cluster synthesis; rirA, a global, Fe-responsive transcriptional repressor; RL0400, which likely encodes an unusual FeS cluster scaffold; and the possible ferri-siderophore ABC transporter rrp1. Reduced expression in Fe-depleted medium was effected by IrrA, a member of the Fur super-family, which in Bradyrhizobium, the symbiont of soybeans, and in the mammalian pathogen Brucella, is unstable in Fe-replete conditions, due to an interaction with haem. The R. leguminosarum IrrA likely interacts with ICE (iron-control element) motifs, conserved sequences near the promoters of its target genes. The rirA, sufS2BCDS1XA and rrp1 genes are also known to be regulated by RirA, which represses their expression in Fe-replete medium. We present a possible model for iron-responsive gene regulation in Rhizobium, in which the IrrA and RirA regulators, working in parallel, respond to the intracellular availability of haem and, possibly, of FeS clusters respectively. Thus, these regulators may sense the physiological consequences of extraneous Fe concentrations, rather than the concentration of Fe per se, as happens in those bacteria (e.g. Escherichia coli) in which the ferric uptake regulator Fur is the global Fe-responsive gene regulator.
Collapse
Affiliation(s)
- Jonathan D Todd
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| | | | | | | |
Collapse
|
43
|
Yang J, Sangwan I, Lindemann A, Hauser F, Hennecke H, Fischer HM, O'Brian MR. Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism. Mol Microbiol 2006; 60:427-37. [PMID: 16573691 PMCID: PMC1424673 DOI: 10.1111/j.1365-2958.2006.05101.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2006] [Indexed: 11/26/2022]
Abstract
The Irr protein from the bacterium Bradyrhizobium japonicum is expressed under iron limitation to mediate iron control of haem biosynthesis. The regulatory input to Irr is the status of haem and its precursors iron and protoporphyrin at the site of haem synthesis. Here, we show that Irr controls the expression of iron transport genes and many other iron-regulated genes not directly involved in haem synthesis. Irr is both a positive and negative effector of gene expression, and in at least some cases the control is direct. Loss of normal iron responsiveness of those genes in an irr mutant, as well as a lower total cellular iron content, suggests that Irr is required for the correct perception of the cellular iron status. Degradation of Irr in iron replete cells requires haem. Accordingly, control of Irr-regulated genes by iron was aberrant in a haem-defective strain, and iron replete mutant cells behave as if they are iron-limited. In addition, the haem mutant had an abnormally high cellular iron content. The findings indicate that B. japonicum senses iron via the status of haem biosynthesis in an Irr-dependent manner to regulate iron homeostasis and metabolism.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Biochemistry140 Farber Hall, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | - Indu Sangwan
- Department of Biochemistry140 Farber Hall, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | - Andrea Lindemann
- Institute of Microbiology, Eidgenössische Technische HochschuleCH-8093, Zürich, Switzerland.
| | - Felix Hauser
- Institute of Microbiology, Eidgenössische Technische HochschuleCH-8093, Zürich, Switzerland.
| | - Hauke Hennecke
- Institute of Microbiology, Eidgenössische Technische HochschuleCH-8093, Zürich, Switzerland.
| | - Hans-Martin Fischer
- Institute of Microbiology, Eidgenössische Technische HochschuleCH-8093, Zürich, Switzerland.
| | - Mark R O'Brian
- Department of Biochemistry140 Farber Hall, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| |
Collapse
|
44
|
Díaz-Mireles E, Wexler M, Todd JD, Bellini D, Johnston AWB, Sawers RG. The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence. MICROBIOLOGY-SGM 2006; 151:4071-4078. [PMID: 16339952 DOI: 10.1099/mic.0.28342-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The manganese uptake regulator Mur of Rhizobium leguminosarum is a close homologue of the global iron regulatory protein Fur. Mur represses the sitABCD operon, which encodes a Mn2+ transport system, specifically in response to Mn2+ but not Fe2+. In previous work the authors mapped the 5' ends of two sit operon transcripts, termed TS1 and TS2, which were co-ordinately regulated by Mn2+-Mur, but this paper now shows that only TS1 is a primary transcript. DNase I protection analyses showed that purified Mur bound, with similar affinity, to two sites in the regulatory region of sitABCD, but only when Mn2+ was present in the reaction buffer. These Mn2+-Mur-binding sites, termed MRS1 and MRS2 (Mur-responsive sequence), were closely related in sequence to each other and were separated by 16 bp, spanning the transcription initiation site TS1. The extent of the protected DNA was 34 and 31 bp for MRS1 and MRS2, respectively, which is in accord with other members of the Fur family. The DNA sequences recognized by Mn2+-Mur are wholly different from conventional Fur boxes, but some similarities to a recognition sequence for the Fur regulator from Bradyrhizobium japonicum were noted. Transcription analysis of the R. leguminosarum mur gene showed its expression to be independent of Mn2+-Mur. Thus, Mur is a sequence-specific DNA-binding protein that responds in vitro to manganese, and thus can occlude RNA polymerase access to the sitABCD promoter. Moreover, Mur recognizes a DNA sequence atypical for the Fur superfamily and, like Fur from B. japonicum, defines a new subclass of Fur-like transcriptional regulators.
Collapse
Affiliation(s)
- Edit Díaz-Mireles
- School of Biological Science, University of East Anglia, Norwich NR4 7TJ, UK
| | - Margaret Wexler
- School of Biological Science, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jonathan D Todd
- School of Biological Science, University of East Anglia, Norwich NR4 7TJ, UK
| | - Dominico Bellini
- School of Biological Science, University of East Anglia, Norwich NR4 7TJ, UK
| | - Andrew W B Johnston
- School of Biological Science, University of East Anglia, Norwich NR4 7TJ, UK
| | - R Gary Sawers
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
45
|
Rudolph G, Semini G, Hauser F, Lindemann A, Friberg M, Hennecke H, Fischer HM. The Iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J Bacteriol 2006; 188:733-44. [PMID: 16385063 PMCID: PMC1347296 DOI: 10.1128/jb.188.2.733-744.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont, possesses a heme uptake system encoded by the gene cluster hmuVUT-hmuR-exbBD-tonB. Transcription of the divergently oriented hmuT and hmuR genes was previously found to be induced by iron limitation and to depend on a 21-bp promoter-upstream iron control element (ICE). Here, we show by deletion analysis that the full-length ICE is needed for this type of positive control. Additional genes associated with ICE-like motifs were identified in the B. japonicum genome, of which bll6680 and blr7895 code for bacterioferritin and rubrerythrin homologs, respectively. Transcription start site mapping revealed that their ICEs directly overlap with either the -10 promoter region or the transcription initiation site, suggesting an involvement of the ICE in negative control of both genes. Consistent with this inference was the observed down-regulation of both genes under iron limitation, which in the case of bll6680 was shown to require an intact ICE motif. Using a yeast one-hybrid system, we demonstrated in vivo interaction of the iron response regulator (Irr) with all three ICEs. Moreover, specific in vitro binding of purified Irr protein to the ICE motifs of bll6680 and blr7895 was shown in electrophoretic mobility shift experiments. A genome-wide survey for iron-regulated genes with a custom-made Affymetrix gene chip revealed 17 genes to be induced and 68 to be repressed under iron-replete conditions. Remarkably, ICE-like motifs are associated with a large subset of those B. japonicum genes. We propose the ICE as an important cis-acting element in B. japonicum which represents the DNA-binding site for the Irr protein and, depending on its location within promoter regions, is involved in positive or negative control of the associated iron-regulated genes.
Collapse
Affiliation(s)
- Gesine Rudolph
- Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|