1
|
Yang X, Xue X, Zhu Y, Zhang Z. Correlation between lipid metabolism and endometriosis: a meta-analysis. Gynecol Endocrinol 2025; 41:2500459. [PMID: 40343766 DOI: 10.1080/09513590.2025.2500459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/25/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
To analyze and evaluate the correlation between different lipid metabolism levels and endometriosis. The literatures on lipid metabolism and endometriosis published in databases were searched and collected. The search was conducted up to December 2023. The meta-analysis was conducted using Review Manager 5.4.1 software, with odds ratios (ORs) or standardized mean difference (SMD), confidence intervals (CIs), and heterogeneity (I2) being calculated. The literature bias was evaluated by drawing funnel plot. Five hundred and eighty-four literatures were retrieved, and finally, 7 literatures were included in this study. Meta-analysis showed that the level of total cholesterol (TC) in endometriosis groups was higher than control group [SMD = 1.70, 95%CI (0.60-2.80), p = 0.003], while triglyceride (TG) [SMD=-0.24, 95%CI (-0.68-0.21), p = 0.300], low-density lipoprotein (LDL) [SMD = 0.22, 95%CI (-0.34 - 0.78), p = 0.440] and high-density lipoprotein (HDL) [SMD = 0.06, 95%CI (-0.14 - 0.25), p = 0.550] was not statistically significant. Sensitivity analysis indicated that the combined effect size results were stable and reliable [SMD = 1.70, 95%CI (0.60-2.80), p = 0.030]. Funnel plot results showed publication bias. Patients with endometriosis have abnormal blood lipid level, and higher TC level may be a risk factor for endometriosis. The impact of blood lipid metabolism on endometriosis may provide new insights into the pathogenesis and treatment prognosis of endometriosis.
Collapse
Affiliation(s)
- Xuanru Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing, China
| | - Xiaoou Xue
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing, China
| | - Yuying Zhu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing, China
| | - Zhihang Zhang
- Department of Gynecology, Hepingli Hospital, Dongcheng District, Beijing, China
| |
Collapse
|
2
|
Psilopatis I, Theocharis S, Beckmann MW. The role of peroxisome proliferator-activated receptors in endometriosis. Front Med (Lausanne) 2024; 11:1329406. [PMID: 38690174 PMCID: PMC11058831 DOI: 10.3389/fmed.2024.1329406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Endometriosis constitutes the most common cause of chronic pelvic pain in female patients and is associated with infertility. Although there is no known cause for the disease, it is a heritable condition that is determined by numerous genetic, epigenetic, and environmental aspects. Peroxisome proliferator-activated receptors (PPARs) represent nuclear receptor proteins that control gene expression. By using the MEDLINE and LIVIVO databases we conducted a literature review in order to look into the role of PPARs in the endometriosis pathophysiology and succeeded in revealing 36 pertinent publications between 2001 and 2022. In regards to PPAR expression in endometriosis, PPARγ seems to represent the most studied PPAR isoform in endometriosis and to influence various pathways involved in the disease onset and progression. It's interesting to note that diverse treatment agents targeting the PPAR system have been identified as innovative, effective therapeutic alternatives in the context of endometriosis treatment. In conclusion, PPARs appear to contribute an important role in both endometriosis pathophysiology and therapy.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
3
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-Induced Altered miRNA Expression Links to NF-κB Signaling Pathway in Endometriosis. Inflammation 2023; 46:2055-2070. [PMID: 37389684 PMCID: PMC10673760 DOI: 10.1007/s10753-023-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-qPCR, the expression of several miRNAs was quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC), and also TNFα-treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT, and ERK was measured by western blot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly in EESCs compared to NESCs. Also, treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppressing the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Wei Xu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Aaron Doctor
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ceana Nezhat
- Nezhat Medical Center, 5555 Peachtree Dunwoody Road, Atlanta, GA, 30342, USA
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA.
| |
Collapse
|
4
|
Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod Sci 2023; 30:2069-2078. [PMID: 36920672 PMCID: PMC11047769 DOI: 10.1007/s43032-023-01212-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Joshua N Bembenek
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- Laurel Fertility Care, San Francisco, CA, 94109, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-induced altered miRNA expression links to NF-κB signaling pathway in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-2870585. [PMID: 37205467 PMCID: PMC10187425 DOI: 10.21203/rs.3.rs-2870585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB-signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-QPCR, the expression of several miRNAs were quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC) and also TNFα treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT and ERK was measured by westernblot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly (p < 0.05) in EESCs compared to NESC. Also treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppresses the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
| | - Wei Xu
- Morehouse School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Salehpoor Z, Jahromi BN, Tanideh N, Nemati J, Akbarzade-Jahromi M, Jahromi MK. High intensity interval training is superior to moderate intensity continuous training in enhancing the anti-inflammatory and apoptotic effect of pentoxifylline in the rat model of endometriosis. J Reprod Immunol 2023; 156:103832. [PMID: 36812774 DOI: 10.1016/j.jri.2023.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
This study investigated the effects of pentoxifylline (PTX), high intensity interval training (HIIT) and moderate intensity continuous training (MICT) separately and in combination, on inflammatory and apoptotic pathways in the rat model of induced endometriosis. Endometriosis was induced through surgery on female Sprague-Dawley rats. Six weeks after the first surgery, the second look laparotomy was performed. After induction of endometriosis in rats, they were divided into control, MICT, PTX, MICT+ PTX, HIIT, HIIT+PTX groups. Two weeks after the second look laparotomy, PTX and exercise training interventions were performed for eight weeks. Endometriosis lesions were assessed histologically. Proteins content of the NF-κB, PCNA and Bcl-2 were measured by immunoblotting and genes expression of the TNF-α and VEGF were measured by Real-time PCR methods. Findings of the study indicated that, PTX significantly decreased volume and histological grading of lesions, proteins of NF-κB and Bcl-2; and genes expression of the TNF-α, and VEGF in lesions. HIIT significantly decreased volume and histological grading of lesions, NF-κB, TNF-α and VEGF in lesions. MICT did not induce any significant effect on the study variables. Although, MICT+PTX decreased significantly volume and histological grading of lesions, as well as NF-κB, and Bcl-2 in lesions, however, these factors were not significantly different with the PTX group. HIIT+PTX decreased significantly all of the study variables compared to other interventions, except for VEGF when compared to PTX. In summary, combination of PTX and HIIT can induce enhancing effect on suppression of endometriosis through suppressing inflammation, angiogenesis, and proliferation and enhancing apoptosis.
Collapse
Affiliation(s)
- Zahra Salehpoor
- Department of Sport Sciences, Shiraz University, Shiraz, Iran.
| | - Bahia Namavar Jahromi
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Javad Nemati
- Department of Sport Sciences, Shiraz University, Shiraz, Iran.
| | - Mojgan Akbarzade-Jahromi
- Maternal-fetal medicine Research Center, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
7
|
Li J, He Y, Qu Y, Ren C, Wang X, Cheng Y, Sun L, Zhang X, Zhang G. Promotion of BST2 expression by the transcription factor IRF6 affects the progression of endometriosis. Front Immunol 2023; 14:1115504. [PMID: 37143676 PMCID: PMC10151653 DOI: 10.3389/fimmu.2023.1115504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
Background Endometriosis (EM) is a benign, multifactorial, immune-mediated inflammatory disease that is characterized by persistent activation of the NF-κB signaling pathway and some features of malignancies, such as proliferation and lymphangiogenesis. To date, the pathogenesis of EM is still unclear. In this study, we investigated whether BST2 plays a role in the development of EM. Methods Bioinformatic analysis was performed with data from public databases to identify potential candidate targets for drug treatment. Experiments were conducted at the cell, tissue, and mouse EM model levels to characterize the aberrant expression patterns, molecular mechanisms, biological behaviors of endometriosis as well as treatment outcomes. Results BST2 was significantly upregulated in ectopic endometrial tissues and cells compared with control samples. Functional studies indicated that BST2 promoted proliferation, migration, and lymphangiogenesis and inhibited apoptosis in vitro and in vivo. The transcription factor (TF) IRF6 induced high BST2 expression by directly binding the BST2 promoter. The underlying mechanism by which BST2 functions in EM was closely related to the canonical NF-κB signaling pathway. New lymphatic vessels may serve as a channel for the infiltration of immune cells into the endometriotic microenvironment; these immune cells further produce the proinflammatory cytokine IL-1β, which in turn further activates the NF-κB pathway to promote lymphangiogenesis in endometriosis. Conclusion Taken together, our findings provide novel insight into the mechanism by which BST2 participates in a feedback loop with the NF-κB signaling pathway and reveal a novel biomarker and potential therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Jixin Li
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanjun Qu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengcheng Ren
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaotong Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Cheng
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Guangmei Zhang,
| |
Collapse
|
8
|
Li J, He Y, Liang T, Wang J, Jiang X, Zhang G. Identification of potential differentially methylated gene-related biomarkers in endometriosis. Epigenomics 2022; 14:1157-1179. [DOI: 10.2217/epi-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify epigenetic alterations of differentially expressed genes and screen out targeted therapeutic drugs in endometriosis. Methods: Based on the Gene Expression Omnibus database and a series of biological information analysis tools, supplemented by validation of clinical samples, aberrant DNA methylation-driven genes and their functions were explored, as well as possible targeted drugs. Results: This study screened out a range of DNA methylation-driven genes that were associated with powerful properties and corresponding pathways. Among them, BDNF and CCL2 were key genes in the development of endometriosis. Four chemical agents have been flagged as potential treatments for endometriosis. Conclusion: These candidate genes and small-molecule agents may be further explored as potential targets and drugs for endometriosis diagnosis and therapy, respectively.
Collapse
Affiliation(s)
- Jixin Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 15000, China
| | - Yanan He
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 15000, China
| | - Tian Liang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 15000, China
| | - Jing Wang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 15000, China
| | - Xinyan Jiang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 15000, China
| | - Guangmei Zhang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 15000, China
| |
Collapse
|
9
|
Liu Y, Wang J, Zhang X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int J Biol Sci 2022; 18:4400-4413. [PMID: 35864971 PMCID: PMC9295070 DOI: 10.7150/ijbs.72707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis remains a common but challenging gynecological disease among reproductive-aged women with an unclear pathogenesis and limited therapeutic options. Numerous pieces of evidence suggest that NF-κB signaling, a major regulator of inflammatory responses, is overactive in endometriotic lesions and contributes to the onset, progression, and recurrence of endometriosis. Several factors, such as estrogen, progesterone, oxidative stress, and noncoding RNAs, can regulate NF-κB signaling in endometriosis. In the present review, we discuss the mechanisms by which these factors regulate NF-κB during endometriosis progression and provide an update on the role of NF-κB in affecting endometriotic cells, peritoneal macrophages (PMs) as well as endometriosis-related symptoms, such as pain and infertility. Furthermore, the preclinical drugs for blocking NF-κB signaling in endometriosis are summarized, including plant-derived medicines, NF-κB inhibitors, other known drugs, and the potential anti-NF-κB drugs predicted through the Drug-Gene Interaction Database. The present review discusses most of the studies concerning the multifaceted role of NF-κB signaling in endometriosis and provides a summary of NF-κB-targeted treatment in detail.
Collapse
Affiliation(s)
- Yuanmeng Liu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
10
|
Pergialiotis V, Frountzas M, Fasoulakis Z, Daskalakis G, Chrisochoidi M, Kontzoglou K, Perrea DN. Peroxisome Proliferator-Activated Receptor Alpha (PPAR-α) as a Regulator of the Angiogenic Profile of Endometriotic Lesions. Cureus 2022; 14:e22616. [PMID: 35371629 PMCID: PMC8958147 DOI: 10.7759/cureus.22616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Endometriosis is a disease that affects a significant proportion of women and its infiltrative pattern is entirely dependent on the vascular supply of lesions. Several factors seem to trigger the process of angiogenesis in endometriotic lesions. During the last years, peroxisome proliferator-activated receptors (PPARs), a group of nuclear proteins that regulate gene transcription and that seem to regulate energy consumption and expenditure, have been also implicated in the pathophysiology of angiogenesis. Their ability to regulate the course of cancer and improve the survival rates of patients has been extensively studied and seems to be partially dependent on alteration of the vascular supply of malignant lesions. Research in the field of endometriosis is scarce in the international literature and mainly focused on PPAR-gamma. However, indirect evidence suggests that PPAR-alpha (PPAR-α) may also regulate the vascular supply of endometriotic lesions as well. Specifically, PPAR-α agonists seem to downregulate angiogenesis by increasing the expression of several anti-angiogenic molecules, including thrombospondin-1 (TSP-1) and gypenoside 140 (gp140), as well as factors that are involved in the mitogen-activated protein kinase cascade. In the present article, we summarize existing indirect and direct evidence that indicates the existence of an association between the expression of PPAR-α and endometriosis to help future research in this field.
Collapse
|
11
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Laganà AS, Garzon S, Götte M, Viganò P, Franchi M, Ghezzi F, Martin DC. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int J Mol Sci 2019; 20:E5615. [PMID: 31717614 PMCID: PMC6888544 DOI: 10.3390/ijms20225615] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
The etiopathogenesis of endometriosis is a multifactorial process resulting in a heterogeneous disease. Considering that endometriosis etiology and pathogenesis are still far from being fully elucidated, the current review aims to offer a comprehensive summary of the available evidence. We performed a narrative review synthesizing the findings of the English literature retrieved from computerized databases from inception to June 2019, using the Medical Subject Headings (MeSH) unique ID term "Endometriosis" (ID:D004715) with "Etiology" (ID:Q000209), "Immunology" (ID:Q000276), "Genetics" (ID:D005823) and "Epigenesis, Genetic" (ID:D044127). Endometriosis may origin from Müllerian or non-Müllerian stem cells including those from the endometrial basal layer, Müllerian remnants, bone marrow, or the peritoneum. The innate ability of endometrial stem cells to regenerate cyclically seems to play a key role, as well as the dysregulated hormonal pathways. The presence of such cells in the peritoneal cavity and what leads to the development of endometriosis is a complex process with a large number of interconnected factors, potentially both inherited and acquired. Genetic predisposition is complex and related to the combined action of several genes with limited influence. The epigenetic mechanisms control many of the processes involved in the immunologic, immunohistochemical, histological, and biological aberrations that characterize the eutopic and ectopic endometrium in affected patients. However, what triggers such alterations is not clear and may be both genetically and epigenetically inherited, or it may be acquired by the particular combination of several elements such as the persistent peritoneal menstrual reflux as well as exogenous factors. The heterogeneity of endometriosis and the different contexts in which it develops suggest that a single etiopathogenetic model is not sufficient to explain its complex pathobiology.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Simone Garzon
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany;
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 60, 20136 Milan, Italy;
| | - Massimo Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Piazzale Aristide Stefani 1, 37126 Verona, Italy;
| | - Fabio Ghezzi
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Dan C. Martin
- School of Medicine, University of Tennessee Health Science Center, 910 Madison Ave, Memphis, TN 38163, USA;
- Virginia Commonwealth University, 907 Floyd Ave, Richmond, VA 23284, USA
| |
Collapse
|
13
|
From pathogenesis to clinical practice: Emerging medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol 2018; 51:92-101. [DOI: 10.1016/j.bpobgyn.2018.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
|
14
|
Mancini F, Milardi D, Carfagna P, Grande G, Miranda V, De Cicco Nardone A, Ricciardi D, Pontecorvi A, Marana R, De Cicco Nardone F. Low-dose SKA Progesterone and Interleukin-10 modulate the inflammatory pathway in endometriotic cell lines. Int Immunopharmacol 2017; 55:223-230. [PMID: 29272819 DOI: 10.1016/j.intimp.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/03/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Francesca Mancini
- International Scientific Institute "Paul VI", L.go F. Vito, 1, 00168 Rome, Italy
| | - Domenico Milardi
- International Scientific Institute "Paul VI", L.go F. Vito, 1, 00168 Rome, Italy; Division of Endocrinology, Teaching and Research Hospital "Agostino Gemelli" Foundation, Rome, Italy
| | - Piero Carfagna
- Department of Obstetrics and Gynecology, Teaching and Research Hospital "Agostino Gemelli" Foundation, Rome, Italy
| | - Giuseppe Grande
- International Scientific Institute "Paul VI", L.go F. Vito, 1, 00168 Rome, Italy.
| | | | - Alessandra De Cicco Nardone
- Department of Obstetrics and Gynecology, Teaching and Research Hospital "Agostino Gemelli" Foundation, Rome, Italy
| | - Domenico Ricciardi
- Department of Obstetrics and Gynecology, Teaching and Research Hospital "Agostino Gemelli" Foundation, Rome, Italy
| | - Alfredo Pontecorvi
- International Scientific Institute "Paul VI", L.go F. Vito, 1, 00168 Rome, Italy; Division of Endocrinology, Teaching and Research Hospital "Agostino Gemelli" Foundation, Rome, Italy
| | - Riccardo Marana
- International Scientific Institute "Paul VI", L.go F. Vito, 1, 00168 Rome, Italy; Department of Obstetrics and Gynecology, Teaching and Research Hospital "Agostino Gemelli" Foundation, Rome, Italy
| | - Fiorenzo De Cicco Nardone
- Department of Obstetrics and Gynecology, Teaching and Research Hospital "Agostino Gemelli" Foundation, Rome, Italy
| |
Collapse
|
15
|
Coperchini F, Pignatti P, Leporati P, Carbone A, Croce L, Magri F, Chiovato L, Rotondi M. Normal human thyroid cells, BCPAP, and TPC-1 thyroid tumor cell lines display different profile in both basal and TNF-α-induced CXCL8 secretion. Endocrine 2016; 54:123-128. [PMID: 26450713 DOI: 10.1007/s12020-015-0764-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
Abstract
CXCL8 is secreted by both normal human thyrocytes (NHT) and thyroid cancer cell lines. CXCL8 displays several tumor-promoting effects and recent evidences indicate that its concentrations within the tumor microenvironment can impact the clinical course of the malignancy. Aim of this study was to compare the basal secretion of CXCL8 among NHT and thyroid cancer cell lines (TPC-1 and BCPAP), and to assess the specific cell response to TNF-α in terms of CXCL8 secretion. NHT primary cultures, TPC-1 and BCPAP cell lines were cultured with or without TNF-α (0, 0.1, 1, 10, and 100 ng/ml). CXCL8 levels were measured in the cell supernatants after 24 h. In basal condition, significant differences in the mean levels of CXCL8 were observed among the three cell types: NHT (110.5 ± 56.2 pg/ml), TPC1 (467.4 ± 43.2 pg/ml), and BCPAP (1731.8 ± 493.3 pg/ml), (F = 35.06; p < 0.0001). TNF-α significantly and in a dose-response manner induced CXCL8 secretion in NHT (F = 25.53; p < 0.00001), TPC-1 (F = 13.38; p < 0.0001), and BCPAP (F = 9.88; p < 0.001) cells. The magnitude of the TNF-α effect (fold-increase vs. basal level of CXCL8) differed significantly among the three cell types (F = 10.47; p < 0.0001). BCPAP were identified as the cells showing the highest basal secretion of CXCL8 and the less responsive to TNF-α. NHT, TPC-1, and BCPAP display significant differences in the secretion of both basal and TNF-α-induced CXCL8 secretion. These results indicate that the mechanisms regulating the secretion of CXCL8 differ in tumor cells harboring different genetic alterations suggesting that specific strategies aimed at inhibiting CXCL8 secretion will be required.
Collapse
Affiliation(s)
- Francesca Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Fondazione Salvatore Maugeri I.R.C.C.S., Via Maugeri 10, 27100, Pavia, Italy
| | - Paola Leporati
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Andrea Carbone
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Laura Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Flavia Magri
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Luca Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy.
| | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
16
|
McKinnon BD, Kocbek V, Nirgianakis K, Bersinger NA, Mueller MD. Kinase signalling pathways in endometriosis: potential targets for non-hormonal therapeutics. Hum Reprod Update 2016; 22:382-403. [PMID: 26740585 DOI: 10.1093/humupd/dmv060] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis, the growth of endometrial tissue outside the uterine cavity, is associated with chronic pelvic pain, subfertility and an increased risk of ovarian cancer. Current treatments include the surgical removal of the lesions or the induction of a hypoestrogenic state. However, a reappearance of the lesion after surgery is common and a hypoestrogenic state is less than optimal for women of reproductive age. Additional approaches are required. Endometriosis lesions exist in a unique microenvironment characterized by increased concentrations of hormones, inflammation, oxidative stress and iron. This environment influences cell survival through the binding of membrane receptors and a subsequent cascading activation of intracellular kinases that stimulate a cellular response. Many of these kinase signalling pathways are constitutively activated in endometriosis. These pathways are being investigated as therapeutic targets in other diseases and thus may also represent a target for endometriosis treatment. METHODS To identify relevant English language studies published up to 2015 on kinase signalling pathways in endometriosis, we searched the Pubmed database using the following search terms in various combinations; 'endometriosis', 'inflammation', 'oxidative stress', 'iron', 'kinase', 'NF kappa', 'mTOR', 'MAPK' 'p38', 'JNK', 'ERK' 'estrogen' and progesterone'. Further citing references were identified using the Scopus database and finally current clinical trials were searched on the clinicaltrials.gov trial registry. RESULTS The current literature on intracellular kinases activated by the endometriotic environment can be summarized into three main pathways that could be targeted for treatments: the canonical IKKβ/NFκB pathway, the MAPK pathways (ERK1/2, p38 and JNK) and the PI3K/AKT/mTOR pathway. A number of pharmaceutical compounds that target these pathways have been successfully trialled in in vitro and animal models of endometriosis, although they have not yet proceeded to clinical trials. The current generation of kinase inhibitors carry a potential for adverse side effects. CONCLUSIONS Kinase signalling pathways represent viable targets for endometriosis treatment. At present, however, further improvements in clinical efficacy and the profile of adverse effects are required before these compounds can be useful for long-term endometriosis treatment. A better understanding of the molecular activity of these kinases, including the specific extracellular compounds that lead to their activation in endometriotic cells specifically should facilitate their improvement and could potentially lead to new, non-hormonal treatments of endometriosis.
Collapse
Affiliation(s)
- Brett D McKinnon
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, Berne CH-3010, Switzerland Department of Clinical Research, University of Berne, Murtenstrasse 35, Berne CH-3010, Switzerland
| | - Vida Kocbek
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, Berne CH-3010, Switzerland Department of Clinical Research, University of Berne, Murtenstrasse 35, Berne CH-3010, Switzerland
| | - Kostantinos Nirgianakis
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, Berne CH-3010, Switzerland Department of Clinical Research, University of Berne, Murtenstrasse 35, Berne CH-3010, Switzerland
| | - Nick A Bersinger
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, Berne CH-3010, Switzerland Department of Clinical Research, University of Berne, Murtenstrasse 35, Berne CH-3010, Switzerland
| | - Michael D Mueller
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, Berne CH-3010, Switzerland Department of Clinical Research, University of Berne, Murtenstrasse 35, Berne CH-3010, Switzerland
| |
Collapse
|
17
|
Taylor RN, Kane MA, Sidell N. Pathogenesis of Endometriosis: Roles of Retinoids and Inflammatory Pathways. Semin Reprod Med 2015; 33:246-56. [PMID: 26132929 DOI: 10.1055/s-0035-1554920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endometriosis is a nonmalignant, but potentially metastatic, gynecological condition manifested by the extrauterine growth of inflammatory endometrial implants. Ten percent of reproductive-age women are affected and commonly suffer pelvic pain and/or infertility. The theories of endometriosis histogenesis remain controversial, but retrograde menstruation and metaplasia each infer mechanisms that explain the immune cell responses observed around the ectopic lesions. Recent findings from our laboratories and others suggest that retinoic acid metabolism and action are fundamentally flawed in endometriotic tissues and even generically in women with endometriosis. The focus of our ongoing research is to develop medical therapies as adjuvants or alternatives to the surgical excision of these lesions. On the basis of concepts put forward in this review, we predict that the pharmacological actions and anticipated low side-effect profiles of retinoid supplementation might provide a new treatment option for the long-term management of this chronic and debilitating gynecological disease.
Collapse
Affiliation(s)
- Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
18
|
Cakmak B, Cavusoglu T, Ates U, Meral A, Nacar MC, Erbaş O. Regression of experimental endometriotic implants in a rat model with the angiotensin II receptor blocker losartan. J Obstet Gynaecol Res 2014; 41:601-7. [PMID: 25302540 DOI: 10.1111/jog.12558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/31/2014] [Indexed: 01/01/2023]
Abstract
AIM Endometriosis is a common disease in women of reproductive age, and many different treatments have been developed, although none has provided a cure. In this study, the efficacy of losartan, an angiotensin II type 1 receptor blocker and an antiangiogenic and anti-inflammatory agent, on regression of experimental endometriotic implants in a rat model was investigated. METHODS Peritoneal endometriosis was surgically induced in 16 mature female Sprague-Dawley rats. The peritoneal endometriotic implant was confirmed after 28 days, and the animals were divided randomly into two groups. The control group (n = 8) was given 4 mL/day tap water by oral gavage, and the losartan group (n = 8) was given 20 mg/kg per day losartan p.o. We compared endometriotic implant size, extent and severity of adhesion, as well as plasma and peritoneal lavage fluid cytokine levels including vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-α, plasma inflammatory factor pentraxin-3 (PTX-3) and C-reactive protein (CRP) between the treatment groups. RESULTS Mean surface endometriotic area, histological score of implants, adhesion formation, plasma VEGF, TNF, PTX-3 and CRP levels were significantly lower in the losartan group compared with control (P < 0.05). Furthermore, the peritoneal VEGF level was lower in the losartan group than in the control group (P < 0.001), but peritoneal TNF-α was similar in both groups (P > 0.05). CONCLUSION Losartan suppressed the implant surface area of experimental endometriosis in rats and reduced the levels of plasma VEGF, TNF-α, PTX-3 and CRP.
Collapse
Affiliation(s)
- Bulent Cakmak
- Department of Obstetrics and Gynecology, School of Medicine, Gaziosmanpasa University, Tokat
| | | | | | | | | | | |
Collapse
|
19
|
Medical treatments for endometriosis-associated pelvic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:191967. [PMID: 25165691 PMCID: PMC4140197 DOI: 10.1155/2014/191967] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
Abstract
The main sequelae of endometriosis are represented by infertility and chronic pelvic pain. Chronic pelvic pain causes disability and distress with a very high economic impact. In the last decades, an impressive amount of pharmacological agents have been tested for the treatment of endometriosis-associated pelvic pain. However, only a few of these have been introduced into clinical practice. Following the results of the controlled studies available, to date, the first-line treatment for endometriosis associated pain is still represented by oral contraceptives used continuously. Progestins represent an acceptable alternative. In women with rectovaginal lesions or colorectal endometriosis, norethisterone acetate at low dosage should be preferred. GnRH analogues may be used as second-line treatment, but significant side effects should be taken into account. Nonsteroidal anti-inflammatory drugs are widely used, but there is inconclusive evidence for their efficacy in relieving endometriosis-associated pelvic pain. Other agents such as GnRH antagonist, aromatase inhibitors, immunomodulators, selective progesterone receptor modulators, and histone deacetylase inhibitors seem to be very promising, but there is not enough evidence to support their introduction into routine clinical practice. Some other agents, such as peroxisome proliferator activated receptors-γ ligands, antiangiogenic agents, and melatonin have been proven to be efficacious in animal studies, but they have not yet been tested in clinical studies.
Collapse
|
20
|
Aristatile B, Al-Assaf AH, Pugalendi KV. Carvacrol ameliorates the PPAR-A and cytochrome P450 expression on D-galactosamine induced hepatotoxicity rats. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2014; 11:118-23. [PMID: 25371573 PMCID: PMC4202429 DOI: 10.4314/ajtcam.v11i3.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Carvacrol (2-methyl-5-(1-methylethyl)-phenol) is a predominant monoterpenic phenol which occurs in many essential oils of the family Labiatae including Origanum, Satureja, Thymbra, Thymus, and Corydothymus species. It is well known for its anti-inflammatory, antioxidant and antitumor activities. The present study investigates the influence of carvacrol on CYP2E1 and PPAR-α on D-Galactosamine (D-GalN)-induced hepatotoxic rats. MATERIALS AND METHODS The mRNA and protein expression levels of CYP2E1 and PPAR-α have been assayed by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analysis. RESULT The result demonstrated that the mRNA and protein expressions of CYP2E1(p=0.012; p=0.015) significantly up-regulated while the mRNA and protein expressions of PPAR-α (p=0.026; p=0.03) significantly down-regulated on D-galactosamine induced hepatotoxic rats and treatment with carvacrol significantly suppressed the mRNA and protein (CYP2E1, p=0.010; p=0.011) (PPAR-α, p=0.033; p=0.037) expressions of these genes. CONCLUSION Thus, the present results have shown that carvacrol has the hepatoprotective effect and also alleviates liver damage associated with GalN induced hepatotoxic rats by down-regulating the CYP2E1 and up-regulating the PPAR-α expression.
Collapse
Affiliation(s)
- Balakrishnan Aristatile
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdullah H Al-Assaf
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Kodukkur Viswanathan Pugalendi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608 002, Tamilnadu, India
| |
Collapse
|
21
|
Nenicu A, Körbel C, Gu Y, Menger MD, Laschke MW. Combined blockade of angiotensin II type 1 receptor and activation of peroxisome proliferator-activated receptor-γ by telmisartan effectively inhibits vascularization and growth of murine endometriosis-like lesions. Hum Reprod 2014; 29:1011-24. [PMID: 24578472 DOI: 10.1093/humrep/deu035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Is telmisartan effective in the treatment of endometriosis? SUMMARY ANSWER Combined blockade of angiotensin II type 1 receptor (AT1R) and activation of peroxisome proliferator-activated receptor (PPAR)-γ by telmisartan inhibits vascularization and growth of murine endometriosis-like lesions. WHAT IS KNOWN ALREADY AT1R and PPAR-γ are involved in the regulation of inflammation, proliferation and angiogenesis. These processes are also crucial for the pathogenesis of endometriosis and both receptors are expressed in endometrial tissue. Telmisartan is a partial agonist of PPAR-γ, which additionally blocks AT1R. STUDY DESIGN, SIZE, DURATION This was a randomized study in the mouse dorsal skinfold chamber and peritoneal model of endometriosis. Endometriosis-like lesions were induced in dorsal skinfold chambers of 21 female C57BL/6 mice, and in the peritoneal cavity of 15 additional animals, which were daily treated with an i.p. injection of pioglitazone (10 mg/kg, n = 12), telmisartan (10 mg/kg, n = 12) or vehicle (5% dimethyl sulfoxide (DMSO), n = 12) throughout an observation period of 14 and 28 days, respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS The anti-angiogenic actions of pioglitazone, a full PPAR-γ agonist, and telmisartan were firstly assessed in vitro by an aortic ring assay. Endometriosis-like lesions were induced in the dorsal skinfold chamber or peritoneal cavity and the effects of telmisartan and pioglitazone on their vascularization, immune cell content and growth were studied by intravital fluorescence microscopy, high-resolution ultrasound imaging as well as histological, immunohistochemical and immunofluorescent analyses. Additional quantitative real-time polymerase chain reaction (qRT-PCR) arrays served for gene expression profiling of the lesions. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate vehicle-treated controls. Statistical significance was accepted for a value of P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE Telmisartan inhibited vascular sprout formation of aortic rings more effectively than pioglitazone. Accordingly, endometriosis-like lesions in dorsal skinfold chambers of telmisartan-treated animals exhibited a markedly lower functional microvessel density and blood perfusion. High-resolution ultrasound analyses of peritoneal endometriosis-like lesions revealed that the compound inhibited the stromal tissue growth, resulting in a significantly reduced final lesion volume. In contrast, the development of cysts did not differ between the groups. Moreover, telmisartan induced an up-regulation of PPAR-γ and a down-regulation of AT1R proteins in endometriosis-like lesions, which was associated with a decreased density of CD31-positive microvessels, a reduced immune cell content and a lower number of Ki67-positive proliferating cells. qRT-PCR arrays further demonstrated an inhibitory action of telmisartan on the expression of several angiogenic and inflammatory genes. LIMITATIONS, REASONS FOR CAUTION Endometriosis-like lesions were induced by syngeneic tissue transplantation into recipient mice without the use of pathological endometriotic tissue of human nature. Therefore, the results obtained in this study may not fully relate to human patients with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS This study demonstrates that telmisartan inhibits vascularization, immune cell content and growth of endometriosis-like lesions. Accordingly, the combined blockade of AT1R and activation of PPAR-γ represents a promising new concept in the development of novel compounds for the treatment of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) There was no specific funding of this study. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- A Nenicu
- Institute for Clinical and Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
22
|
Li X, Liu X, Guo SW. Histone deacetylase inhibitors as therapeutics for endometriosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Prechapanich J, Kajihara T, Fujita K, Sato K, Uchino S, Tanaka K, Matsumoto S, Akita M, Nagashima M, Brosens JJ, Ishihara O. Effect of a dienogest for an experimental three-dimensional endometrial culture model for endometriosis. Med Mol Morphol 2013; 47:189-95. [PMID: 24141572 DOI: 10.1007/s00795-013-0059-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022]
Abstract
The pathogenesis of endometriosis remains poorly understood at least in part because early stages of the disease process are difficult to investigate. Previous studies have proposed a three-dimensional fibrin matrix culture model to study human endometriosis. We examined the ultrastructural features of the endometriosis in this model and assessed the effect of a progestin on endometrial outgrowth and apoptosis in this culture system. Endometrial explants were placed in three-dimensional fibrin matrix culture and treated with and without various concentrations of the progestin dienogest. By the second week, endometrial gland-like formation was established in outgrowths both attached to and at a distance from the explants. These cells formed a combination of clumps and tubular monolayers surrounding a central cavity. Electron microscopy demonstrated that these cells are polarized with microvilli on the apical surface, desmosome-like structures, and basement membrane; features consistent with glandular epithelial cells. Outgrowth of endometrial stromal cells and glandular formation was impaired in response to dienogest in a dose-dependent manner. Our study shows that the human endometrial explants cultured in three-dimensional fibrin matrix establish outgrowths that ultrastructurally resemble ectopic endometrial implants. This model may provide insight into the cellular processes leading to endometriosis formation and enables screening of therapeutic compounds.
Collapse
Affiliation(s)
- Japarath Prechapanich
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hara S, Takahashi T, Amita M, Matsuo K, Igarashi H, Kurachi H. Pioglitazone counteracts the tumor necrosis factor-α inhibition of follicle-stimulating hormone-induced follicular development and estradiol production in an in vitro mouse preantral follicle culture system. J Ovarian Res 2013; 6:69. [PMID: 24079935 PMCID: PMC3849627 DOI: 10.1186/1757-2215-6-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/17/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age and is characterized by chronic anovulation. Insulin resistance may be a key component of the pathogenesis of this disorder. Pioglitazone is a thiazolidinedione derivative that acts by improving insulin resistance via the peroxisome proliferator-activated receptor-γ (PPAR-γ) pathway. Reportedly, pioglitazone improves the anovulation status in patients with PCOS. In the present study, we examined whether pioglitazone directly affects ovarian follicular development and steroidogenesis using in vitro mouse preantral follicle culture system. METHODS An isolated individual in vitro mouse preantral follicle culture was used to test the effects of pioglitazone on the follicle development and steroidogenesis. Tumor necrosis factor-α (TNF-α), which plays a role in insulin resistance, has been reported to inhibit the follicle stimulating hormone (FSH)-induced follicular development and steroidogenesis in an in vitro mouse preantral follicle culture system. Therefore, we examined whether pioglitazone counteracts these effects by TNF-α. We assessed the follicle diameter and follicle survival and antral-like cavity formation rates, the 17β-estradiol (E2) levels in the culture medium, and the ovulation rate using the in vitro preantral follicle culture. RESULTS Pioglitazone treatment counteracted the inhibition of TNF-α in FSH-induced follicle development in a dose-dependent manner. Pioglitazone, at a concentration of 5 μM, which was the minimum effective concentration, significantly counteracted the inhibition of TNF-α in FSH-induced follicle survival (29 versus 56%, P < 0.05), antral-like cavity formation (29 versus 48%, P < 0.05), E2 concentration in the culture medium (mean ± SEM = 21 ± 1 versus mean ± SEM = 27 ± 1 pg/mL, P < 0.05), and human chorionic gonadotropin-induced ovulation rate (9 versus 28%, P < 0.05). CONCLUSIONS Pioglitazone counteracted the inhibition by TNF-α on FSH-induced follicle development and steroidogenesis in the in vitro mouse preantral follicle culture. The results suggest that pioglitazone may directly affect the follicular development and steroidogenesis.
Collapse
Affiliation(s)
- Shuichiro Hara
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Metformin as a new therapy for endometriosis, its effects on both clinical picture and cytokines profile. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2012. [DOI: 10.1016/j.mefs.2012.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Pharmacologic therapies in endometriosis: a systematic review. Fertil Steril 2012; 98:529-55. [DOI: 10.1016/j.fertnstert.2012.07.1120] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/05/2023]
|
27
|
González-Ramos R, Defrère S, Devoto L. Nuclear factor-kappaB: a main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil Steril 2012; 98:520-8. [PMID: 22771029 DOI: 10.1016/j.fertnstert.2012.06.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To update, analyze, and summarize the literature concerning nuclear factor-kappaB (NF-κB) participation in endometriosis pathophysiology. DESIGN Review. RESULT(S) Nuclear factor-kappaB is physiologically activated in the human endometrium, showing variable activity. A cyclic p65-DNA binding pattern was shown in the endometrium of healthy women. This cyclic pattern was altered in the endometrium of patients with endometriosis. Nuclear factor-kappaB is basally activated in peritoneal endometriotic lesions, showing higher p65 activity in red endometriotic lesions than in black lesions. In vivo and in vitro studies show up-regulation of inflammation and cell proliferation and down-regulation of apoptosis by NF-κB activity. Iron overload has been shown in the pelvic cavity of endometriosis patients, and iron overload and oxidative stress activate NF-κB in macrophages, which have been shown to participate in the endometriosis-associated inflammatory reaction. CONCLUSION(S) Nuclear factor-kappaB activation dysregulation in the endometrium of endometriosis patients may explain some endometrial biological alterations associated with endometriosis. The scientific evidence strongly suggests that NF-κB activity in endometriotic cells stimulates inflammation and cell proliferation and inhibits apoptosis, favoring the development and maintenance of endometriosis. Iron overload in the pelvic cavity of endometriosis patients could be a main factor enhancing oxidative stress and activating NF-κB in a chronic manner, contributing to endometriosis establishment and growth.
Collapse
Affiliation(s)
- Reinaldo González-Ramos
- Instituto de Investigaciones Materno Infantil, Departamento de Obstetricia y Ginecología, Hospital Clínico San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
28
|
Physiologic activation of nuclear factor kappa-B in the endometrium during the menstrual cycle is altered in endometriosis patients. Fertil Steril 2012; 97:645-51. [DOI: 10.1016/j.fertnstert.2011.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022]
|
29
|
Peroxisome proliferating activating receptor gamma-independent attenuation of interleukin 6 and interleukin 8 secretion from primary endometrial stromal cells by thiazolidinediones. Fertil Steril 2011; 97:657-64. [PMID: 22192353 DOI: 10.1016/j.fertnstert.2011.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess the effect of thiazolidinediones on the regulation of inflammatory cytokines related to endometriosis in endometrial tissue and determine whether these effects occur via activation of the peroxisome proliferating activating receptor gamma (PPAR)-γ. DESIGN In vitro study using eutopic endometrial tissue. SETTING University hospital. PATIENT(S) Premenopausal women undergoing laparoscopy for infertility or abdominal pain. INTERVENTION(S) Isolation of endometrial stromal cells and the culture of these cells in the presence of thiazolidinediones, ciglitazone and pioglitazone, both with and without a pretreatment of the specific, irreversible PPAR-γ antagonist GW9662. MAIN OUTCOME MEASURE(S) Quantitation of interleukin (IL)-6 and IL-8 released into the cell culture medium by ELISA. Real-time polymerase chain reaction to quantitate PPAR-γ gene expression in the primary cell preparations and the expression of IL-6 and IL-8 after thiazolidinedione treatment. RESULT(S) Treatment of stromal cells with thiazolidinediones attenuated IL-6 and IL-8 release in a dose-dependent manner. This effect was not inhibited by GW9662 pretreatment. Ciglitazone induced IL-6 messenger RNA expression, an effect that was suppressed by GW9662 pretreatment. CONCLUSION(S) Thiazolidinediones decrease the proinflammatory cytokines IL-6 and IL-8 in endometrial stromal cells via a PPAR-γ-independent mechanism. A better understanding of the anti-inflammatory action of this class of drugs may improve their safety and efficacy for endometriosis treatment.
Collapse
|
30
|
Lebovic DI, Mwenda JM, Chai DC, Santi A, Xu X, D'Hooghe T. Peroxisome proliferator-activated receptor-(gamma) receptor ligand partially prevents the development of endometrial explants in baboons: a prospective, randomized, placebo-controlled study. Endocrinology 2010; 151:1846-52. [PMID: 20160135 PMCID: PMC2850226 DOI: 10.1210/en.2009-1076] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022]
Abstract
A prospective, randomized, placebo-controlled study was conducted in a baboon model to determine if a thiazolidinedione agonist of peroxisome proliferator-activated receptor-gamma, pioglitazone, can impede the development of endometriosis. Endometriosis was induced using laparoscopic, intrapelvic injection of eutopic menstrual endometrium, previously incubated with placebo or pioglitazone for 30 min, in 12 female baboons with a normal pelvis that had undergone at least one menstrual cycle since the time of captivity. At this point, the 12 baboons were randomized into two groups and treated from the day of induction. They received either PBS tablets (n = 6, placebo control, placebo tablets once a day by mouth) or pioglitazone (n = 6, test drug, 7.5 mg by mouth each day). A second and final laparoscopy was performed in the baboons to record the extent of endometriotic lesions between 24 and 42 d after induction (no difference in length of treatment between the two groups, P = 0.38). A videolaparoscopy was performed to document the number and surface area of endometriotic lesions. The surface area and volume of endometriotic lesions were significantly lower in pioglitazone treated baboons than the placebo group (surface area, 48.6 vs. 159.0 mm(2), respectively, P = 0.049; vol, 23.7 vs. 131.8 mm(3), respectively, P = 0.041). The surface area (3.5 vs. 17.8 mm(2), P = 0.017, pioglizatone vs. placebo) and overall number (1.5 vs. 9.5, P = 0.007, pioglizatone vs. placebo) of red lesions were lower in the pioglitazone group. A peroxisome proliferator-activated receptor-gamma ligand, pioglitazone, effectively reduced the initiation of endometriotic disease in the baboon endometriosis model. Using this animal model, we have shown that thiazolidinedione is a promising drug for preventive treatment of endometriosis.
Collapse
Affiliation(s)
- Dan I Lebovic
- Department of Obstetrics and Gynecology, University of Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
31
|
González-Ramos R, Van Langendonckt A, Defrère S, Lousse JC, Colette S, Devoto L, Donnez J. Involvement of the nuclear factor-κB pathway in the pathogenesis of endometriosis. Fertil Steril 2010; 94:1985-94. [PMID: 20188363 DOI: 10.1016/j.fertnstert.2010.01.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate the role of nuclear factor-κB (NF-κB) in the pathogenesis of endometriosis. DESIGN A literature search was conducted in PubMed to identify all relevant citations. RESULT(S) Our findings highlight the important role of NF-κB in the pathophysiology of endometriosis. In vitro and in vivo studies show that NF-κB-mediated gene transcription promotes inflammation, invasion, angiogenesis, and cell proliferation and inhibits apoptosis of endometriotic cells. Constitutive activation of NF-κB has been demonstrated in endometriotic lesions and peritoneal macrophages of endometriosis patients. Agents blocking NF-κB are effective inhibitors of endometriosis development and some drugs with known NF-κB inhibitory properties have proved efficient at reducing endometriosis-associated symptoms in women. Iron overload activates NF-κB in macrophages. NF-κB activation in macrophages and ectopic endometrial cells stimulates synthesis of proinflammatory cytokines, generating a positive feedback loop in the NF-κB pathway and promoting endometriotic lesion establishment, maintenance and development. CONCLUSION(S) NF-κB transcriptional activity modulates key cell processes contributing to the initiation and progression of endometriosis. Because endometriosis is a multifactorial disease, inhibiting NF-κB appears to be a promising strategy for future therapies targeting different cell functions involved in endometriosis development, such as cell adhesion, invasion, angiogenesis, inflammation, proliferation, and apoptosis. Upcoming research will elucidate these hypotheses.
Collapse
Affiliation(s)
- Reinaldo González-Ramos
- Instituto de Investigaciones Materno Infantil, Departamento de Obstetricia y Ginecología, Hospital Clínico San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
32
|
PPAR-γ expression in peritoneal endometriotic lesions correlates with pain experienced by patients. Fertil Steril 2010; 93:293-6. [DOI: 10.1016/j.fertnstert.2009.07.980] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/03/2009] [Accepted: 07/10/2009] [Indexed: 12/30/2022]
|
33
|
Almanza-Perez JC, Alarcon-Aguilar FJ, Blancas-Flores G, Campos-Sepulveda AE, Roman-Ramos R, Garcia-Macedo R, Cruz M. Glycine regulates inflammatory markers modifying the energetic balance through PPAR and UCP-2. Biomed Pharmacother 2009; 64:534-40. [PMID: 19864106 DOI: 10.1016/j.biopha.2009.04.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 04/15/2009] [Indexed: 12/23/2022] Open
Abstract
Obesity is widely recognized as cause of metabolic syndrome and cardiovascular disease. It is provoked by imbalance between the spending and consumption of energy associated with a chronic inflammatory condition due to excessive storage of fat tissue. Obese patients have an impaired inflammatory profile that contributes to the development of vascular complications, with fat tissue being partially responsible for controlling both processes: energy balance (through PPAR) and inflammatory condition (through inflammatory markers). White adipose tissue produces cytokines (IL-6, TNF-α, resistin, adiponectin, etc.) and participates in a broad spectrum of processes. Recently, glycine has been reported to have anti-inflammatory properties which reduce TNF-α and IL-6 levels and increase adiponectin in 3T3-L1 adipocytes and in fat tissue of obese mice. In this study, the possible regulatory role of glycine on some factors involved in storage and energy burning (PPAR-γ, PPAR-α, PPAR-δ and UCP-2) was analyzed in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Glycine clearly increased fat tissue PPAR-γ expression in lean but not in MSG/Ob mice. The PPAR-γ and PPAR-α liver expression was repressed in both groups of mice, while the expression of PPAR-δ decreased only in lean mice. Interestingly, glycine treatment also suppressed the expression of UCP-2, TNF-α and IL-6 in lean mice, and increased adiponectin and insulin serum levels. In conclusion, glycine regulates the production of inflammatory cytokines through PPAR-γ. These results provide clues on glycine signaling mechanisms as an anti-inflammatory agent that might be useful for treatment of metabolic and vascular complications associated to inflammation in obesity.
Collapse
Affiliation(s)
- J C Almanza-Perez
- Posgrado en Biologia Experimental, Division de Ciencias Biologicas y de Salud, Universidad Autonoma Metropolitana Unidad Iztapalapa, Apdo- Postal 55-535, CP 09340, DF Mexico, Mexico.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Wieser F, Yu J, Park J, Gaeddert A, Cohen M, Vigne JL, Taylor RN. A Botanical Extract from Channel Flow Inhibits Cell Proliferation, Induces Apoptosis, and Suppresses CCL5 in Human Endometriotic Stromal Cells1. Biol Reprod 2009; 81:371-7. [DOI: 10.1095/biolreprod.108.075069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
36
|
Moravek MB, Ward EA, Lebovic DI. Thiazolidinediones as therapy for endometriosis: a case series. Gynecol Obstet Invest 2009; 68:167-70. [PMID: 19641325 DOI: 10.1159/000230713] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/03/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Current medical therapies for endometriosis result in delayed conception and have not been shown to provide any fertile benefit subsequent to treatment. Thiazolidinediones (TZDs) do not impede conception and have been shown to reduce endometriotic lesions in animal models; however, no studies have been performed in humans. The aim of this study was to provide preliminary data about the effectiveness of a TZD in treating endometriosis-related pain. METHODS Case series of women with endometriosis recruited from the University of Michigan as part of an open-label prospective phase 2a clinical trial. Participants were given rosiglitazone, 4 mg daily, for 6 months. Subjective endometriosis symptoms were assessed using a modified Biberoglu and Behrman symptom severity scale and the McGill pain questionnaire. RESULTS Two of the 3 patients exhibited improvement in severity of symptoms and pain levels with a concurrent decrease in pain medication, while 1 experienced no change. Rosiglitazone was well tolerated by all patients. CONCLUSIONS Combined with data gathered from studies in rats and nonhuman primates, the results from this study offer positive justification for using TZDs as a well-tolerated treatment for endometriosis that can address pain without impeding ovulation and without the need for add-back therapy.
Collapse
Affiliation(s)
- Molly B Moravek
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Mich. USA
| | | | | |
Collapse
|
37
|
|
38
|
PPARgamma and Agonists against Cancer: Rational Design of Complementation Treatments. PPAR Res 2008; 2008:945275. [PMID: 19043603 PMCID: PMC2586323 DOI: 10.1155/2008/945275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/21/2008] [Indexed: 01/22/2023] Open
Abstract
PPARγ is a member of the ligand-activated nuclear receptor superfamily: its ligands act as insulin sensitizers and some are approved for the treatment of metabolic disorders in humans. PPARγ has pleiotropic effects on survival and proliferation of multiple cell types, including cancer cells, and is now subject of intensive preclinical cancer research. Studies of the recent decade highlighted PPARγ role as a potential modulator of angiogenesis in vitro and in vivo. These observations provide an additional facet to the PPARγ image as potential anticancer drug. Currently PPARγ is regarded as an important target for the therapies against angiogenesis-dependent pathological states including cancer and vascular complications of diabetes. Some of the studies, however, identify pro-angiogenic and tumor-promoting effects of PPARγ and its ligands pointing out the need for further studies. Below, we summarize current knowledge of PPARγ regulatory mechanisms and molecular targets, and discuss ways to maximize the beneficial activity of the PPARγ agonists.
Collapse
|