1
|
You Y, Tan W, Guo Y, Luo M, Shang FF, Xia Y, Luo S. Progesterone promotes endothelial nitric oxide synthase expression through enhancing nuclear progesterone receptor-SP-1 formation. Am J Physiol Heart Circ Physiol 2020; 319:H341-H348. [PMID: 32618512 DOI: 10.1152/ajpheart.00206.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progesterone exerts antihypertensive actions partially by modulating endothelial nitric oxide synthase (eNOS) activity. Here, we aimed to investigate the effects and mechanisms of progesterone on eNOS expression. First, human umbilical vein endothelial cells (HUVECs) were exposed to progesterone and then the eNOS transcription factor specificity protein-1 (SP-1) and progesterone receptor (PRA/B) expression were assessed by Western blotting and qRT-PCR. The interaction between SP-1 and PRA/B was next determined through coimmunoprecipitation assay. The chromatin immunoprecipitation assay and luciferase assay were used to investigate the relationship of PRA/B, SP-1, and eNOS promoter. At last, rats were intraperitoneally injected with progesterone receptor antagonist RU-486, and then the expression of eNOS and vasodilation function in thoracic aorta and mesenteric artery were measured. The results showed that progesterone could increase eNOS expression in HUVECs. Further study showed that progesterone increased PRA-SP-1 complex formation and facilitated PRA/B and SP-1 binding to eNOS promoter. Mutating SP-1 or PR-binding motif on eNOS promoter abolished the effect of progesterone on eNOS gene transcription. We also observed that progesterone receptor antagonist RU-486 reduced eNOS expression and impaired vasodilation in rats. Those results suggest that progesterone modulates eNOS expression through promoting PRA-SP-1 complex formation, and progesterone antagonist attenuates eNOS expression, leading to the loss of vascular relaxation.NEW & NOTEWORTHY Progesterone directly upregulated endothelial nitric oxide synthase (eNOS) expression in human endothelial cells. Progesterone augmented eNOS promoter activity through a progesterone receptor A- and specificity protein-1-dependent manner. Antagonism of the progesterone receptor reduced eNOS expression and impaired vasodilation in rats.
Collapse
Affiliation(s)
- Yuehua You
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanying Tan
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
- Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Stanojlović M, Guševac Stojanović I, Zarić M, Martinović J, Mitrović N, Grković I, Drakulić D. Progesterone Protects Prefrontal Cortex in Rat Model of Permanent Bilateral Common Carotid Occlusion via Progesterone Receptors and Akt/Erk/eNOS. Cell Mol Neurobiol 2020; 40:829-843. [PMID: 31865501 PMCID: PMC11448933 DOI: 10.1007/s10571-019-00777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Sustained activation of pro-apoptotic signaling due to a sudden and prolonged disturbance of cerebral blood circulation governs the neurodegenerative processes in prefrontal cortex (PFC) of rats whose common carotid arteries are permanently occluded. The adequate neuroprotective therapy should minimize the activation of toxicity pathways and increase the activity of endogenous protective mechanisms. Several neuroprotectants have been proposed, including progesterone (P4). However, the underlying mechanism of its action in PFC following permanent bilateral occlusion of common carotid arteries is not completely investigated. We, thus herein, tested the impact of post-ischemic P4 treatment (1.7 mg/kg for seven consecutive days) on previously reported aberrant neuronal morphology and amount of DNA fragmentation, as well as the expression of progesterone receptors along with the key elements of Akt/Erk/eNOS signal transduction pathway (Bax, Bcl-2, cytochrome C, caspase 3, PARP, and the level of nitric oxide). The obtained results indicate that potential amelioration of histological changes in PFC might be associated with the absence of activation of Bax/caspase 3 signaling cascade and the decline of DNA fragmentation. The study also provides the evidence that P4 treatment in repeated regiment of administration might be effective in neuronal protection against ischemic insult due to re-establishment of the compromised action of Akt/Erk/eNOS-mediated signaling pathway and the upregulation of progesterone receptors.
Collapse
Affiliation(s)
- Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Guševac Stojanović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia.
| |
Collapse
|
3
|
Hyett J, Asadi N, Zare Khafri M, Vafaei H, Kasraeian M, Salehi A, Saadati N, Bazrafshan K. The use of vaginal progesterone as a maintenance therapy in women with arrested preterm labor: a double-blind placebo-randomized controlled trial. J Matern Fetal Neonatal Med 2020; 35:1134-1140. [PMID: 32216490 DOI: 10.1080/14767058.2020.1743662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: The efficacy of maintenance tocolytic therapy after successful arrest of preterm labor remains controversial. The purpose of this study was to evaluate the efficacy of 400 mg of daily vaginal progesterone (cyclogest) after successful parenteral tocolysis to increase latency period and improvement of neonatal outcomes in women with threatened preterm labor.Materials and methods: In this randomized, double-blind, placebo-controlled trial, 85 participants were randomly allocated to either 400 mg daily of vaginal progesterone (n = 45) or placebo (n = 40) until 34 weeks of gestation. The primary outcomes were the time until delivery (latency period) and cervical length after 1 week of treatment. Secondary outcome were GA on delivery, type of delivery, incidence of low birth weight, perinatal morbidity and mortality.Results: Longer mean latency until delivery (53.6 ± 16.8 versus 34.5 ± 12.9) days p = .0001; longer mean of gestational age on delivery (37.5 ± 2.2 versus 34.2 ± 2.1) weeks p = .0001; cervical length after 1 week of treatment (27.5 ± 5.5 versus 20.7 ± 3.1) mm p = .0001; low birth weight 12 (29.3%) versus 19 (57.6%) p = .01; and NICU admission 9 (22%) versus 15 (45.5%), were significantly different between the two groups. No significant differences were found between neonatal death 1 (2.4%) versus 2 (6.1%), p = .43; RDS 5 (12.2%) versus 8 (24.2%), p = .17; and need to mechanical ventilator 2 (5.4%) versus 6 (18.2%) p = .136, for the progesterone and placebo groups, respectively.Conclusion: Daily administration of 400 mg vaginal progesterone after successful parenteral tocolysis may increase latency preceding delivery and improves cervical shortening and neonatal outcome in women with preterm labor. Further confirmatory studies are warranted.
Collapse
Affiliation(s)
- Jon Hyett
- Royal Prince Alfred Hospital, Camperdown, Australia
| | - Nasrin Asadi
- Maternal-fetal medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare Khafri
- Maternal-Fetal Medicine Research Center, OB & GYN Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Homeira Vafaei
- Maternal-fetal medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kasraeian
- Maternal-fetal medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Salehi
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmieh Saadati
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadije Bazrafshan
- Maternal-fetal medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Lee M, Lee HA, Park M, Park HK, Kim YS, Yang SC, Kim HR, Kim J, Song H. Oestrogen-induced expression of decay accelerating factor is spatiotemporally antagonised by progesterone-progesterone receptor signalling in mouse uterus. Reprod Fertil Dev 2019; 30:1532-1540. [PMID: 29852923 DOI: 10.1071/rd18031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Decay accelerating factor (DAF) is upregulated in the fetoplacental trophoblast, which protects the fetus from maternal complement injury. DAF was found to be downregulated in the endometrium of patients with repeated implantation failure. Thus, we examined the molecular mechanisms of DAF expression regulation by ovarian steroid hormones in the mouse uterus. Immunofluorescence staining demonstrated its exclusive localisation in the apical region of the epithelium in the uterus. Oestrogen (E2) significantly induced Daf mRNA in a time-dependent manner. Progesterone (P4) did not have any significant effect on Daf expression; however, it negatively modulated E2-induced DAF expression and RU486 effectively interfered with the inhibitory action of P4 in the uterus. During early pregnancy DAF was higher on Day 1 of pregnancy, but significantly decreased from Day 3, which is consistent with its E2-dependent regulation. Interestingly, DAF expression seemed to be influenced by the implanting blastocyst on Day 5 and it was gradually increased during preimplantation embryo development with peak levels at blastocyst stages. We demonstrated that E2-dependent DAF expression is antagonised by P4-progesterone receptor signalling in the uterine epithelium. Spatiotemporal regulation of DAF in the uterus and preimplantation embryos suggest that DAF functions as an immune modulator for embryo implantation and early pregnancy in mice.
Collapse
Affiliation(s)
- Miji Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyang Ah Lee
- Department of Obstetrics and Gynaecology, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hee Kyoung Park
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jayeon Kim
- CHA Fertility Centre Seoul Station, CHA University, Seoul, 04637, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| |
Collapse
|
5
|
Sharma D, Day ME, Stimpson SJ, Rodeghier M, Ghafuri D, Callaghan M, Zaidi AU, Hannan B, Kassim A, Zempsky W, Wellons M, James A, Bruehl S, DeBaun MR. Acute Vaso-Occlusive Pain is Temporally Associated with the Onset of Menstruation in Women with Sickle Cell Disease. J Womens Health (Larchmt) 2019; 28:162-169. [DOI: 10.1089/jwh.2018.7147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deva Sharma
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melissa E. Day
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah-Jo Stimpson
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark Rodeghier
- Department of Pediatrics, Rodeghier Consultants, Chicago, Illinois
| | - Djamila Ghafuri
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Callaghan
- Department of Pediatrics, Wayne State University Medical Center, Detroit, Michigan
| | - Ahmar Urooj Zaidi
- Department of Pediatrics, Wayne State University Medical Center, Detroit, Michigan
| | - Bryan Hannan
- Department of Pediatrics, Wayne State University Medical Center, Detroit, Michigan
| | - Adetola Kassim
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William Zempsky
- Connecticut Children's Medical Center, Hartford, Connecticut
| | - Melissa Wellons
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andra James
- Department of Obstetrics and Gynecology, Duke Hemostasis and Thrombosis Center, Duke University, Durham, North Carolina
| | - Stephen Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R. DeBaun
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Khazaei MR, Nasr-Esfahani MH, Chobsaz F, Khazaei M. Noscapine Inhibiting the Growth and Angiogenesis of Human Eutopic Endometrium of Endometriosis Patients through Expression of Apoptotic Genes and Nitric Oxide Reduction in Three-Dimensional Culture Model. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:836-845. [PMID: 31531066 PMCID: PMC6706753 DOI: 10.22037/ijpr.2019.1100642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Noscapine is a natural alkaloid with anti-angiogenesis activities. The aim of the present study was to examine the effect of noscapine on eutopic endometrium of endometriosis patients (EEE) and normal endometrium (NE) in a three-dimensional (3D) culture model. In this experimental in-vitro study, EEE (n = 8) and NE (n = 8) biopsies were taken from 16 reproductive aged women. The biopsies were cleared from blood and mucus. Each biopsy was cut into small fragments (1 × 1 mm) in a sterile condition. For 3D culture, the endometrial fragments were put between two layers of fibrin jell made of fibrinogen solution [3 mg/mL in Medium199 (M199) + thrombin]. Twenty-four wells of culture dish was divided into 5 groups for each biopsy: the control wells were treated with M199 containing 5% fetal bovine serum (FBS) while, the test wells were exposed to the same media containing one of the noscapine doses (10, 50, 100, and 200 μM). The expression of apoptotic genes, growth score, angiogenesis, and nitric oxide (NO) secretion were evaluated. The mean of growth score of groups exposed to 0, 10, 50, 100, and 200 μM were 2.2 ± 0.55, 1.7 ± 0.45, 1.44 ± 0.27, 0.29 ± 0.1, and 0.1 ± 0.08 in EEE, and also, 2.11 ± 0.6, 1.65 ± 0.5, 0.79 ± 0.41, 0.18 ± 0.1, and 0.1 ± 0.1 in NE, respectively, and the difference between the groups was significant (P < 0.05). The expression of apoptotic genes significantly increased while, the levels of Bcl-2 and Sirt1 reduced (P = 0.004). NO secretion reduced significantly (P < 0.05) in both EEE and NE groups. In conclusion, higher doses of noscapine showed inhibitory effect on growth and angiogenesis of EEE and NE.
Collapse
Affiliation(s)
- Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farzaneh Chobsaz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Al-Shboul OA, Mustafa AG, Omar AA, Al-Dwairi AN, Alqudah MA, Nazzal MS, Alfaqih MA, Al-Hader RA. Effect of progesterone on nitric oxide/cyclic guanosine monophosphate signaling and contraction in gastric smooth muscle cells. Biomed Rep 2018; 9:511-516. [PMID: 30546879 DOI: 10.3892/br.2018.1161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that progesterone could inhibit muscle contraction in various sites of the gastrointestinal tract. The underlying mechanisms responsible for these inhibitory effects of progesterone are not fully known. The aim of the current study was to investigate the effect of progesterone on the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway and muscle contraction in the stomach. Single gastric smooth muscle cells from female Sprague-Dawley rats were used. The expression of progesterone receptor (PR) mRNA was analyzed by reverse transcription polymerase chain reaction. NO and cGMP levels were measured via specific ELISAs. Acetylcholine (ACh)-induced contraction of single gastric muscle cells preincubated with progesterone was measured via scanning micrometry in the presence or absence of the NO synthase inhibitor, Nω-Nitro-L-arginine (L-NNA), or guanylyl cyclase inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and expressed as percent shortening from resting cell length. PR expression was detected in the stomach muscle cells. Progesterone inhibited ACh-induced gastric muscle cell contraction. Furthermore, progesterone increased NO and cGMP levels in single gastric muscle cells. Most notably, pre-incubation of muscle cells with either L-NNA or ODQ abolished the inhibitory action of progesterone on muscle contraction. These present observations suggest that progesterone promotes muscle cell relaxation in the stomach potentially via the NO/cGMP pathway.
Collapse
Affiliation(s)
- Othman A Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayman G Mustafa
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amal Abu Omar
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed N Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad A Alqudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mona S Nazzal
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rami A Al-Hader
- Department of Physiology and Biochemistry, Princess Basma Teaching Hospital, Faculty of Medicine, Jordan University of Science and Technology, Irbid 21110, Jordan
| |
Collapse
|
8
|
Faustmann G, Meinitzer A, Magnes C, Tiran B, Obermayer-Pietsch B, Gruber HJ, Ribalta J, Rock E, Roob JM, Winklhofer-Roob BM. Progesterone-associated arginine decline at luteal phase of menstrual cycle and associations with related amino acids and nuclear factor kB activation. PLoS One 2018; 13:e0200489. [PMID: 29990354 PMCID: PMC6039037 DOI: 10.1371/journal.pone.0200489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
Background/Objectives Given their role in female reproduction, the effects of progesterone on arginine and related amino acids, polyamines and NF-κB p65 activation were studied across the menstrual cycle. Methods Arginine, ornithine and citrulline as well as putrescine, spermidine, spermine, and N-acetyl-putrescine were determined in plasma, NF-κB p65 activation in peripheral blood mononuclear cells and progesterone in serum of 28 women at early (T1) and late follicular (T2) and mid (T3) and late (T4) luteal phase. Results Arginine and related amino acids declined from T1 and T2 to T3 and T4, while progesterone increased. At T3, arginine, ornithine, and citrulline were inversely related with progesterone. Changes (ΔT3-T2) in arginine, ornithine, and citrulline were inversely related with changes (ΔT3-T2) in progesterone. Ornithine and citrulline were positively related with arginine, as were changes (ΔT3-T2) in ornithine and citrulline with changes (ΔT3-T2) in arginine. At T2, NF-κB p65 activation was positively related with arginine. Polyamines did not change and were not related to progesterone. All results described were significant at P < 0.001. Conclusions This study for the first time provides data, at the plasma and PBMC level, supporting a proposed regulatory node of arginine and related amino acids, progesterone and NF-κB p65 at luteal phase of the menstrual cycle, aimed at successful preparation of pregnancy.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | - Christoph Magnes
- Institute for Biomedicine and Health Sciences, HEALTH, Joanneum Research Forschungsgesellschaft m.b.H., Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | | | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | - Josep Ribalta
- Unitat de Recerca de Lipids I Arteriosclerosi, Facultat de Medicina, Universitat Rovira I Virgili, Facultat Medicina i Ciències de la Salut, Reus, Spain
| | - Edmond Rock
- Unité de Nutrition Humaine, Centre Auvergne Rhône-Alpes, Institut National de la Recherche Agronomique, Saint-Gènes-Champanelle, France
| | - Johannes M. Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | - Brigitte M. Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
- * E-mail:
| |
Collapse
|
9
|
Ku CW, Tan ZW, Lim MK, Tam ZY, Lin CH, Ng SP, Allen JC, Lek SM, Tan TC, Tan NS. Spontaneous miscarriage in first trimester pregnancy is associated with altered urinary metabolite profile. BBA CLINICAL 2017; 8:48-55. [PMID: 28879096 PMCID: PMC5574812 DOI: 10.1016/j.bbacli.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
Threatened miscarriage is the most common gynecological emergency, occurring in about 20% of pregnant women. Approximately one in four of these patients go on to have spontaneous miscarriage and the etiology of miscarriage still remains elusive. In a bid to identify possible biomarkers and novel treatment targets, many studies have been undertaken to elucidate the pathways that lead to a miscarriage. Luteal phase deficiency has been shown to contribute to miscarriages, and the measurement of serum progesterone as a prognostic marker and the prescription of progesterone supplementation has been proposed as possible diagnostic and treatment methods. However, luteal phase deficiency only accounts for 35% of miscarriages. In order to understand the other causes of spontaneous miscarriage and possible novel urine biomarkers for miscarriage, we looked at the changes in urinary metabolites in women with threatened miscarriage. To this end, we performed a case-control study of eighty patients who presented with threatened miscarriage between 6 and 10 weeks gestation. Urine metabolomics analyses of forty patients with spontaneous miscarriages and forty patients with ongoing pregnancies at 16 weeks gestation point to an impaired placental mitochondrial β-oxidation of fatty acids as the possible cause of spontaneous miscarriage. This study also highlighted the potential of urine metabolites as a non-invasive screening tool for the risk stratification of women presenting with threatened miscarriage.
Collapse
Affiliation(s)
- Chee Wai Ku
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Zhen Wei Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Mark Kit Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Zhi Yang Tam
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Chih-Hsien Lin
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Sean Pin Ng
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - John Carson Allen
- Centre for Quantitative Medicine, Duke-NUS Medical School, 20 College Road, Academia, 169856, Singapore
| | - Sze Min Lek
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Thiam Chye Tan
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Nguan Soon Tan
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, 138673, Singapore
| |
Collapse
|
10
|
Pang Y, Dong J, Thomas P. Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-α. Am J Physiol Endocrinol Metab 2015; 308:E899-911. [PMID: 25805192 DOI: 10.1152/ajpendo.00527.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/17/2015] [Indexed: 11/22/2022]
Abstract
Progesterone exerts beneficial effects on the human cardiovascular system by inducing rapid increases in nitric oxide (NO) production in vascular endothelial cells, but the receptors mediating these nongenomic progesterone actions remain unclear. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that progesterone binds to plasma membranes of HUVECs with the characteristics of membrane progesterone receptors (mPRs). The selective mPR agonist Org OD 02-0 had high binding affinity for the progesterone receptor on HUVEC membranes, whereas nuclear PR (nPR) agonists R5020 and medroxyprogesterone acetate displayed low binding affinities. Immunocytochemical and Western blot analyses confirmed that mPRs are expressed in HUVECs and are localized on their plasma membranes. NO levels increased rapidly after treatment with 20 nM progesterone, Org OD 02-0, and a progesterone-BSA conjugate but not with R5020, suggesting that this progesterone action is at the cell surface and initiated through mPRs. Progesterone and Org OD 02-0 (20 nM) also significantly increased endothelial nitric oxide synthase (eNOS) activity and eNOS phosphorylation. Knockdown of mPRα expression by treatment with small-interfering RNA (siRNA) blocked the stimulatory effects of 20 nM progesterone on NO production and eNOS phosphorylation, whereas knockdown of nPR was ineffective. Treatment with PI3K/Akt and MAP kinase inhibitors blocked the stimulatory effects of progesterone, Org OD 02-0, and progesterone-BSA on NO production and eNOS phosphorylation and also prevented progesterone- and Org OD 02-0-induced increases in Akt and ERK phosphorylation. The results suggest that progesterone stimulation of NO production in HUVECs is mediated by mPRα and involves signaling through PI3K/Akt and MAP kinase pathways.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas
| | - Jing Dong
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas
| |
Collapse
|
11
|
Progesterone attenuates experimental subarachnoid hemorrhage-induced vasospasm by upregulation of endothelial nitric oxide synthase via Akt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:207616. [PMID: 24949428 PMCID: PMC4052693 DOI: 10.1155/2014/207616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/23/2014] [Indexed: 01/20/2023]
Abstract
Cerebral vasospasm is the leading cause of mortality and morbidity in patients after aneurysmal subarachnoid hemorrhage (SAH). However, the mechanism and adequate treatment of vasospasm are still elusive. In the present study, we evaluate the effect and possible mechanism of progesterone on SAH-induced vasospasm in a two-hemorrhage rodent model of SAH. Progesterone (8 mg/kg) was subcutaneously injected in ovariectomized female Sprague-Dawley rats one hour after SAH induction. The degree of vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Expressions of endothelial nitric oxide synthase (eNOS) and phosphorylated Akt (phospho-Akt) in basilar arteries were evaluated. Prior to perfusion fixation, there were no significant differences among the control and treated groups in physiological parameters recorded. Progesterone treatment significantly (P < 0.01) attenuated SAH-induced vasospasm. The SAH-induced suppression of eNOS protein and phospho-Akt were relieved by progesterone treatment. This result further confirmed that progesterone is effective in preventing SAH-induced vasospasm. The beneficial effect of progesterone might be in part related to upregulation of expression of eNOS via Akt signaling pathway after SAH. Progesterone holds therapeutic promise in the treatment of cerebral vasospasm following SAH.
Collapse
|
12
|
Pirdel L, Pirdel M. Role of iron overload-induced macrophage apoptosis in the pathogenesis of peritoneal endometriosis. Reproduction 2014; 147:R199-207. [PMID: 24599836 DOI: 10.1530/rep-13-0552] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This article presents an overview of the involvement of iron overload-induced nitric oxide (NO) overproduction in apoptosis of peritoneal macrophages of women with endometriosis. We have postulated that the peritoneal iron overload originated from retrograde menstruation or bleeding lesions in the ectopic endometrium, which may contribute to the development of endometriosis by a wide range of mechanisms, including oxidative damage and chronic inflammation. Excessive NO production may also be associated with impaired clearance of endometrial cells by macrophages, which promotes cell growth in the peritoneal cavity. Therefore, further research of the mechanisms and consequences of macrophage apoptosis in endometriosis helps discover novel therapeutic strategies that are designed to prevent progression of endometriosis.
Collapse
Affiliation(s)
- Leila Pirdel
- Department of ImmunologyFaculty of Medicine, Islamic Azad University, Ardabil Branch, Ardabil 5615731567, IranDepartment of MidwiferyIslamic Azad University, Astara Branch, Astara, Iran
| | - Manijeh Pirdel
- Department of ImmunologyFaculty of Medicine, Islamic Azad University, Ardabil Branch, Ardabil 5615731567, IranDepartment of MidwiferyIslamic Azad University, Astara Branch, Astara, Iran
| |
Collapse
|
13
|
Fernandes VS, Ribeiro ASF, Martínez-Sáenz A, Blaha I, Serrano-Margüello D, Recio P, Martínez AC, Bustamante S, Vázquez-Alba D, Carballido J, García-Sacristán A, Hernández M. Underlying mechanisms involved in progesterone-induced relaxation to the pig bladder neck. Eur J Pharmacol 2014; 723:246-52. [PMID: 24296318 DOI: 10.1016/j.ejphar.2013.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/12/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
Progesterone increases bladder capacity and improves the bladder compliance by its relaxant action on the detrusor. A poor information, however, exists concerning to the role of this steroid hormone on the bladder outflow region contractility. This study investigates the progesterone-induced action on the smooth muscle tension of the pig bladder neck. To this aim, urothelium-denuded bladder neck strips were mounted in myographs for isometric force recordings and for simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)]i) and tension. On phenylephrine (PhE)-precontracted strips, progesterone produced concentration-dependent relaxations only at high pharmacological concentrations. The blockade of progesterone receptors, nitric oxide (NO) synthase, guanylyl cyclase, large conductance Ca(2+)-activated K(+) (BKCa) or ATP-dependent K(+) (KATP) channels reduced the progesterone relaxations. The presence of the urothelium and the inhibition of cyclooxygenase (COX), intermediate- and small-conductance Ca(2+)-activated K(+) channels failed to modify these responses. In Ca(2+)-free potassium rich physiological saline solution, progesterone inhibited the contraction to CaCl2 and to the L-type voltage-operated Ca(2+) (VOC) channel activator BAY-K 8644. Relaxation induced by progesterone was accompanied by simultaneous decreases in smooth muscle [Ca(2+)]i. These results suggest that progesterone promotes relaxation of pig bladder neck through smooth muscle progesterone receptors via cGMP/NO pathway and involving the activation of BKCa and KATP channels and inhibition of the extracellular Ca(2+) entry through L-type VOC channels.
Collapse
Affiliation(s)
- Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana S F Ribeiro
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Martínez-Sáenz
- Unidad Experimental, Fundación de Investigación Biomédica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - Igor Blaha
- Departamento de Urología, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Daniel Serrano-Margüello
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paz Recio
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Cristina Martínez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Salvador Bustamante
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - David Vázquez-Alba
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Hafner LM, Cunningham K, Beagley KW. Ovarian steroid hormones: effects on immune responses and Chlamydia trachomatis infections of the female genital tract. Mucosal Immunol 2013; 6:859-75. [PMID: 23860476 DOI: 10.1038/mi.2013.46] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 06/04/2013] [Indexed: 02/04/2023]
Abstract
Female sex hormones are known to regulate the adaptive and innate immune functions of the female reproductive tract. This review aims to update our current knowledge of the effects of the sex hormones estradiol and progesterone in the female reproductive tract on innate immunity, antigen presentation, specific immune responses, antibody secretion, genital tract infections caused by Chlamydia trachomatis, and vaccine-induced immunity.
Collapse
Affiliation(s)
- L M Hafner
- Infectious Diseases Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia.
| | | | | |
Collapse
|
15
|
Haast RAM, Gustafson DR, Kiliaan AJ. Sex differences in stroke. J Cereb Blood Flow Metab 2012; 32:2100-7. [PMID: 23032484 PMCID: PMC3519418 DOI: 10.1038/jcbfm.2012.141] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/27/2012] [Accepted: 09/02/2012] [Indexed: 02/08/2023]
Abstract
Sex differences in stroke are observed across epidemiologic studies, pathophysiology, treatments, and outcomes. These sex differences have profound implications for effective prevention and treatment and are the focus of this review. Epidemiologic studies reveal a clear age-by-sex interaction in stroke prevalence, incidence, and mortality. While premenopausal women experience fewer strokes than men of comparable age, stroke rates increase among postmenopausal women compared with age-matched men. This postmenopausal phenomenon, in combination with living longer, are reasons for women being older at stroke onset and suffering more severe strokes. Thus, a primary focus of stroke prevention has been based on sex steroid hormone-dependent mechanisms. Sex hormones affect different (patho)physiologic functions of the cerebral circulation. Clarifying the impact of sex hormones on cerebral vasculature using suitable animal models is essential to elucidate male-female differences in stroke pathophysiology and development of sex-specific treatments. Much remains to be learned about sex differences in stroke as anatomic and genetic factors may also contribute, revealing its multifactorial nature. In addition, the aftermath of stroke appears to be more adverse in women than in men, again based on older age at stroke onset, longer prehospital delays, and potentially, differences in treatment.
Collapse
Affiliation(s)
- Roy A M Haast
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Deborah R Gustafson
- Section for Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Departments of Neurology and Medicine, State University of New York—Downstate Medical Center, Brooklyn, New York, USA
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Is Cholesterol Sulfate Deficiency a Common Factor in Preeclampsia, Autism, and Pernicious Anemia? ENTROPY 2012. [DOI: 10.3390/e14112265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Norman JE, Yuan M, Anderson L, Howie F, Harold G, Young A, Jordan F, McInnes I, Harnett MM. Effect of prolonged in vivo administration of progesterone in pregnancy on myometrial gene expression, peripheral blood leukocyte activation, and circulating steroid hormone levels. Reprod Sci 2012; 18:435-46. [PMID: 21558462 DOI: 10.1177/1933719110395404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to investigate the effects of progesterone on gene expression and function of both myometrium and circulating leukocytes. METHODS We recruited women participating in a randomized clinical trial of progesterone to prevent preterm delivery. These participants had a twin pregnancy and were managed in 1 of 2 tertiary referral centers. Participants were treated with progesterone (90 mg vaginally) or placebo from 24 to 34 weeks of pregnancy. The outcome measures were myometrial and leukocyte gene expression and expression of cell surface markers in circulating leukocytes, all quantified ex vivo. RESULTS Prolonged in vivo administration of progesterone inhibited myometrial expression of connexins 26 and 43, endothelial nitric acid synthase (eNOS), and the prostaglandin receptor EP2 ex vivo. Administration of progesterone also increased numbers of circulating neutrophils while decreasing lymphocyte proportions and decreasing neutrophil CD11b expression. CONCLUSION The observed effects of prolonged in vivo administration of progesterone will minimize the ability of the uterus to contract as a synctium and the ability of peripheral blood leukocytes to migrate into the myometrium during parturition. We suggest that these are putative mechanisms by which progesterone might prevent preterm birth in women at high risk.
Collapse
Affiliation(s)
- Jane E Norman
- Centre for Reproductive Biology, Queen's Medical Research Centre, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Najafi T, Novin MG, Ghazi R, Khorram O. Altered endometrial expression of endothelial nitric oxide synthase in women with unexplained recurrent miscarriage and infertility. Reprod Biomed Online 2012; 25:408-14. [PMID: 22877939 DOI: 10.1016/j.rbmo.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/24/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) has diverse roles in the female reproductive system including a role in blastocyst implantation. Aberrant expression of eNOS could therefore be significant in the pathogenesis of disorders of implantation. In this study, eNOS protein and mRNA levels in the endometrium of women with recurrent miscarriages, unexplained infertility and a control group were determined by compartmental quantitative immunohistochemistry and real-time reverse-transcription PCR. eNOS was found to be immunolocalized to all layers of the endometrium and vascular endothelium. eNOS protein was higher in glandular epithelium (P = 0.004) and luminal epithelium (P = 0.002), but not vascular endothelium and stroma, in women with recurrent miscarriage. Similarly, in women with unexplained infertility, eNOS was significantly higher (P < 0.03) in luminal epithelium but not in any other compartments compared with the control group. The levels of mRNA confirmed the protein data, demonstrating higher eNOS mRNA in the endometrium of women with recurrent miscarriage and unexplained infertility compared with controls. In conclusion, increased expression of eNOS in glandular and luminal epithelium of the endometrium in women with recurrent miscarriages and unexplained infertility suggests a detrimental effect of excess nitric oxide in endometrial receptivity and implantation.
Collapse
Affiliation(s)
- Tohid Najafi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, [corrected] Tehran, Iran
| | | | | | | |
Collapse
|
19
|
Najafi T, Ghaffari Novin M, Pakravesh J, Foghi K, Fadayi F, Rahimi G. Immunohistochemical localization of endothelial nitric oxide synthase in endometrial tissue of women with unexplained infertility. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2012; 10:121-6. [PMID: 25242984 PMCID: PMC4163273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 07/25/2011] [Accepted: 08/23/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a molecule that incorporates in many physiological processes of female reproductive system. Recent studies suggested the possible role of endothelial isoform of nitric oxide synthase (eNOS) enzyme in female infertility. OBJECTIVE The aim of this study is to evaluate the expression of endothelial nitric oxide synthase in endometrial tissue of women with unexplained infertility. MATERIALS AND METHODS In this case-control study a total of 18 endometrial tissues obtained from 10 women with unexplained infertility and 8 normal and fertile women by endometrial biopsy, 6 to 10 days after LH surge. Specimens were fixed in 4% paraformaldhyde fixative and frozen sectioned for semi-quantitative immunohistochemical evaluation using monoclonal anti-human eNOS antibody. Hematoxilin and Eosin was used for Histological dating. RESULTS Localization of endothelial nitric oxide synthase was seen in glandular and luminal epithelium, vascular endothelium and stroma in both fertile women and women with unexplained infertility. Although there were differences in immunoreactivity of glandular epithelium (p=0.44), vascular endothelium (p=0.60) and stroma (p=0.63) but only over-expression of eNOS in luminal epithelium (p=0.045) of women with unexplained infertility compared to fertile women was statistically significant (p<0.05). CONCLUSION This study suggests that changes in luminal expression of eNOS may influence receptivity of endometrium.
Collapse
Affiliation(s)
- Tohid Najafi
- Infertility and Reproductive Health Research Center,Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marefat Ghaffari Novin
- Infertility and Reproductive Health Research Center,Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Khadijeh Foghi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fadayi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gelareh Rahimi
- Infertility and Reproductive Health Research Center,Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Nitric Oxide concentration in endometrial washing throughout the menstrual cycle. Arch Gynecol Obstet 2011; 285:1479-82. [PMID: 22198846 DOI: 10.1007/s00404-011-2185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/14/2011] [Indexed: 11/27/2022]
Abstract
PURPOSE Nitric oxide (NO) intrauterine production has been shown to have an important role in the reproductive system in females. The objective of the present study was to evaluate NO concentration in endometrial washing throughout the menstrual cycle. METHODS Observational study at Institute of Obstetrics and Gynecology, Mother-Infant Department, University Hospital. The study included 40 healthy fertile women, aged 21-40, with regular menstrual cycle, undergoing endometrial washing by hydrosonography for the assessment of NO concentration. RESULTS Nitric oxide concentration in endometrial washing were low in early to mid proliferative phase (4.73 ± 1.57 mcM/L), but significantly higher (p < 0.05) in late proliferative phase (7.30 ± 3.37 mcM/L) early secretory phase (8.05 ± 1.97 mcM/L) and late secretory phase (8.69 ± 4.12 mcM/L) of menstrual cycle. CONCLUSIONS Endometrial washing by hydrosonography is a simple, minimally invasive, and effective tool to use in the evaluation of cyclical NO intrauterine production. Nitric oxide concentrations increased during the late proliferative and secretory phase of menstrual cycle.
Collapse
|
21
|
Szóstek AZ, Siemieniuch MJ, Deptula K, Woclawek-Potocka I, Majewska M, Okuda K, Skarzynski DJ. Ovarian steroids modulate tumor necrosis factor-α and nitric oxide-regulated prostaglandin secretion by cultured bovine oviductal epithelial cells. Domest Anim Endocrinol 2011; 41:14-23. [PMID: 21420267 DOI: 10.1016/j.domaniend.2011.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/20/2011] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
Abstract
Ovarian steroids assure an optimum environment for the final maturation of oocytes, gamete transport, fertilization, and early embryonic development. The aim of experiment 1 was to examine the influence of ovarian steroids on tumor necrosis factor-α (TNF-α)- or nitric oxide (NO)-regulated prostaglandin (PG), and nitrite/nitrate (NO₂/NO₃) secretion by cultured bovine oviductal epithelial cells (BOECs). BOECs were pretreated with 17β-estradiol (E₂; 10⁻⁹ M) and/or progesterone (P₄; 10⁻⁷ M) for 24 h. For the next 24 h, BOECs were treated with TNF-α (10 ng/mL) or spermine nitric oxide complex (NONOate; 10⁻⁵ M). Prostaglandin F(2α) and PGE₂ secretion was measured in medium by ELISA. The pretreatment of cells with P₄ (progesterone), E₂ (17 β-estradiol), or E₂/P₄ augmented TNF-α-induced PGF(2α) and PGE₂ secretion (P < 0.01). The pretreatment of cells with E₂ or E₂/P₄ increased NONOate-induced PGF(2α) and PGE₂ secretion (P < 0.01). TNF-α induced NO₂/NO₃ production by BOECs. The pretreatment of cells with E₂ augmented only TNF-α-induced NO₂/NO₃ production (P < 0.05). The aim of experiment 2 was to examine the influence of TNF-α, NO, and ovarian steroids on the protein content of enzymes specifically involved in PG and NO production, PG synthases, and NO synthases (NOSs). BOECs were treated with TNF-α (10 ng/mL) or NONOate (10⁻⁵ M). TNF-α increased the protein content of PGG/H synthase, PGF synthase, and PGE synthase (P < 0.05) and endothelial and inducible NOSs (P < 0.05). Nitric oxide increased the protein content of PGF synthase, PGE synthase, endothelial NOS, and inducible NOS (P < 0.05). These results show possible linkage between TNF-α and NO, modulated by ovarian steroids, in the regulation of PG synthesis by BOECs that may be important for triggering the process of oviductal contractions.
Collapse
Affiliation(s)
- A Z Szóstek
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-747, Poland
| | | | | | | | | | | | | |
Collapse
|
22
|
Sioutas A, Gemzell-Danielsson K, Lundberg JO, Ehrén I. Measurement of luminal nitric oxide in the uterine cavity using a silicon balloon catheter. Nitric Oxide 2011; 24:213-6. [DOI: 10.1016/j.niox.2011.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 03/12/2011] [Accepted: 04/19/2011] [Indexed: 12/01/2022]
|
23
|
Yates M, Kolmakova A, Zhao Y, Rodriguez A. Clinical impact of scavenger receptor class B type I gene polymorphisms on human female fertility. Hum Reprod 2011; 26:1910-6. [PMID: 21531995 DOI: 10.1093/humrep/der124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The goal of this study was to evaluate the association of SCARB1 single nucleotide polymorphisms (SNPs) and fertility outcomes in women undergoing IVF. METHODS Between November 2007 and March 2010, granulosa cells and follicular fluid were collected from women undergoing IVF. Five SCARB1 SNPs were sequenced and progesterone levels were measured in the follicular fluid. Fertility measurements were defined as the presence of gestational sac(s) and fetal heartbeat(s). RESULTS The study group consisted of 274 women (mean age of 36.4 ± 4.6 years). The racial/ethnic composition was 55% Caucasian (n = 152), 25% African-American (n = 68), 12% Asian (n = 34), 5% Hispanic, (n = 14) and 2% other (n = 6). There was a significant difference in the genotype frequencies of the SCARB1 SNPs across the groups. Subjects who were homozygous for the minor allele in the rs5888 SNP had higher follicular progesterone levels than those who were homozygous for the major allele (P = 0.03). In the Caucasian group, carriers of the minor A allele of the rs4238001 SNP had lower follicular progesterone levels compared with homozygous carriers of the major G allele (P = 0.04). In this group, follicular progesterone levels were highly predictive of the rs4238001 SNP (P = 0.03). In the entire cohort, minor allele carriers of rs4238001 did not have any viable fetuses at Day 42 following embryo transfers (P = 0.04). In the African-American group in particular, there was also an association between rs10846744 and gestational sac(s) (P = 0.006), and fetal heartbeat(s) (P = 0.005). CONCLUSIONS In part, SCARB1 rs4238001 and rs10846744 SNPs may contribute to human female infertility.
Collapse
Affiliation(s)
- Melissa Yates
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
24
|
Hekimoglu A, Bilgin HM, Kurcer Z, Ocak AR. Effects of increasing ratio of progesterone in estrogen/progesterone combination on total oxidant/antioxidant status in rat uterus and plasma. Arch Gynecol Obstet 2009; 281:23-8. [DOI: 10.1007/s00404-009-1044-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/09/2009] [Indexed: 02/02/2023]
|