1
|
Seiffert P, Bugge K, Nygaard M, Haxholm GW, Martinsen JH, Pedersen MN, Arleth L, Boomsma W, Kragelund BB. Orchestration of signaling by structural disorder in class 1 cytokine receptors. Cell Commun Signal 2020; 18:132. [PMID: 32831102 PMCID: PMC7444064 DOI: 10.1186/s12964-020-00626-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Class 1 cytokine receptors (C1CRs) are single-pass transmembrane proteins responsible for transmitting signals between the outside and the inside of cells. Remarkably, they orchestrate key biological processes such as proliferation, differentiation, immunity and growth through long disordered intracellular domains (ICDs), but without having intrinsic kinase activity. Despite these key roles, their characteristics remain rudimentarily understood. METHODS The current paper asks the question of why disorder has evolved to govern signaling of C1CRs by reviewing the literature in combination with new sequence and biophysical analyses of chain properties across the family. RESULTS We uncover that the C1CR-ICDs are fully disordered and brimming with SLiMs. Many of these short linear motifs (SLiMs) are overlapping, jointly signifying a complex regulation of interactions, including network rewiring by isoforms. The C1CR-ICDs have unique properties that distinguish them from most IDPs and we forward the perception that the C1CR-ICDs are far from simple strings with constitutively bound kinases. Rather, they carry both organizational and operational features left uncovered within their disorder, including mechanisms and complexities of regulatory functions. CONCLUSIONS Critically, the understanding of the fascinating ability of these long, completely disordered chains to orchestrate complex cellular signaling pathways is still in its infancy, and we urge a perceptional shift away from the current simplistic view towards uncovering their full functionalities and potential. Video abstract.
Collapse
Affiliation(s)
- Pernille Seiffert
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mads Nygaard
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Gitte W. Haxholm
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jacob H. Martinsen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Martin N. Pedersen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen Ø, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. BIOCHEMISTRY (MOSCOW) 2019; 84:329-345. [PMID: 31228925 DOI: 10.1134/s0006297919040011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review describes functional and structural features of different isoforms of prolactin receptor, mechanisms of signaling pathway activation, and molecular messengers involved in the transmission and termination of signal from the prolactin receptor isoforms. Changes in the ratio between prolactin receptor isoforms, key mediators of prolactin signal transduction and termination in various organs and tissues, are analyzed. Special attention is given to the role of molecular mediators and the ratio between the isoforms in normal physiological functions and pathologies. Approaches for therapeutic correction of prolactin signaling impairments are discussed.
Collapse
Affiliation(s)
- P A Abramicheva
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | - O V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| |
Collapse
|
3
|
Bouilly J, Beau I, Barraud S, Bernard V, Delemer B, Young J, Binart N. R-spondin2, a novel target of NOBOX: identification of variants in a cohort of women with primary ovarian insufficiency. J Ovarian Res 2017; 10:51. [PMID: 28743298 PMCID: PMC5526297 DOI: 10.1186/s13048-017-0345-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/18/2017] [Indexed: 11/20/2022] Open
Abstract
Background R-spondin2 (Rspo2) is a secreted agonist of the canonical Wnt/β-catenin signaling pathway. Rspo2 plays a key role in development of limbs, lungs and hair follicles, and more recently during ovarian follicle development. Rspo2 heterozygous deficient female mice become infertile around 4 months of age mimicking primary ovarian insufficiency (POI). The study aimed to investigate the regulation of RSPO2 and its potential involvement in pathophysiology of POI. Methods We cloned the RSPO2 promoter and performed transcriptional assays to determine if RSPO2 can be regulated by NOBOX, an ovarian transcription factor. Then, we evaluated 100 infertile women after obtaining a detailed history of the disease and follicle-stimulating hormone measurements, besides karyotype determination and fragile-X premutation syndrome investigation. All exons, intron-exon boundaries and untranslated regions of the RSPO2 gene were identified by sequencing, and the results were statistically analyzed. Results We found that RSPO2 can be regulated by NOBOX via the presence of NOBOX Binding Element in its promoter. Among 9 identified variants in POI women, 4 of them were equally homozygous, 4 have never been described (c.-359C > G, c.-190G > A, c.-170 + 13C > T and c.-169-8 T > A), only one c.557 T > C was predicted to alter a single amino acid in the RSPO2 protein (p.Leu186Pro). Conclusions RSPO2 is a novel target gene of the NOBOX key transcription factor, confirming its important role during the follicular growth in ovary. However, RSPO2 mutations are rare or uncommon in women with POI.
Collapse
Affiliation(s)
- Justine Bouilly
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France.
| | - Isabelle Beau
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Sara Barraud
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France.,Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, 51092, Reims, France
| | - Valérie Bernard
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, 51092, Reims, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France.,APHP, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, F-94275, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France
| |
Collapse
|
4
|
Bouilly J, Sonigo C, Auffret J, Gibori G, Binart N. Prolactin signaling mechanisms in ovary. Mol Cell Endocrinol 2012; 356:80-7. [PMID: 21664429 DOI: 10.1016/j.mce.2011.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Prolactin is a hormone that is essential for normal reproduction and signals through two types of receptors. Not only is the classical long form of the prolactin receptor identified, but so are many short form receptors in rodents and human tissues. Mouse mutagenesis studies have offered insight into the biology of prolactin family, providing compelling evidence that the different isoforms have independent biological activity. The possibility that short forms mediate cell proliferation is important for a variety of tissues including mammary gland and ovarian follicles. This review summarizes our current knowledge about prolactin signaling and its role in reproduction through either long or short isoform receptors.
Collapse
|