1
|
Wang X, Li G, Ali A, Algora C, Delgado-Baquerizo M, Goll DS, Vicca S, Xu T, Bi B, Chen Q, Lin L, Fang Y, Hao Z, Li Z, Yuan Z. Enhanced rock weathering boosts ecosystem multifunctionality via improving microbial networks complexity in a tropical forest plantation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123477. [PMID: 39615472 DOI: 10.1016/j.jenvman.2024.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
Afforestation is expected to contribute to mitigate global change by promoting carbon stocks and multiple ecosystem services. However, the success of plantations may be limited by the availability of soil nutrients. This is especially critical for plantations in tropical ecosystems which are known to be nutrient poor ecosystems. Enhanced rock weathering (ERW) represents a promising strategy for improving soil health and carbon sequestration in such ecosystems. We added wollastonite skarn, a calcium silicate rock, to soils in a rubber plantation in Yunnan, China, as part of an ERW strategy aimed at promoting soil functioning and biodiversity. Statistical significance was determined using a linear mixed-effects model, with p-values indicating the level of significance. The addition of wollastonite skarn significantly enhanced key ecosystem functions related to carbon, nitrogen, phosphorous, silicon, biodiversity, and pathogen control. However, it did not significantly affect soil enzyme activity. Some of these responses to the addition of wollastonite skarn may be associated with an increase in soil pH. Microbial network complexity played a critical role in explaining the changes in ecosystem multifunctionality in response to ERW, through both direct and indirect pathways. SYNTHESIS AND APPLICATIONS: Our findings suggest that ERW is a viable strategy for improving soil health and ecosystem resilience in tropical plantations, which are limited in nutrients. Thus, ERW has implications for carbon management and climate change mitigation.
Collapse
Affiliation(s)
- Xing Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Guochen Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Arshad Ali
- College of Life Sciences, Hebei University, Baoding, China
| | - Camelia Algora
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) CSIC, Sevilla, E-41012, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) CSIC, Sevilla, E-41012, Spain
| | - Daniel S Goll
- Laboratoire Des Sciences du Climat et de l'Environnement, Université Paris-Saclay, Paris, France
| | - Sara Vicca
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Tongtong Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Boyuan Bi
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qiong Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhanqing Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenxin Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Zuoqiang Yuan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China.
| |
Collapse
|
2
|
Muhindi S, Zellner W, Marzano SY, Boldt J, Leisner S. Transient Expression of Nicotiana tabacum Silicon-Induced Histidine-Rich Defensins in N. benthamiana Limits Necrotic Lesion Development Caused by Phytopathogenic Fungi. PHYTOPATHOLOGY 2025; 115:35-43. [PMID: 39348470 DOI: 10.1094/phyto-05-24-0162-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Silicon (Si) supplementation permits plants to better deter infection. Supplementing hydroponically propagated Nicotiana tabacum with 1 mM potassium silicate (K2SiO3) reduced necrotic lesion development on detached leaves by both Botrytis cinerea and Sclerotinia sclerotiorum. Previously, a family of Si-induced genes was identified in N. tabacum. These genes were members of the solanaceous histidine-rich defensin (HRD) superfamily and were termed NtHRD1s (the first identified family of N. tabacum HRDs). Defensins were originally identified to participate in innate immunity. Thus, the NtHRD1s were tested for antimicrobial effects on plant pathogens. Transient expression of NtHRD1 genes within N. benthamiana leaves restricted the development of necrotic lesions caused by B. cinerea and S. sclerotiorum. Thus, the NtHRD1s may be an additional Si-responsive factor conferring beneficial effects on plants. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Stephen Muhindi
- Biological Sciences, The University of Toledo College of Natural Science and Mathematics, Toledo, OH, U.S.A
| | - Wendy Zellner
- Biological Sciences, The University of Toledo College of Natural Science and Mathematics, Toledo, OH, U.S.A
| | - Shin-Yi Marzano
- U.S. Department of Agriculture-Agricultural Research Service, Application Technology Research Unit, Toledo, OH, U.S.A
| | - Jennifer Boldt
- U.S. Department of Agriculture-Agricultural Research Service, Application Technology Research Unit, Toledo, OH, U.S.A
| | - Scott Leisner
- Biological Sciences, The University of Toledo College of Natural Science and Mathematics, Toledo, OH, U.S.A
| |
Collapse
|
3
|
Chen J, Zeng Z, Chen J, Li Y, Zhang Y, Maqsood A, Chen J, Shen W. Silicon application enhances resistance against sorghum mosaic virus infection in sugarcane. PHYSIOLOGIA PLANTARUM 2025; 177:e70127. [PMID: 39956986 DOI: 10.1111/ppl.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 02/18/2025]
Abstract
Mosaic disease is one of the predominant viral diseases affecting sugarcane plants worldwide. In China, it is mainly caused by the sorghum mosaic virus (SrMV). Exogenous silicon (ESi) has emerged as a promising inducer of plant disease resistance. This study aims to elucidate the mechanistic effects of exogenous silicon on enhancing the resistance to SrMV in sugarcane. ESi was applied to the soil at different rates (15 g per barrel-1, 30 g per barrel-1, and 45 g per barrel-1), leading to a significant reduction in disease incidence (26.66-82.22%) compared to non-silicon-treated plants. Silicon application (15 g ESi barrel-1, 30 g ESi barrel-1) mitigated SrMV inhibition of sugarcane growth, including plant height, stem diameter, and leaf area, while improving photosynthesis, including stomatal conductance, intercellular CO2 concentration, net photosynthetic rate, and transpiration rate. Additionally, silicon mitigates SrMV-induced degradation of chlorophyll a and b and carotenoid content, alongside heightened activities of superoxide dismutase, peroxidase, and catalase, and decreased content of malondialdehyde and hydrogen peroxide in sugarcane leaves. The ultrastructural analysis revealed silicon's capacity to reduce SrMV accumulation within sugarcane mesophyll cells while preserving chloroplast integrity. Additionally, silicon application increases SA content in sugarcane leaves and upregulates the expression of key SA pathway genes (PAL, PR1, NPR1). These findings suggest that silicon may contribute to sugarcane resistance to SrMV by potentially influencing antioxidant enzyme activity, ROS production, and SA pathway genes.
Collapse
Affiliation(s)
- Jiaoyun Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Zhen Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Junyan Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yongjia Li
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yi Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Ambreen Maqsood
- Department of Plant Pathology, Faculty of Agriculture, The Islamia University of Bahawalpur, Pakistan
| | - Jianwen Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Wankuan Shen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Etesami H. Enhancing crop disease management through integrating biocontrol bacteria and silicon fertilizers: Challenges and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123102. [PMID: 39471603 DOI: 10.1016/j.jenvman.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR). Both biocontrol PGPR and Si demonstrate effectiveness in reducing plant disease under stress conditions, potentially leading to synergistic effects when used together. This review examines the individual mechanisms by which biocontrol PGPR and Si fertilizers manage plant diseases, emphasizing their roles in enhancing plant defense and decreasing disease incidence. Various Si fertilizer sources allow for flexible application methods, suitable for different target diseases and plant species. However, challenges exist, such as inconsistent soil Si data, lack of standardized soil tests, and limited availability of Si fertilizers. Addressing these issues necessitates collaborative efforts to develop improved Si fertilizers and tailored application strategies for specific cropping systems. Additionally, exploring silicate-solubilizing biocontrol bacteria to enhance Si availability in soils introduces intriguing research avenues. Investigating these bacteria's diversity and mechanisms can optimize Si access for plants and bolster disease resistance. Overall, combining biocontrol PGPR and Si fertilizers or silicate-solubilizing biocontrol bacteria shows promise for sustainable agriculture, enhancing crop productivity while reducing reliance on chemical inputs and promoting environmental sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Palacıoğlu G. Chitosan, Methyl Jasmonate, and Silicon Induce Resistance to Angular Leaf Spot in Common Bean, Caused by Pseudocercospora griseola, with Expression of Defense-Related Genes and Enzyme Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2915. [PMID: 39458862 PMCID: PMC11511326 DOI: 10.3390/plants13202915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This study assessed the efficacy of chitosan, methyl jasmonate, and silicon in the reduction of disease severity and the induction of defense responses in common bean plants against angular leaf spot caused by Pseudocercospora griseola. The expression level of several pathogenesis-related (PR) proteins, PR1, PR2 (β-1,3-glucanase), and PR3 (chitinase), and defense-related enzymes, phenylalanine ammonia-lyase, peroxidase, and lipoxygenase, was analyzed at different time points in common bean plants after different treatments. Elicitor treatments significantly reduced disease severity 21 days after inoculation, with silicon at a 2 mM concentration proving most effective with 38.93% disease control, followed by 1 mM MeJA and 2% chitosan, respectively. Treatments with chitosan, methyl jasmonate, and silicon, regardless of pathogen infection, significantly elevated PR1, PR2, and PR3 gene expressions at 48 h after inoculation (hpi). PAL and POD activities were similarly increased following elicitor treatments and pathogen infection, especially at 48 hpi. Chemical elicitors applied post-inoculation induced PR proteins, PAL, and POD enzyme activities at 48 hpi, while LOX activity exhibited a variable fluctuation with treatments. These findings suggested that chemical elicitors, especially silicon, were effective in reducing ALS disease severity in common beans, with improved resistance associated with the expression of pathogen-responsive genes. This study is the first to analyze the expression profiles of defense-related genes in common beans treated with chemical elicitors prior to P. griseola infection.
Collapse
Affiliation(s)
- Gülsüm Palacıoğlu
- Department of Plant Protection, Fethiye Faculty of Agriculture, Muğla Sıtkı Koçman University, 48300 Muğla, Türkiye
| |
Collapse
|
6
|
Rachappanavar V, Kumar M, Negi N, Chowdhury S, Kapoor M, Singh S, Rustagi S, Rai AK, Shreaz S, Negi R, Yadav AN. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108680. [PMID: 38701606 DOI: 10.1016/j.plaphy.2024.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India; Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India.
| | - Manish Kumar
- Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Narender Negi
- ICAR-National Bureau of Plant Genetic Resources-Regional Station, Shimla, Phagli Shimla, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India.
| |
Collapse
|
7
|
Ferrández-Gómez B, Jordá JD, Cerdán M, Sánchez-Sánchez A. Enhancing Salt Stress Tolerance in Tomato ( Solanum lycopersicum L.) through Silicon Application in Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1415. [PMID: 38794485 PMCID: PMC11125711 DOI: 10.3390/plants13101415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Soil salinization poses a significant threat to agricultural productivity, necessitating innovative agronomic strategies to mitigate its impact. This study focuses on improving salt stress resistance in tomato plants through the application of silicon (Si) in roots. A greenhouse experiment was carried out under normal conditions (control, and 1 and 4 mM Si) and under salinity stress (salt control, and 1 and 4 mM Si). Various parameters were analyzed in leaves and roots. Under normal conditions, tomato plants grown in non-saline conditions exhibited some toxicity when exposed to Na2SiO3. As for the experiments under salt stress conditions, Si mitigated oxidative damage, preserving root cell membrane integrity. The concentration of malondialdehyde was reduced by 69.5%, that of proline was reduced by 56.4% and there was a 57.6% decrease in catalase activity for tomato plants treated with 1 mM Si under salt stress. Furthermore, Fe uptake and distribution, under salt conditions, increased from 91 to 123 mg kg-1, the same concentration as that obtained for the normal control. In all cases, the lower dose produced better results under normal conditions than the 4 mM dose. In summary, this research provides a potential application of Si in non-fertigated crop systems through a radicular pathway.
Collapse
Affiliation(s)
- Borja Ferrández-Gómez
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
| | - Juana D. Jordá
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
- Institute for Environmental Studies Ramon Margalef, University of Alicante, 03690 Alicante, Spain
| | - Mar Cerdán
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
| | - Antonio Sánchez-Sánchez
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
| |
Collapse
|
8
|
Bloese J, Galanti R, Porter R, Know T. The Beneficial Effects of Soluble Silicon Fertilizer in Dendrobium Orchids: Silicon-Augmented Resistance against Damage by Insect Pests and Fungal Pathogens. INSECTS 2024; 15:323. [PMID: 38786879 PMCID: PMC11121872 DOI: 10.3390/insects15050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The effects of soluble silicon fertilization on monocots and dicots have been widely studied. However, little is known regarding its effects on protecting epiphytes against insect and fungal pests. The efficacy of silicon fertilizer to reduce damage by thrips pest complexes, namely: Thrips palmi Karny, Frankliniella occidentalis Pergande, Chaetanaphothrips orchidii Moulton, and Chaetanaphothrips signipennis Bagnall (Thysanoptera: Thripidae), and the fungal pathogens: Botrytis cinerea Persoon (Helotiales: Sclerotiniaceae) and Fusarium spp. Link (Hypocreales: Nectriaceae) was examined during a nine-month greenhouse trial in Hawaii. The trial assessed yield, quality, and pest damage across three common varieties of dendrobiums. All replicates received additional soluble silicon fertilizer applications alternating weekly between soil drench and foliar (50 mg Si/plant) applications. Yield, quality, and spray length, pest damage, plant vigor, SPAD, and leaf temperature were measured. Data were analyzed using a generalized linear model (glm) with repeated measures followed by post-hoc pair-wise comparisons in R, version 4.3.1. Treatment effects were significant at p < 0.001 for the majority of the explanatory variables including: marketable yield, spray length, thrips damage, and fungal damage. Overall, the lavender variety ('Uniwai Supreme') benefited the most from silicon applications with a 73.0% increase in marketable yield, compared to the white variety ('Uniwai Mist'), which had an increase of 50.6% marketable sprays in contrast to its untreated control. Si benefits conferred to the purple variety ('Uniwai Royale') were intermediate to the lavender and white varieties. Although the magnitude of Si benefits varied among the varieties, all dendrobium varieties significantly benefited from silicon fertilization.
Collapse
Affiliation(s)
- Joanna Bloese
- College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA; (R.G.)
| | | | | | | |
Collapse
|
9
|
Kuwada R, Ishii D. Functionally graded structures in the involucre of Job's tears. BIOINSPIRATION & BIOMIMETICS 2024; 19:036016. [PMID: 38579734 DOI: 10.1088/1748-3190/ad3b56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Nature is filled with materials that are both strong and light, such as bones, teeth, bamboo, seashells, arthropod exoskeletons, and nut shells. The insights gained from analyzing the changing chemical compositions and structural characteristics, as well as the mechanical properties of these materials, have been applied in developing innovative, durable, and lightweight materials like those used for impact absorption. This research concentrates on the involucres of Job's tears (Coix lacryma-jobivar.lacryma-jobi), which are rich in silica, hard, and serve to encase the seeds. The chemical composition and structural characteristics of involucres were observed using scanning electron microscopy and energy-dispersive x-ray spectroscopy and optical microscopy with safranin staining. The hardness of the outer and inner surfaces of the involucre was measured using the micro-Vickers hardness test, and the Young's modulus of the involucre's cross-section was measured using nanoindentation. Additionally, the breaking behavior of involucres was measured through compression test and three-point bending tests. The results revealed a smooth transition in chemical composition, as well as in the orientation and dimensions of the tissues from the outer to the inner layers of involucres. Furthermore, it was estimated that the spatial gradient of the Young's modulus is due to the gradient of silica deposition. By distributing the hard, brittle silica in the outer layer and elastoplastic organic components in the middle and inner layers, the involucres effectively respond to compressive and tensile stresses that occur when loads are applied to the outside of the involucre. Furthermore, the involucres are reinforced in both meridional and equatorial directions by robust fibrovascular bundles, fibrous bundles, and the inner layer's sclerenchyma fibers. From these factors, it was found that involucres exhibit high toughness against loads from outside, making it less prone to cracking.
Collapse
Affiliation(s)
- Rikima Kuwada
- Department of Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Daisuke Ishii
- Department of Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
10
|
Ratnadass A, Llandres AL, Goebel FR, Husson O, Jean J, Napoli A, Sester M, Joseph S. Potential of silicon-rich biochar (Sichar) amendment to control crop pests and pathogens in agroecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168545. [PMID: 37984651 DOI: 10.1016/j.scitotenv.2023.168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
We reviewed the potential of silicon (Si)-rich biochars (sichars) as crop amendments for pest and pathogen control. The main pathosystems that emerged from our systematic literature search were bacterial wilt on solanaceous crops (mainly tomato, pepper, tobacco and eggplant), piercing-sucking hemipteran pests and soil-borne fungi on gramineous crops (mainly rice and wheat), and parasitic nematodes on other crops. The major pest and pathogen mitigation pathways identified were: i) Si-based physical barriers; ii) Induction of plant defenses; iii) Enhancement of plant-beneficial/pathogen-antagonistic soil microflora in the case of root nematodes; iv) Alteration of soil physical-chemical properties resulting in Eh-pH conditions unfavorable to root nematodes; v) Alteration of soil physical-chemical properties resulting in Eh-pH, bulk density and/or water holding capacity favorable to plant growth and resulting tolerance to necrotrophic pathogens; vi) Increased Si uptake resulting in reduced plant quality, owing to reduced nitrogen intake towards some hemi-biotrophic pests or pathogens. Our review highlighted synergies between pathways and tradeoffs between others, depending, inter alia, on: i) crop type (notably whether Si-accumulating or not); ii) pest/pathogen type (e.g. below-ground/root-damaging vs above-ground/aerial part-damaging; "biotrophic" vs "necrotrophic" sensu lato, and corresponding systemic resistance pathways; thriving Eh-pH spectrum; etc.); iii) soil type. Our review also stressed the need for further research on: i) the contribution of Si and other physical-chemical characteristics of biochars (including potential antagonistic effects); ii) the pyrolysis process to a) optimize Si availability in the soil and its uptake by the crop and b) to minimize formation of harmful compounds e.g. cristobalite; iii) on the optimal form of biochar, e.g. Si-nano particles on the surface of the biochar, micron-sized biochar-based compound fertilizer vs larger biochar porous matrices.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR AIDA, 97410 Saint-Pierre, Réunion, France; AIDA, Univ Montpellier, CIRAD, Montpellier, France.
| | - Ana L Llandres
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, Institut de Recherche Coton (IRC), Cotonou, Benin; CIRAD, UPR AIDA, International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| | - François-Régis Goebel
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Olivier Husson
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Janine Jean
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Alfredo Napoli
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Mathilde Sester
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Aïda, Phnom Penh, Cambodia; Institut Technologique du Cambodge, Phnom Penh, Cambodia
| | - Stephen Joseph
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Materials Science and Engineering, University of NSW, Sydney, NSW 2052, Australia; Institute for Superconducting and Electronic Materials, School of Physics, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Rehman MFU, Khan MM. Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess Biosyst Eng 2024; 47:1-22. [PMID: 37993740 DOI: 10.1007/s00449-023-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Insects feed on plants and cause the growth of plants to be restricted. Moreover, the application of traditional pesticides causes harmful effects on non-target organisms and poses serious threats to the environment. The use of conventional pesticides has negative impacts on creatures that are not the intended targets. It also presents significant risks to the surrounding ecosystem. Insects that are exposed to these chemicals eventually develop resistance to them. This review could benefit researcher for future development of nanopesticides research. This is because a holistic approach has been taken to describe the multidimensional properties of nanopesticides, health and environmental concerns and its possible harmful effects on non-target organisms and physiochemical entities. The assessment of effects of the nanopesticides is also being discussed through the drosophotoxicology. The future outlooks have been suggested to take a critical analysis before commercialization or formulation of the nanopesticides.
Collapse
Affiliation(s)
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
12
|
Álvarez A, Oliveros D, Ávila YC, Sabogal Palma AC, Murillo W, Joli JE, Bermúdez-Cardona MB, Guarnizo N. Resistance induction with silicon in Hass avocado plants inoculated with Phytophthora cinnamomi Rands. PLANT SIGNALING & BEHAVIOR 2023; 18:2178362. [PMID: 36814118 PMCID: PMC9980686 DOI: 10.1080/15592324.2023.2178362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Root rot caused by Phytophthora cinnamomi Rands, is one of the main factors that limits avocado production worldwide; silicon as a defense inducer seems to be a viable strategy to integrate into the management of this disease. Hereby, the present study evaluated the induction of resistance with silicon in Hass avocado plants inoculated with P. cinnamomi, as a possible alternative to conventional agrochemical management. A potassium silicate solution (10 mL, 0.2 M expressed as SiO2) was applied by irrigation, for ten days before inoculation with P. cinnamomi in Hass avocado plants. Leaf samples were taken at 3, 24, 144, and 312 h after inoculation with the pathogen. Peroxidase (POD) and polyphenol oxidase (PPO) enzymes had their highest activity 3 h after pathogen inoculation (p < .05). There was a decrease in the activity of the enzyme phenylalanine ammonialyase (PAL), in the content of total phenols, and the inhibition capacity of the DPPH● radical, between 3 h and 24 h in the plants with the inducer and inoculated with P. cinnamomi (p < .05). The results suggest a beneficial effect of silicon as a defense inducer in Hass avocado plants, manifested in the activation of enzymatic pathways related to the regulation of oxidative stress and the synthesis of structural components. Therefore, the application of silicon as a defense inducer emerges as a strategy to include in the integrated management of the disease caused by P. cinnamomi in Hass avocado.
Collapse
Affiliation(s)
- Andree Álvarez
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Diego Oliveros
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Yalile C. Ávila
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Angie Carolina Sabogal Palma
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Walter Murillo
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Jordi Eras Joli
- Departamento de Química, Servicios Científico Técnicos-TCEM, Universidad de Lleida, Lleida, España
| | | | - Nathalie Guarnizo
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
- Departamento de Química, ETSEA, Universidad de Lleida, Lleida, España
| |
Collapse
|
13
|
Langenfeld NJ, Bugbee B. An improved digestion and analysis procedure for silicon in plant tissue. PLoS One 2023; 18:e0289151. [PMID: 37682894 PMCID: PMC10490927 DOI: 10.1371/journal.pone.0289151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 09/10/2023] Open
Abstract
Silicon (Si) in plant tissues reduces abiotic and biotic stress, but it is incorporated as silica (SiO2), which is difficult to solubilize for analysis. We modified an oven-induced tissue-digestion and analysis method to improve Si solubilization and validated its accuracy by quantifying the mass-balance recovery of Si from the hydroponic solution and plant tissues of cucumber (Cucumis sativus). Leaf, stem, and root tissues were dried, finely-ground, and digested in 12.5 molar sodium hydroxide at 95°C for 4 hours. Solutions were then acidified with 6 molar hydrochloric acid to achieve a pH below 2 for measurement of Si using the molybdate blue colorimetric method. Interference of phosphorus in the analysis was minimized by increasing the addition of oxalic acid from 0.6 to 1.1 molar. We recovered 101% ± 13% of the expected Si, calculated using mass-balance recovery, in leaf, stem, and root tissues across 15 digestions. This Si recovery was fourteen-fold higher than the standard acid-extraction method and similar to a USDA-ARS alkaline-extraction method. Our procedure offers a low-cost, accurate method for extraction and analysis of Si in plant tissues.
Collapse
Affiliation(s)
- Noah James Langenfeld
- Crop Physiology Laboratory, Department of Plants, Soils, and Climate, Utah State University, Logan, Utah, United States of America
| | - Bruce Bugbee
- Crop Physiology Laboratory, Department of Plants, Soils, and Climate, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
14
|
Naidu S, Pandey J, Mishra LC, Chakraborty A, Roy A, Singh IK, Singh A. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114783. [PMID: 36963184 DOI: 10.1016/j.ecoenv.2023.114783] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In the current scenario of global warming and climate change, plants face many biotic stresses, which restrain growth, development and productivity. Nanotechnology is gaining precedence over other means to deal with biotic and abiotic constraints for sustainable agriculture. One of nature's most beneficial metalloids, silicon (Si) shows ameliorative effect against environmental challenges. Silicon/Silica nanoparticles (Si/SiO2NPs) have gained special attention due to their significant chemical and optoelectronic capabilities. Its mesoporous nature, easy availability and least biological toxicity has made it very attractive to researchers. Si/SiO2NPs can be synthesised by chemical, physical and biological methods and supplied to plants by foliar, soil, or seed priming. Upon uptake and translocation, Si/SiO2NPs reach their destined cells and cause optimum growth, development and tolerance against environmental stresses as well as pest attack and pathogen infection. Using Si/SiO2NPs as a supplement can be an eco-friendly and cost-effective option for sustainable agriculture as they facilitate the delivery of nutrients, assist plants to mitigate biotic stress and enhances plant resistance. This review aims to present an overview of the methods of formulation of Si/SiO2NPs, their application, uptake, translocation and emphasize the role of Si/SiO2NPs in boosting growth and development of plants as well as their conventional advantage as fertilizers with special consideration on their mitigating effects towards biotic stress.
Collapse
Affiliation(s)
- Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Lokesh C Mishra
- Department of Zoology, Hansraj College, University of Delhi, Delhi 110007, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic.
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
15
|
Sarkar A, Kisiala A, Adhikary D, Basu U, Emery RJN, Rahman H, Kav NNV. Silicon ameliorates clubroot responses in canola (Brassica napus): A "multi-omics"-based investigation into possible mechanisms. PHYSIOLOGIA PLANTARUM 2023; 175:e13900. [PMID: 36992551 DOI: 10.1111/ppl.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae Woronin, results in severe yield losses in Brassica crops, including canola. Silicon (Si) mitigates several stresses and enhances plant resistance to phytopathogens. We investigated the effects of Si on clubroot disease symptoms in canola at two concentrations of Si, Si: soil in 1: 100 w/w (Si1.0) and Si: soil in 1:200 w/w (Si0.5) under greenhouse conditions. In addition, the effects of Si on P. brassicae-induced gene expression, endogenous levels of phytohormones and metabolites were studied using "omics" approaches. Si application reduced clubroot symptoms and improved plant growth parameters. Gene expression analysis revealed increased transcript-level responses in Si1.0 compared to Si0.5 plants at 7-, 14-, and 21-days post-inoculation (dpi). Pathogen-induced transcript-level changes were affected by Si treatment, with genes related to antioxidant activity (e.g., POD, CAT), phytohormone biosynthesis and signalling (e.g., PDF1.2, NPR1, JAZ, IPT, TAA), nitrogen metabolism (e.g., NRT, AAT), and secondary metabolism (e.g., PAL, BCAT4) exhibiting differential expression. Endogenous levels of phytohormones (e.g., auxin, cytokinin), a majority of the amino acids and secondary metabolites (e.g., glucosinolates) were increased at 7 dpi, followed by a decrease at 14- and 21-dpi due to Si-treatment. Stress hormones such as abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA) also decreased at the later time points in Si0.5, and Si1.0 treated plants. Si appears to improve clubroot symptoms while enhancing plant growth and associated metabolic processes, including nitrogen metabolism and secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Ananya Sarkar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - R J Neil Emery
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Lombardo MF, Panebianco S, Azzaro A, Catara V, Cirvilleri G. Assessing Copper-Alternative Products for the Control of Pre- and Postharvest Citrus Anthracnose. PLANTS (BASEL, SWITZERLAND) 2023; 12:904. [PMID: 36840250 PMCID: PMC9965279 DOI: 10.3390/plants12040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Citrus production is worldwide threatened by Colletotrichum spp., causal agents of pre- and postharvest anthracnose. The recent limitation on the use of copper-based antimicrobials, due to its demonstrated noxious effect on the environment, makes the control of this pathogen difficult. Thus, alternative products able to reduce/phase out copper in organic citrus farming are needed. In this study, the efficacy of 11 commercial alternative products were evaluated in vitro, in growth chamber, in open field and in postharvest environments. In vitro, mineral fertilizers, basic substances, essential oils, plant defense stimulators and biological control agents were able to inhibit the mycelial growth with variable efficacy. On artificially infected citrus fruit, almost all tested products significantly reduced disease incidence and severity, but with lower efficacy than copper. The efficacy of mineral fertilizers-based Kiram and Vitibiosap 458 Plus, citrus essential oil-based Prev-Am Plus and chitosan-based Biorend was confirmed in open field trials, in naturally infected citrus fruits. In these trials Biorend was the best alternative product, significantly reducing disease incidence (71% DI reduction) with better results than copper (47.5%). Field treatments reduced the incidence and severity of the disease in postharvest conditions, especially in fruits field-treated three times. Overall, selected products tested in open field can represent a good alternative to copper compounds in the view of future limitation of its use.
Collapse
|
17
|
Mapuranga J, Chang J, Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1102908. [PMID: 36589137 PMCID: PMC9800938 DOI: 10.3389/fpls.2022.1102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.
Collapse
|
18
|
Li Y, Liu J, Lv P, Mi J, Zhao B. Silicon improves the photosynthetic performance of oat leaves infected with Puccinia graminis f. sp. avenae. FRONTIERS IN PLANT SCIENCE 2022; 13:1037136. [PMID: 36507416 PMCID: PMC9727285 DOI: 10.3389/fpls.2022.1037136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. avenae (Pga) is a key disease affecting oat production worldwide. Silicon (Si) plays an essential role in enhancing plant resistance against pathogens. However, the scientific evidence of Si-mediated stem rust resistance of oat from the photosynthetic perspective has not been reported. The specific objective of this research was to investigate the effects of Si application on disease inhibition, photosynthetic gas exchange parameters, light response parameters, photosynthetic pigments and chlorophyll fluorescence parameters under Pga infection. Our results illustrated that Si application significantly reduced rust severity while the other parameters like net photosynthetic rate (P n), stomatal conductance (Gs), intercellular CO2 concentration (C i) and transpiration rate (T r) were significantly increased. Si application increased maximum photosynthetic rate (P nmax) and light saturation point (LSP), while reduced the dark respiration rate (Rd) and light compensation point (LCP). The results also indicated that Si application significantly increased the activities of maximum fluorescence (F m), variable fluorescence (F v), maximum quantum yield of photosystem II (F v/F m), photochemical quenching (qP), photosynthetic performance index (PI ABS), actual PSII quantum yield (ΦPSII), electron transfer rate (ETR), the absorbed light energy per unit reaction center (ABS/RC) and the dissipated energy per unit reaction center (DIo/RC), whereas it decreased the minimal fluorescence (F o), non-photochemical quenching (NPQ), the absorbed light energy used for electron transfer per unit reaction center (ETo/RC) and the absorbed light energy used for reduction of QA per unit reaction center (TRo/RC). The contents of chlorophyll a, b and carotenoids were also increased due to the change in the activity of parameters due to Si application as mentioned above. In conclusion, the results of the current study suggests that Si imparts tolerance to the stem rust possibly by the underlying mechanisms of improving gas exchange performance, and efficiency of the photochemical compounds in oat leaves.
Collapse
|
19
|
Genomic Landscape Highlights Molecular Mechanisms Involved in Silicate Solubilization, Stress Tolerance, and Potential Growth-Promoting Activity of Bacterium Enterobacter sp. LR6. Cells 2022; 11:cells11223622. [PMID: 36429050 PMCID: PMC9688052 DOI: 10.3390/cells11223622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si.
Collapse
|
20
|
Yu J, Yu X, Li C, Ayaz M, Abdulsalam S, Peng D, Qi R, Peng H, Kong L, Jia J, Huang W. Silicon Mediated Plant Immunity against Nematodes: Summarizing the Underline Defence Mechanisms in Plant Nematodes Interaction. Int J Mol Sci 2022; 23:ijms232214026. [PMID: 36430503 PMCID: PMC9692242 DOI: 10.3390/ijms232214026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Silicon (Si) is known to stimulate plant resistance against different phytopathogens, i.e., bacteria, fungi, and nematodes. It is an efficient plant growth regulator under various biotic and abiotic stresses. Silicon-containing compounds, including silicon dioxide, SiO2 nanoparticles (NPs), nano-chelated silicon fertilizer (NCSF), sodium siliconate, and sodium metasilicate, are effective in damaging various nematodes that reduce their reproduction, galling, and disease severity. The defence mechanisms in plant-nematodes interaction may involve a physical barrier, plant defence-associated enzyme activity, synthesis of antimicrobial compounds, and transcriptional regulation of defence-related genes. In the current review, we focused on silicon and its compounds in controlling plant nematodes and regulating different defence mechanisms involved in plant-nematodes interaction. Furthermore, the review aims to evaluate the potential role of Si application in improving plant resistance against nematodes and highlight its need for efficient plant-nematodes disease management.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Caihong Li
- Cotton Sciences Research Institute of Hunan, Changde 415101, China
| | - Muhammad Ayaz
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Sulaiman Abdulsalam
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Crop Protection, Division of Agricultural Colleges, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rende Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianping Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
21
|
Galgo SJC, Lim JY, Canatoy RC, Ha JS, Sohn KM, Kim PJ. Improving methane mitigating functionality of blast furnace slag by adding electron acceptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157296. [PMID: 35835186 DOI: 10.1016/j.scitotenv.2022.157296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Blast furnace slag (BFS), a byproduct of iron-producing process, has been applied as silicate fertilizer in rice paddy. Silicate fertilizer contains lime and silicate as main components and iron and manganese as electron acceptors. This amendment improves soil productivity and mitigates methane (CH4) emissions. However, its suppression effect was limited to <20 % at a field level, and its functionality needs improvement to encourage recycling. We hypothesized that the effect of silicate fertilizer on suppressing CH4 emission might improve by increasing electron acceptor concentration. To investigate the feasibility of electron acceptor added silicate fertilizer on increasing CH4 flux suppression, four byproducts of the iron-production process (basic oxygen slag-BOF, ferromanganese slag-FerroMn, iron rust, and Kambara reactor slag-KR) were selected and compared through soil incubation test. Iron rust effectively suppressed CH4 production by 67 %, which is comparable with a 15-30 % reduction of others. To find the optimum mixing ratio of iron rust, it was mixed to BFS with the rate of 0-5 % (wt wt-1), and their effect on CH4 flux was compared. The 3 % mixing ratio highly increased the BFS functionality on suppressing CH4 production. To confirm the field adaptability of the improved BFS, three types of silicate fertilizer (mixing iron rust with the ratios of 0, 2.5, and 5 %) were applied with the recommendation level (1.5 Mg ha-1) before rice transplanting. Seasonal CH4 flux was significantly decreased by the original silicate fertilizer (BFS0) application to 20 % over control. This effectiveness was enhanced by adding 2.5 % iron rust but thereafter, not more increased. Silicate fertilization (BFS0) significantly increased rice grain productivity by 9 % over control, and the improved silicate fertilizer (BFS2.5 & 5.0) more highly increased by 13 %. In conclusion, the BFS's functionality to increase rice productivity and suppress CH4 emission could be improved by adding an effective electron acceptor such as Fe2O3.
Collapse
Affiliation(s)
- Snowie Jane C Galgo
- Division of Applied Life Science (BK21+ Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Ji Yeon Lim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Ronley C Canatoy
- Division of Applied Life Science (BK21+ Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Ji Su Ha
- Division of Applied Life Science (BK21+ Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Keon Mok Sohn
- Division of Applied Life Science (BK21+ Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Pil Joo Kim
- Division of Applied Life Science (BK21+ Program), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
22
|
Pérez-Zavala FG, Atriztán-Hernández K, Martínez-Irastorza P, Oropeza-Aburto A, López-Arredondo D, Herrera-Estrella L. Titanium nanoparticles activate a transcriptional response in Arabidopsis that enhances tolerance to low phosphate, osmotic stress and pathogen infection. FRONTIERS IN PLANT SCIENCE 2022; 13:994523. [PMID: 36388557 PMCID: PMC9664069 DOI: 10.3389/fpls.2022.994523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Titanium is a ubiquitous element with a wide variety of beneficial effects in plants, including enhanced nutrient uptake and resistance to pathogens and abiotic stresses. While there is numerous evidence supporting the beneficial effects that Ti fertilization give to plants, there is little information on which genetic signaling pathways the Ti application activate in plant tissues. In this study, we utilize RNA-seq and ionomics technologies to unravel the molecular signals that Arabidopsis plants unleash when treated with Ti. RNA-seq analysis showed that Ti activates abscisic acid and salicylic acid signaling pathways and the expression of NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAT receptors likely by acting as a chemical priming molecule. This activation results in enhanced resistance to drought, high salinity, and infection with Botrytis cinerea in Arabidopsis. Ti also grants an enhanced nutritional state, even at suboptimal phosphate concentrations by upregulating the expression of multiple nutrient and membrane transporters and by modifying or increasing the production root exudates. Our results suggest that Ti might act similarly to the beneficial element Silicon in other plant species.
Collapse
Affiliation(s)
| | - Karina Atriztán-Hernández
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Paulina Martínez-Irastorza
- Intitute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Araceli Oropeza-Aburto
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Damar López-Arredondo
- Intitute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
- Intitute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
23
|
Fannin LD, Laugier EJ, van Casteren A, Greenwood S, Dominy NJ. Differentiating siliceous particulate matter in the diets of mammalian herbivores. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luke D. Fannin
- Department of Anthropology Dartmouth College Hanover NH USA
- Graduate Program in Ecology, Evolution, Environment, and Society Dartmouth College Hanover NH USA
| | - Elise J. Laugier
- Department of Anthropology Dartmouth College Hanover NH USA
- Graduate Program in Ecology, Evolution, Environment, and Society Dartmouth College Hanover NH USA
| | - Adam van Casteren
- School of Biological Sciences University of Manchester Manchester UK
| | - Sabrina L. Greenwood
- Department of Animal and Veterinary Sciences University of Vermont Burlington VT USA
| | - Nathaniel J. Dominy
- Department of Anthropology Dartmouth College Hanover NH USA
- Department of Biological Sciences Dartmouth College Hanover NH USA
| |
Collapse
|
24
|
Silicon Controls Bacterial Wilt Disease in Tomato Plants and Inhibits the Virulence-Related Gene Expression of Ralstonia solanacearum. Int J Mol Sci 2022; 23:ijms23136965. [PMID: 35805970 PMCID: PMC9266643 DOI: 10.3390/ijms23136965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Silicon (Si) has a multifunctional role in improving plant growth and enhancing plant disease resistance, but its mechanisms are not fully understood. In this study, we investigated the impacts of silicon application on the control of bacterial wilt and elucidated the molecular mechanisms using transcriptome sequencing. Compared to non-Si treatment, Si application (0.5–2 mM) significantly reduces tomato bacterial wilt index by 46.31–72.23%. However, Si does not influence the growth of R. solanacearum. Si application negatively influences R. solanacearum exopolysaccharide (EPS) synthesis and biofilm formation. Transcriptome analysis showed that Si treatment significantly downregulates the expression of virulence genes’ transcriptional regulator (xpsR), EPS synthesis-related genes (epsD and tek), and type III effectors (HrpB2, SpaO, and EscR) in R. solanacearum. In addition, Si remarkably upregulates the expression of twitch motor-related genes (pilE2, pilE, fimT, and PilX). These findings suggest that silicon-suppressed tomato wilt incidence may be due to the regulation of the virulence-related genes of R. solanacearum by Si. Our research adds new knowledge to the application of Si in the field of disease control.
Collapse
|
25
|
Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A. Potential Applications of Engineered Nanoparticles in Plant Disease Management: A Critical Update. CHEMOSPHERE 2022; 295:133798. [PMID: 35122813 DOI: 10.1016/j.chemosphere.2022.133798] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plant diseases caused by pathogenic entities pose severe issues to global food security. Effective sensory applications and tools for the effective determination of plant diseases become crucial to the assurance of food supply and agricultural sustainability. Antibody-mediated molecular assays and nucleic acid are gold-standard approaches for plant disease diagnosis, but the evaluating methodologies are liable, complex, and laborious. With the rise in global food demand, escalating the food production in threats of diverse pathogen ranges, and climate change is a major challenge. Engineered nanoparticles (NPs) have been inserted into conventional laboratory sequence technologies or molecular assays that provide a remarkable increment in selectivity and sensitivity. In the present scenario, they are useful in plant disease management as well as in plant health monitoring. The use of NPs could sustainably mitigate numerous food security issues and or threats in disease management by decreasing the risk of chemical inputs and alleviating supra detection of pathogens. Overall, this review paper discusses the role of NPs in plant diseases management, available commercial products. Additionally, the future directions and their regulatory laws in the usage of the nano-diagnostic approach for plant health monitoring have been explained.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satyakam Guha
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; School of Agricultural Sciences, K.R. Mangalam University, Sohna Rural, Haryana, 122103, India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia.
| |
Collapse
|
26
|
Farooq QUA, Hardy GESJ, McComb JA, Thomson PC, Burgess TI. Changes to the Bacterial Microbiome in the Rhizosphere and Root Endosphere of Persea americana (Avocado) Treated With Organic Mulch and a Silicate-Based Mulch or Phosphite, and Infested With Phytophthora cinnamomi. Front Microbiol 2022; 13:870900. [PMID: 35572652 PMCID: PMC9097018 DOI: 10.3389/fmicb.2022.870900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Plant growth and responses of the microbial profile of the rhizosphere soil and root endosphere were investigated for avocado plants infested or not infested with Phytophthora cinnamomi and the changes were compared in plants grown with various soil additives or by spraying plants with phosphite. Soil treatments were organic mulches or silica-based mineral mulch. Reduction of root growth and visible root damage was least in the infested plants treated with phosphite or mineral mulch applied to the soil. Rhizosphere soils and root endospheres were analyzed for bacterial communities using metabarcoding. Bacterial abundance and diversity were reduced in infested rhizospheres and root endospheres. The presence or absence of mineral mulch resulted in greater diversity and larger differences in rhizosphere community composition between infested and non-infested pots than any other treatment. Some rhizosphere bacterial groups, especially Actinobacteria and Proteobacteria, had significantly higher relative abundance in the presence of Phytophthora. The bacterial communities of root endospheres were lower in abundance than rhizosphere communities and not affected by soil treatments or phosphite but increased in abundance after infection with P. cinnamomi. These findings suggested that the addition of silicate-based mineral mulch protects against Phytophthora root rot, which may be partly mediated through changes in rhizosphere bacterial community composition. However, the changes to the microbiome induced by spraying plants with phosphite are different from those resulting from the application of mineral mulch to the soil.
Collapse
Affiliation(s)
- Qurrat Ul Ain Farooq
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Giles Edward St. John Hardy
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
- ArborCarbon, ROTA Compound Murdoch University, Murdoch, WA, Australia
| | - Jen A. McComb
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | | | - Treena Isobel Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
27
|
Srivastava A, Sharma VK, Kaushik P, El-Sheikh MA, Qadir S, Mansoor S. Effect of silicon application with mycorrhizal inoculation on Brassica juncea cultivated under water stress. PLoS One 2022; 17:e0261569. [PMID: 35389996 PMCID: PMC8989204 DOI: 10.1371/journal.pone.0261569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Brassica juncea L. is a significant member of the Brassicaceae family, also known as Indian mustard. Water is a limiting factor in the successful production of this crop. Here, we tested the effect of water shortage in B. juncea plants supplemented with or without the application of silicon and arbuscular mycorrhizal fungi in total 8 different treatments compared under open filed conditions using a randomised complete block design (RCBD). The treatments under control conditions were control (C, T1); C+Silicon (Si, T2); C+My (Mycorrhiza; T3); and C+Si+My (T4). In contrast, treatments under stress conditions were S (Stress; T5); S+Si (T6); S+My (T7) and S+Si+My (T8), respectively. In total, we evaluated 16 traits, including plant response to stress by evaluating peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity. The fresh weight (g) increased only 7.47 percent with mycorrhiza (C+My) and 22.39 percent with silicon (C+Si) but increased 291.08 percent with both mycorrhiza and silicon (C+Si+My). Using mycorrhiza (S+My) or silicon (S+Si) alone produced a significant increase of 53.16 percent and 55.84 percent in fresh weight, respectively, while using both mycorrhiza and silicon (S+Si+My) together produced a dramatic increase of 380.71 percent under stress conditions. Superoxidase dismutase concentration (Ug−1 FW) was found to be increased by 29.48 percent, 6.71 percent, and 22.63 percent after applying C+My, C+Si and C+Si+My, but treatment under stress revealed some contrasting trends, with an increase of 11.21 percent and 19.77 percent for S+My, S+Si+My, but a decrease of 13.15 percent for S+Si. Finally, in the presence of stress, carotenoid content (mg/g FW) increased by 58.06 percent, 54.83 percent, 183.87 percent with C+My, and 23.81 percent with S+My and S+Si+My, but decreased by 22.22 percent with S+Si. Silicon application proved to be more effective than AMF treatment with Rhizophagus irregularis, and the best results were obtained with the combination of Si and AMF. This work will help to suggest the measures to overcome the water stress in B. juncea.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Department of Botany, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh
| | - Vijay Kumar Sharma
- Department Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- * E-mail: ,
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaista Qadir
- Department of Botany, Womens College, Srinagar, Jammu and Kashmir, India
| | - Sheikh Mansoor
- Division of Biochemistry FBSc, SKUAST Jammu J&K, Jammu and Kashmir, India
| |
Collapse
|
28
|
Understanding the Relationship between Water Availability and Biosilica Accumulation in Selected C4 Crop Leaves: An Experimental Approach. PLANTS 2022; 11:plants11081019. [PMID: 35448747 PMCID: PMC9031050 DOI: 10.3390/plants11081019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Biosilica accumulation in plant tissues is related to the transpiration stream, which in turn depends on water availability. Nevertheless, the debate on whether genetically and environmentally controlled mechanisms of biosilica deposition are directly connected to water availability is still open. We aim at clarifying the system which leads to the deposition of biosilica in Sorghum bicolor, Pennisetum glaucum, and Eleusine coracana, expanding our understanding of the physiological role of silicon in crops well-adapted to arid environments, and simultaneously advancing the research in archaeological and paleoenvironmental studies. We cultivated ten traditional landraces for each crop in lysimeters, simulating irrigated and rain-fed scenarios in arid contexts. The percentage of biosilica accumulated in leaves indicates that both well-watered millet species deposited more biosilica than the water-stressed ones. By contrast, sorghum accumulated more biosilica with respect to the other two species, and biosilica accumulation was independent of the water regime. The water treatment alone did not explain either the variability of the assemblage or the differences in the biosilica accumulation. Hence, we hypothesize that genetics influence the variability substantially. These results demonstrate that biosilica accumulation differs among and within C4 species and that water availability is not the only driver in this process.
Collapse
|
29
|
Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK, Das A, Yadav V, Yadav B, Shekhawat K, Upadhyay PK, Yadav DK, Singh VK. Nanofertilizers for agricultural and environmental sustainability. CHEMOSPHERE 2022; 292:133451. [PMID: 34973251 DOI: 10.1016/j.chemosphere.2021.133451] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Indiscriminate use of chemical fertilizers in the agricultural production systems to keep pace with the food and nutritional demand of the galloping population had an adverse impact on ecosystem services and environmental quality. Hence, an alternative mechanism is to be developed to enhance farm production and environmental sustainability. A nanohybrid construct like nanofertilizers (NFs) is an excellent alternative to overcome the negative impact of traditional chemical fertilizers. The NFs provide smart nutrient delivery to the plants and proves their efficacy in terms of crop productivity and environmental sustainability over bulky chemical fertilizers. Plants can absorb NFs by foliage or roots depending upon the application methods and properties of the particles. NFs enhance the biotic and abiotic stresses tolerance in plants. It reduces the production cost and mitigates the environmental footprint. Multitude benefits of the NFs open new vistas towards sustainable agriculture and climate change mitigation. Although supra-optimal doses of NFs have a detrimental effect on crop growth, soil health, and environmental outcomes. The extensive release of NFs into the environment and food chain may pose a risk to human health, hence, need careful assessment. Thus, a thorough review on the role of different NFs and their impact on crop growth, productivity, soil, and environmental quality is required, which would be helpful for the research of sustainable agriculture.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raghavendra Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208 024, India
| | - Devideen Yadav
- ICAR- Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand, 248 195, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Rishi Raj
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ravikant Avasthe
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Sikkim, 737 102, India
| | - S K Yadav
- ICAR- Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, 226 002, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Tripura, 799 210, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Brijesh Yadav
- ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, 173213, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - P K Upadhyay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Dinesh Kumar Yadav
- ICAR- Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
| | - Vinod K Singh
- ICAR-Central Research Institute on Dryland Agriculture, Hyderabad, Telangana, 500 059, India
| |
Collapse
|
30
|
Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants. Int J Mol Sci 2022; 23:ijms23073803. [PMID: 35409165 PMCID: PMC8998806 DOI: 10.3390/ijms23073803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Silicon (Si) has beneficial effects on not only plant growth but also against biotic and abiotic stresses. However, a few studies focus on how Si application helps strawberry (Fragaria × ananassa Duch.) resist powdery mildew. The aim of this work was to find out the optimal Si application method before cutting propagation to enhance the resistance to powdery mildew in strawberry “daughter” plants. Naturally infected “mother” plants of ‘Sulhyang’, ‘Maehyang’, and ‘Kuemsil’ strawberries were supplied with Si. Potassium silicate (K2SiO3) at a final concentration of 75 mg·L−1 Si was either added to the medium for drenching or sprayed to the leaves of the “mother” or “daughter” plant, or soluble Si fertilizer was used to dress the “mother” plant. The Si application significantly increased the shoot fresh weight of the “daughter” plants. Supplemental Si also increased the contents of phosphorus (P), potassium (K), and magnesium (Mg). In addition, the Si treatment decreased the damage of powdery mildew by increased level of proline content and suppressive reactive oxygen species. After applying Si, the length and density of hyphae on the leaf surface decreased. In addition, the infected area of “daughter” plant leaves covered with powdery mildew decreased. This study also demonstrated that Si increased the expression of resistance-gene and decreased the expression of susceptibility-gene of strawberry. Overall, Si application promoted the growth of the “daughter” plants regardless of the application method. Direct foliar Si spray to the “daughter” plants before cutting propagation is recommended to increase their resistance to powdery mildew.
Collapse
|
31
|
Drenched Silicon Suppresses Disease and Insect Pests in Coffee Plant Grown in Controlled Environment by Improving Physiology and Upregulating Defense Genes. Int J Mol Sci 2022; 23:ijms23073543. [PMID: 35408899 PMCID: PMC8998747 DOI: 10.3390/ijms23073543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Plant disease and insect pests are major limiting factors that reduce crop production worldwide. The ornamental indoor cultivation cash crop dwarf coffee Punica arabica ‘Pacas’ is also troubled by these issues. Silicon (Si) is one of the most abundant elements in the lithosphere and positively impacts plant health by effectively mitigating biotic and abiotic stresses. Several studies have shown that Si activates plant defense systems, although the specific nature of the involvement of Si in biochemical processes that lead to resistance is unclear. In our study, Si significantly promoted the growth and development of dwarf coffee seedlings grown in plant growth chambers. More than that, through natural infection, Si suppressed disease and insect pests by improving physiology (e.g., the strong development of the internal structures of roots, stems, and leaves; higher photosynthetic efficiency; more abundant organic matter accumulation; the promotion of root activity; the efficient absorption and transfer of mineral elements; and various activated enzymes) and up-regulating defense genes (CaERFTF11 and CaERF13). Overall, in agriculture, Si may potentially contribute to global food security and safety by assisting in the creation of enhanced crop types with optimal production as well by mitigating plant disease and insect pests. In this sense, Si is a sustainable alternative in agricultural production.
Collapse
|
32
|
Advances in Understanding Silicon Transporters and the Benefits to Silicon-Associated Disease Resistance in Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Silicon (Si) is the second most abundant element after oxygen in the earth’s crust and soil. It is available for plant growth and development, and it is considered as quasi-essential for plant growth. The uptake and transport of Si is mediated by Si transporters. With the study of the molecular mechanism of Si uptake and transport in higher plants, different proteins and coding genes with different characteristics have been identified in numerous plants. Therefore, the accumulation, uptake and transport mechanisms of Si in various plants appear to be quite different. Many studies have reported that Si is beneficial for plant survival when challenged by disease, and it can also enhance plant resistance to pathogens, even at low Si accumulation levels. In this review, we discuss the distribution of Si in plants, as well as Si uptake, transport and accumulation, with a focus on recent advances in the study of Si transporters in different plants and the beneficial roles of Si in disease resistance. Finally, the application prospects are reviewed, leading to an exploration of the benefits of Si uptake for plant resistance against pathogens.
Collapse
|
33
|
Abou-Sreea AIB, Roby MHH, Mahdy HAA, Abdou NM, El-Tahan AM, El-Saadony MT, El-Tarabily KA, El-Saadony FMA. Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle ( Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract. PLANTS (BASEL, SWITZERLAND) 2022; 11:497. [PMID: 35214829 PMCID: PMC8879578 DOI: 10.3390/plants11040497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Two successive field trials were carried out at the experimental farm of the Agriculture Department of Fayoum University, Fayoum, Egypt, to investigate the sole or dual interaction effect of applying a foliar spray of Aloe saponaria extract (Ae) or potassium silicate (KSi) on reducing the stressful salinity impacts on the development, yield, and features of roselle (Hibiscus sabdariffa L.) plants. Both Ae or KSi were used at three rates: 0% (0 cm3 L-1), 0.5% (5 cm3 L-1), and 1% (10 cm3 L-1) and 0, 30, and 60 g L-1, respectively. Three rates of salinity, measured by the electrical conductivity of a saturated soil extract (ECe), were also used: normal soil (ECe < 4 dS/m) (S1); moderately-saline soil (ECe: 4-8 dS/m) (S2); and highly-saline soil (ECe: 8-16 dS/m) (S3). The lowest level of salinity yielded the highest levels of all traits except for pH, chloride, and sodium. Ae at 0.5% increased the values of total soluble sugars, total free amino acids, potassium, anthocyanin, a single-photon avalanche diode, stem diameter, fruit number, and fresh weight, whereas 1% of Ae resulted in the highest plant height, chlorophyll fluorescence (Fv/Fm), performance index, relative water content, membrane stability index, proline, total soluble sugars, and acidity. KSi either at 30 or 60 g L-1 greatly increased these abovementioned attributes. Fruit number and fruit fresh weight per plant also increased significantly with the combination of Ae at 1% and KSi at 30 g L-1 under normal soil conditions.
Collapse
Affiliation(s)
| | - Mohamed H. H. Roby
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Hayam A. A. Mahdy
- Botany Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Nasr M. Abdou
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria 21500, Egypt;
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Fathy M. A. El-Saadony
- Agricultural Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
34
|
Lim JY, Kang YG, Sohn KM, Kim PJ, Galgo SJC. Creating new value of blast furnace slag as soil amendment to mitigate methane emission and improve rice cropping environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150961. [PMID: 34656598 DOI: 10.1016/j.scitotenv.2021.150961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/06/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Blast furnace slag (BFS), a by-product of iron making, has been utilized as silicate fertilizer in Korean and Japanese rice paddy. Silicate fertilizer, which has high contents of active iron and manganese as electron acceptor, was newly known to suppress methane (CH4) emission in flooded rice paddies, but the effect of its long-term application on rice cropping environment is still debatable. To evaluate the effect of silicate fertilization on suppressing CH4 emissions, the changes of CH4 index, indicating the ratio (%) of seasonal CH4 flux at the silicate fertilization treatment to that at the control, were generalized using the global investigation data (42 observations from 8 fields in Bangladesh, China, and Korea). Seasonal CH4 fluxes significantly decreased with increasing silicate fertilization levels. In CH4 index changes, 1.5 Mg ha-1 of silicate fertilizer application (the recommended level of rice cultivation in Korea) decreased by 15% of seasonal CH4 fluxes. Rice grain yield highly increased with increasing silicate fertilization rates and maximized at approximately 4 Mg ha-1 with 18% higher than no-silicate fertilization due to overall improvement of soil properties. To evaluate the long-term silicate fertilization effect on rice cropping environments, silicate (1.5 Mg ha-1 year-1) and non-silicate fertilization treatments were installed in a typical temperate-monsoon climate paddy field in South Korea in 1990. Periodic silicate fertilization significantly increased rice grain productivity by an average of 14% over the control for the last 28 years. This fertilization evidently improved rice quality without changes in chemical quality. Consecutive silicate fertilization effectively improved soil physical and chemical properties but did not increase any acid extractable heavy metal concentration in soil. In conclusion, BFS as silicate fertilizer could be a beneficial amendment to mitigate CH4 emission in the rice paddy and improve soil properties and rice productivity and quality without hazardous material accumulation.
Collapse
Affiliation(s)
- Ji Yeon Lim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Yeong Gyeong Kang
- Korea Foundation of Korean Foundation for Quality, 13th Fl, Woolim Lion's Valley B, 168, Gasan digital 1-ro, Geumcheon-gu, Gasan dong, Seoul, Republic of Korea
| | - Keon Mok Sohn
- Division of Applied Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; Division of Applied Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - Snowie Jane C Galgo
- Division of Applied Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
35
|
Abdou NM, El-Saadony FM, Roby MH, Mahdy HA, El-Shehawi AM, Elseehy MM, El-Tahan AM, Abdalla H, Saad AM, Idris Badawy AbouSreea A. Foliar spray of potassium silicate, aloe extract composite and their effect on growth and yielding capacity of roselle (Hibiscus sabdariffa L.) under water deficit stress conditions. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
36
|
Chowdhury MSR, Rahman MA, Nahar K, Dastogeer KMG, Hamim I, Mohiuddin K. Mineral nutrient content of infected plants and allied soils provide insight into wheat blast epidemics. Heliyon 2022; 8:e08966. [PMID: 35243086 PMCID: PMC8873539 DOI: 10.1016/j.heliyon.2022.e08966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Wheat is the second-largest cereal crop in Bangladesh and plays an essential role in ensuring the country's food security. Since 2016, there has been a severe epidemic of wheat blast disease in Bangladesh. This research investigated the nutritional context of wheat blast epidemics by analyzing the infected plants and allied soils. We collected blast-infected wheat plants and allied soil samples from six different severely infected regions of the Meherpur district situated in the western part of Bangladesh. The incidence and severity of wheat blast disease in the sampling fields ranged from 84.78 - 95.11% and 82.06–92.19%, respectively. Among the investigated mineral nutrients in plant samples, the concentrations of sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe) and manganese (Mn) were within the acceptable range of the reference values. In contrast, 50% of the plant samples had insufficient phosphorus (P) concentrations, while others were within the critical range. The potassium (K) and copper (Cu) concentrations in more than 33.5% of plants were within the deficient range. The Si concentrations in half of the tested plant samples were below the acceptable level. However, the boron (B) concentration of around 50% of samples was within the toxic range. The total K, Ca, Zn, Fe, Mn, and Cu concentrations of the soils were lower than the reference values. Based on the interpretation of the available soil test values, the concentrations of S, Fe, Mn, and B in most samples were very low. The concentrations of available P, K, Ca, Mg, Zn and Cu in soil samples were higher than the critical limit. There was a negative relationship between K, S, Ca, Mg, Na and Si concentrations with blast incidence and severity. Therefore, this research suggests that certain plant nutrients such as P, K, Cu, B and Si play a vital role in the wheat blast disease epidemic.
Collapse
|
37
|
Drogoudi P, Pantelidis GE. Comparative effects of gibberellin A 3 , glycine betaine, and Si, Ca, and K fertilizers on physiological disorders and yield of pomegranate cv. Wonderful. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:259-267. [PMID: 34091902 DOI: 10.1002/jsfa.11354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Damage from cracking, russeting, and sunscalds causes significant yield losses in pomegranate worldwide and may result from stressful environmental conditions. Although foliar sprays with minerals or growth regulators could be an important orchard management, little is known on the effectiveness of glycine betaine, silicon (Si)-based fertilizers or the response of cv. Wonderful to gibberellin A3 (GA3 ). RESULTS During a 2-year study, foliar spraying with GA3 at 75 or 150 mg L-1 applied in July substantially reduced cracking, russeting, and sunscald symptoms and increased fruit size, yield, and 100-aril weight, without affecting the % edible portion or % juice, suggesting that arils and skin increased similarly. Nevertheless, they reduced the skin red coloration, especially at the higher dose. GA3 at 75 mg L-1 applied in September resulted in a low number of harvested fruit as a result of delayed maturation. Spraying with glycine betaine at seven repeated times at biweekly intervals starting in July, reduced sunscald symptoms, red coloration, and maturity index only in the year with high damage. Foliar sprays with calcium chloride or Si-based fertilizer containing potassium, applied as in the glycine betaine treatment, did not affect the occurrence of physiological disorders, whereas Si-based fertilizer containing potassium and calcium increased cracking and decreased sunscald only in the year with high damage. CONCLUSION Spraying with GA3 at 75 mg L-1 in July could have a significant impact on a grower's income by reducing damage from physiological disorders, improving yield with a minimum decrease in red skin coloration. The efficacy of nutrient-related fertilizers and glycine betaine were not constant, and this would be useful to evaluate at earlier application times and under stress conditions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pavlina Drogoudi
- Institute of Plant Breeding and Genetic Resources, Department of Deciduous Fruit Trees, Hellenic Agricultural Organization 'Demeter', Naoussa, Greece
| | - Georgios E Pantelidis
- Institute of Plant Breeding and Genetic Resources, Department of Deciduous Fruit Trees, Hellenic Agricultural Organization 'Demeter', Naoussa, Greece
| |
Collapse
|
38
|
Effects of silicon dioxide, zinc oxide and titanium dioxide nanoparticles on Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Exp Parasitol 2021; 230:108176. [PMID: 34740586 DOI: 10.1016/j.exppara.2021.108176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
Foliar spray of silicon dioxide (SiO2 NPs), zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs) nanoparticles were used for the management of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Foliar spray of SiO2 NPs/ZnO NPs or TiO2 NPs increased plant growth attributes, chlorophyll and carotenoid of carrot. Foliar spray of 0.10 mg ml-1 SiO2 NPs caused the highest increase in plant growth, chlorophyll and carotenoid content of leaves followed by spray of 0.10 mg ml-1 ZnO NPs, 0.05 mg ml-1 SiO2 NPs, 0.05 mg ml-1 ZnO NPs, 0.10 mg ml-1 TiO2 NPs and 0.05 mg ml-1 TiO2 NPs. Use of SiO2 NPs caused a higher reduction in root galling, nematode multiplication and disease indices followed by ZnO NPs and TiO2 NPs. Two principal components analysis showed a total of 97.84% overall data variance in plants inoculated with single pathogen and 97.20% in plants inoculated with two or more pathogens. Therefore, foliar spray of SiO2 NPs appears interesting for the management of disease complex of carrot.
Collapse
|
39
|
Kang H, Elmer W, Shen Y, Zuverza-Mena N, Ma C, Botella P, White JC, Haynes CL. Silica Nanoparticle Dissolution Rate Controls the Suppression of Fusarium Wilt of Watermelon ( Citrullus lanatus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13513-13522. [PMID: 33683110 DOI: 10.1021/acs.est.0c07126] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Projected population increases over the next 30 years have elevated the need to develop novel agricultural technologies to dramatically increase crop yield, particularly under conditions of high pathogen pressure. In this study, silica nanoparticles (NPs) with tunable dissolution rates were synthesized and applied to watermelon (Citrullus lanatus) to enhance plant growth while mitigating development of the Fusarium wilt disease caused by Fusarium oxysporum f. sp. niveum. The hydrolysis rates of the silica particles were controlled by the degree of condensation or the catalytic activity of aminosilane. The results demonstrate that the plants treated with fast dissolving NPs maintained or increased biomass whereas the particle-free plants had a 34% decrease in biomass. Further, higher silicon concentrations were measured in root parts when the plants were treated with fast dissolving NPs, indicating effective silicic acid delivery. In a follow-up field study over 2.5 months, the fast dissolving NP treatment enhanced fruit yield by 81.5% in comparison to untreated plants. These findings indicate that the colloidal behavior of designed nanoparticles can be critical to nanoparticle-plant interactions, leading to disease suppression and plant health as part of a novel strategy for nanoenabled agriculture.
Collapse
Affiliation(s)
- Hyunho Kang
- NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455, United States
| | - Wade Elmer
- NSF Center for Sustainable Nanotechnology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Yu Shen
- NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nubia Zuverza-Mena
- NSF Center for Sustainable Nanotechnology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Chuanxin Ma
- NSF Center for Sustainable Nanotechnology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Jason C White
- NSF Center for Sustainable Nanotechnology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Christy L Haynes
- NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. PLANTS 2021; 10:plants10102163. [PMID: 34685972 PMCID: PMC8537781 DOI: 10.3390/plants10102163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Silicon (Si) has never been acknowledged as a vital nutrient though it confers a crucial role in a variety of plants. Si may usually be expressed more clearly in Si-accumulating plants subjected to biotic stress. It safeguards several plant species from disease. It is considered as a common element in the lithosphere of up to 30% of soils, with most minerals and rocks containing silicon, and is classified as a "significant non-essential" element for plants. Plant roots absorb Si, which is subsequently transferred to the aboveground parts through transpiration stream. The soluble Si in cytosol activates metabolic processes that create jasmonic acid and herbivore-induced organic compounds in plants to extend their defense against biotic stressors. The soluble Si in the plant tissues also attracts natural predators and parasitoids during pest infestation to boost biological control, and it acts as a natural insect repellent. However, so far scientists, policymakers, and farmers have paid little attention to its usage as a pesticide. The recent developments in the era of genomics and metabolomics have opened a new window of knowledge in designing molecular strategies integrated with the role of Si in stress mitigation in plants. Accordingly, the present review summarizes the current status of Si-mediated plant defense against insect, fungal, and bacterial attacks. It was noted that the Si-application quenches biotic stress on a long-term basis, which could be beneficial for ecologically integrated strategy instead of using pesticides in the near future for crop improvement and to enhance productivity.
Collapse
|
41
|
Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, Zhang X, Huang L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112510. [PMID: 34273846 DOI: 10.1016/j.ecoenv.2021.112510] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) is the second richest element in the soil and surface of earth crust with a variety of positive roles in soils and plants. Different soil factors influence the Si bioavailability in soil-plant system. The Si involves in the mitigation of various biotic (insect pests and pathogenic diseases) and abiotic stresses (salt, drought, heat, and heavy metals etc.) in plants by improving plant tolerance mechanism at various levels. However, Si-mediated restrictions in heavy metals uptake and translocation from soil to plants and within plants require deep understandings. Recently, Si-based improvements in plant defense system, cell damage repair, cell homeostasis, and regulation of metabolism under heavy metal stress are getting more attention. However, limited knowledge is available on the molecular mechanisms by which Si can reduce the toxicity of heavy metals, their uptake and transfer from soil to plant roots. Thus, this review is focused the following facets in greater detail to provide better understandings about the role of Si at molecular level; (i) how Si improves tolerance in plants to variable environmental conditions, (ii) how biological factors affect Si pools in the soil (iii) how soil properties impact the release and capability of Si to decrease the bioavailability of heavy metals in soil and their accumulation in plant roots; (iv) how Si influences the plant root system with respect to heavy metals uptake or sequestration, root Fe/Mn plaque, root cell wall and compartment; (v) how Si makes complexes with heavy metals and restricts their translocation/transfer in root cell and influences the plant hormonal regulation; (vi) the competition of uptake between Si and heavy metals such as arsenic, aluminum, and cadmium due to similar membrane transporters, and (vii) how Si-mediated regulation of gene expression involves in the uptake, transportation and accumulation of heavy metals by plants and their possible detoxification mechanisms. Furthermore, future research work with respect to mitigation of heavy metal toxicity in plants is also discussed.
Collapse
Affiliation(s)
- Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Samrah Afzal Awan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
42
|
Cappelli SL, Koricheva J. Interactions between mammalian grazers and plant pathogens: an elephant in the room? THE NEW PHYTOLOGIST 2021; 232:8-10. [PMID: 34213785 DOI: 10.1111/nph.17533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
| | - Julia Koricheva
- Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
43
|
Sathe AP, Kumar A, Mandlik R, Raturi G, Yadav H, Kumar N, Shivaraj SM, Jaswal R, Kapoor R, Gupta SK, Sharma TR, Sonah H. Role of silicon in elevating resistance against sheath blight and blast diseases in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:128-139. [PMID: 34102436 DOI: 10.1016/j.plaphy.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Rice blast caused by Magnaporthe oryzae and sheath blight caused by Rhizoctonia solani, are the two major diseases of rice that cause enormous losses in rice production worldwide. Identification and utilization of broad-spectrum resistance resources have been considered sustainable and effective strategies. However, the majority of the resistance genes and QTLs identified have often been found to be race-specific, and their resistance is frequently broken down due to continuous exposure to the pathogen. Therefore, integrated approaches to improve plant resistance against such devastating pathogen have great importance. Silicon (Si), a beneficial element for plant growth, has shown to provide a prophylactic effect against many pathogens. The application of Si helps the plants to combat the disease-causing pathogens, either through its deposition in different parts of the plant or through modulation/induction of specific defense genes by yet an unknown mechanism. Some reports have shown that Si imparts resistance to rice blast and sheath blight. The present review summarizes the mechanism of Si transport and deposition and its effect on rice growth and development. A special emphasis has been given to explore the existing evidence showing Si mediated blast and sheath blight resistance and the mechanism involved in resistance. This review will help to understand the prophylactic effects of Si against sheath blight and blast disease at the mechanical, physiological, and genetic levels. The information provided here will help develop a strategy to explore Si derived benefits for sustainable rice production.
Collapse
Affiliation(s)
| | - Amit Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Himanshu Yadav
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nirbhay Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Tilak Raj Sharma
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), New Delhi, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, India.
| |
Collapse
|
44
|
Kabir AH, Das U, Rahman MA, Lee KW. Silicon induces metallochaperone-driven cadmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. PHYSIOLOGIA PLANTARUM 2021; 173:352-368. [PMID: 33848008 DOI: 10.1111/ppl.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is toxic; however, whether silicon (Si) alleviates Cd toxicity was never studied in sugar beet. The study was conducted on 2-week-old sugar beet cultivated in the presence or absence of Cd (10 μM CdSO4 ) and Si (1 mM Na2 SiO3 ) in hydroponic conditions. The morphological impairment and cellular damages observed in sugar beet upon Cd toxicity were entirely reversed due to Si. Si substantially restored the energy-providing ability, absorbed energy flux, and electron transport toward PSII, which might be correlated with the upregulation of BvIRT1 and ferric chelate reductase activity leading to the restoration of Fe status in Cd-stressed sugar beet. Although Si caused a reduction of shoot Cd, the root Cd substantially increased under Cd stress, a significant part of which was retained in the cell wall rather than in the root vacuole. While the concentration of phytochelatin and the expression of BvPCS3 (PHYTOCHELATIN SYNTHASE 3) showed no changes upon Si exposure, Si induced the expression of BvHIPP32 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 32) in the Cd-exposed root. The BvHIPP32 and AtHIPP32 metallochaperone proteins are localized in the cell wall and they share similar sequence alignment, physiochemical properties, secondary structure, cellular localization, motif locations, domain association, and metal-binding site (cd00371) linked to the metallochaperone-like protein. It suggests that Si reduces the Cd level in shoot by retaining the excess Cd in the cell wall of roots due to the induction of BvHIPP32 gene. Also, Si stimulates glutathione-related antioxidants along with the BvGST23 expression, inferring an ascorbate-glutathione ROS detoxification pathway in Cd-exposed plants.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Urmi Das
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| |
Collapse
|
45
|
Naz R, Batool S, Shahid M, Keyani R, Yasmin H, Nosheen A, Hassan MN, Mumtaz S, Siddiqui MH. Exogenous silicon and hydrogen sulfide alleviates the simultaneously occurring drought stress and leaf rust infection in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:558-571. [PMID: 34174661 DOI: 10.1016/j.plaphy.2021.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) and hydrogen sulfide (H2S) are known to enhance plant defense against multiple stresses. Current study was conducted to investigate the application of Si and H2S alone as well as in combination, improved physiological resilience of wheat plants to drought stress (DS) and pathogen-Puccinia triticina (Pt) infection. We aimed to increase the wheat plant growth and to enhance the DS tolerance and Pt resistance with the concurrent applications of H2S and Si. In the first experiment, we selected the best growth enhancing concentration of H2S (0.3 mM) and Si (6 mM) to further investigate their tolerance and resistance potential in the pot experiment under DS and pathogen infection conditions. The obtained results reveal that DS has further increased the susceptibility of wheat plants to leaf rust pathogen infection while, the sole application of Si and the simultaneous exogenous treatments of H2S + Si enhanced the plant growth, decreased disease incidence, and significantly improved tolerance and defense mechanisms of wheat under individual and interactive stress conditions. The exogenous treatment of H2S + Si improved the growth criteria, photosynthetic pigments, osmoprotectants, and defense related enzyme activities. The same treatment also reinforced the endogenous H2S, Si, ABA and SA contents while decreased the disease incidence and oxidative stress indicators under individual and combined stress conditions. Overall, results from this study presents the influence of combined drought and P. triticina stress in wheat and reveal the beneficial impacts of concurrent exogenous treatment of H2S + Si to mitigate the drought and pathogen (P. triticina) induced adverse effects.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| | - Sana Batool
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University, Vehari Campus, Islamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | | | - Saqib Mumtaz
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Manzer Hussain Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
46
|
Bokor B, Santos CS, Kostoláni D, Machado J, da Silva MN, Carvalho SMP, Vaculík M, Vasconcelos MW. Mitigation of climate change and environmental hazards in plants: Potential role of the beneficial metalloid silicon. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126193. [PMID: 34492957 DOI: 10.1016/j.jhazmat.2021.126193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/06/2020] [Accepted: 05/20/2021] [Indexed: 05/25/2023]
Abstract
In the last decades, the concentration of atmospheric CO2 and the average temperature have been increasing, and this trend is expected to become more severe in the near future. Additionally, environmental stresses including drought, salinity, UV-radiation, heavy metals, and toxic elements exposure represent a threat for ecosystems and agriculture. Climate and environmental changes negatively affect plant growth, biomass and yield production, and also enhance plant susceptibility to pests and diseases. Silicon (Si), as a beneficial element for plants, is involved in plant tolerance and/or resistance to various abiotic and biotic stresses. The beneficial role of Si has been shown in various plant species and its accumulation relies on the root's uptake capacity. However, Si uptake in plants depends on many biogeochemical factors that may be substantially altered in the future, affecting its functional role in plant protection. At present, it is not clear whether Si accumulation in plants will be positively or negatively affected by changing climate and environmental conditions. In this review, we focused on Si interaction with the most important factors of global change and environmental hazards in plants, discussing the potential role of its application as an alleviation strategy for climate and environmental hazards based on current knowledge.
Collapse
Affiliation(s)
- Boris Bokor
- Comenius University Science Park, 841 04 Bratislava, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia.
| | - Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Dominik Kostoláni
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Joana Machado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
47
|
Ahammed GJ, Yang Y. Mechanisms of silicon-induced fungal disease resistance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:200-206. [PMID: 34052681 DOI: 10.1016/j.plaphy.2021.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 05/25/2023]
Abstract
Silicon (Si) acts as a beneficial element for plant growth and provides protection against abiotic and biotic stresses. Despite numerous reports on the beneficial role of Si in enhancing plant resistance to fungal pathogens, the underlying mechanisms remain largely unclear. Silicon shows antifungal activity; however, Si-induced improved disease resistance is partly manifested by the formation of Si polymerized mechanical obstruction under the cuticle and in cell walls, which prevents fungal ingress. Moreover, rapid production of defense compounds through secondary metabolic pathways is thought to be a key mechanism of Si-induced chemical defense against fungal pathogens beyond the physical barrier. Besides, improved mineral nutrition assures the healthy status of Si-supplied plants and a healthy plant exhibits better photosynthetic potential, antioxidant capacity and disease resistance. Multiple plant hormones and their crosstalk mediate the Si-induced basal as well as induced resistance; nonetheless, how root uptake of Si systemically modulates resistance to foliar diseases in low Si accumulating plants, needs in-depth investigation. Recent studies also indicate that Si influences effector-triggered immunity by affecting host recognition and/or limiting receptor-effector interactions. Here we review the role of Si in plant response to fungal pathogens. We also discuss and propose potential mechanisms of Si-induced enhanced disease resistance in plants. Finally, we identify some limitations of research approaches in addressing the beneficial roles of Si in biotic stress management.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
48
|
Devanna BN, Mandlik R, Raturi G, Sudhakaran SS, Sharma Y, Sharma S, Rana N, Bansal R, Barvkar V, Tripathi DK, Shivaraj SM, Deshmukh R. Versatile role of silicon in cereals: Health benefits, uptake mechanism, and evolution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:173-186. [PMID: 34044226 DOI: 10.1016/j.plaphy.2021.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Silicon (Si) is an omnipresent and second most abundant element in the soil lithosphere after oxygen. Silicon being a beneficial element imparts several benefits to the plants and animals. In many plant species, including the cereals the uptake of Si from the soil even exceeds the uptake of essential nutrients. Cereals are the monocots which are known to accumulate a high amount of Si, and reaping maximum benefits associated with it. Cereals contribute a high amount of Si to the human diet compared to other food crops. In the present review, we have summarized distribution of the dietary Si in cereals and its role in the animal and human health. The Si derived benefits in cereals, specifically with respect to biotic and abiotic stress tolerance has been described. We have also discussed the molecular mechanism involved in the Si uptake in cereals, evolution of the Si transport mechanism and genetic variation in the Si concentration among different cultivars of the same species. Various genetic mutants deficient in the Si uptake have been developed and many QTLs governing the Si accumulation have been identified in cereals. The existing knowledge about the Si biology and available resources needs to be explored to understand and improve the Si accumulation in crop plants to achieve sustainability in agriculture.
Collapse
Affiliation(s)
- B N Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Sreeja S Sudhakaran
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Shivani Sharma
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Durgesh K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida, India
| | - S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India.
| |
Collapse
|
49
|
Klotz M, Schaller J, Kurze S, Engelbrecht BMJ. Variation of foliar silicon concentrations in temperate forbs: effects of soil silicon, phylogeny and habitat. Oecologia 2021; 196:977-987. [PMID: 34259905 PMCID: PMC8367921 DOI: 10.1007/s00442-021-04978-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 10/24/2022]
Abstract
Silicon (Si) accumulation is known to alleviate various biotic and abiotic stressors in plants with potential ecological consequences. However, for dicotyledonous plants our understanding of Si variation remains limited. We conducted a comparative experimental study to investigate (1) interspecific variation of foliar Si concentrations across 37 dicotyledonous forbs of temperate grasslands, (2) intraspecific variation in foliar Si concentration in response to soil Si availability, the influence of (3) phylogenetic relatedness, and (4) habitat association to moisture. Foliar Si differed markedly (approx. 70-fold) across the investigated forbs, with some species exhibiting Si accumulation similar to grasses. Foliar Si increased with soil Si availability, but the response varied across species: species with higher Si accumulation capacity showed a stronger response, indicating that they did not actively upregulate Si uptake under low soil Si availability. Foliar Si showed a pronounced phylogenetic signal, i.e., closely related species exhibited more similar foliar Si concentrations than distantly related species. Significant differences in foliar Si concentration within closely related species pairs nevertheless support that active Si uptake and associated high Si concentrations has evolved multiple times in forbs. Foliar Si was not higher in species associated with drier habitats, implying that in dicotyledonous forbs of temperate grasslands high foliar Si is not an adaptive trait to withstand drought. Our results demonstrated considerable inter- and intraspecific variation in foliar Si concentration in temperate forbs. This variation should have pervasive, but so far understudied, ecological consequences for community composition and functioning of temperate grasslands under land-use and climate change.
Collapse
Affiliation(s)
- Marius Klotz
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Susanne Kurze
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Bettina M J Engelbrecht
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
50
|
Song XP, Verma KK, Tian DD, Zhang XQ, Liang YJ, Huang X, Li CN, Li YR. Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biol Res 2021; 54:19. [PMID: 34238380 PMCID: PMC8265040 DOI: 10.1186/s40659-021-00344-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.
Collapse
Affiliation(s)
- Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiao-Qiu Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yong-Jian Liang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532200, Guangxi, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Chang-Ning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China.
| |
Collapse
|