1
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Esteves Trindade PH, da Rosa Filho RR, de Oliveira DJB, Oba E. Proteomics approach reveals urinary markers for early pregnancy diagnosis in buffaloes. J Proteomics 2024; 290:105036. [PMID: 37879565 DOI: 10.1016/j.jprot.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to compare urine proteomics from non- and pregnant buffaloes in order to identify potential biomarkers of early pregnancy. Forty-four females underwent hormonal ovulation synchronization and were randomly divided into two experimental groups: inseminated (n = 30) and non-inseminated (n = 14). The pregnant females were further divided into two groups: pregnant at Day 12 (P12; n = 8) and at Day 18 (P18; n = 8) post-ovulation. The non-pregnant group was also subdivided into two groups: non-pregnant at Day 12 (NP12; n = 7) and at Day 18 (NP18; n = 7). Urine was collected from all females on Days 12 or 18. The samples were processed for proteomics. A total of 798 proteins were reported in the urine considering all groups. The differential proteins play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that some proteins from our study can be considered biomarkers for early pregnancy diagnosis, since they were increased in pregnant buffaloes. SIGNIFICANCE: Macromolecules have been studied for early pregnancy diagnosis, aiming to increase reproductive efficiency in cattle and buffaloes. Direct methods such as rectal palpation and ultrasonography have been considered late. Thus, this study aimed to compare urine proteomics from non- and pregnant buffaloes to identify potential biomarkers of early pregnancy. The differential proteins found in our study play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that these proteins can be considered possible biomarkers for early pregnancy diagnosis since they were increased in the pregnant buffaloes.
Collapse
Affiliation(s)
- Viviane M Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana F de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Thais R Cataldi
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Carlos A Labate
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Laíza S de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Pedro H Esteves Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto R da Rosa Filho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Diego J B de Oliveira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
2
|
Zhou C, Cheng X, Meng F, Wang Y, Luo W, Zheng E, Cai G, Wu Z, Li Z, Hong L. Identification and characterization of circRNAs in peri-implantation endometrium between Yorkshire and Erhualian pigs. BMC Genomics 2023; 24:412. [PMID: 37488487 PMCID: PMC10364396 DOI: 10.1186/s12864-023-09414-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND One of the most critical periods for the loss of pig embryos is the 12th day of gestation when implantation begins. Recent studies have shown that non-coding RNAs (ncRNAs) play important regulatory roles during pregnancy. Circular RNAs (circRNAs) are a kind of ubiquitously expressed ncRNAs that can directly regulate the binding proteins or regulate the expression of target genes by adsorbing micro RNAs (miRNA). RESULTS We used the Illumina Novaseq6,000 technology to analyze the circRNA expression profile in the endometrium of three Erhualian (EH12) and three Yorkshire (YK12) pigs on day 12 of gestation. Overall, a total of 22,108 circRNAs were identified. Of these, 4051 circRNAs were specific to EH12 and 5889 circRNAs were specific to YK12, indicating a high level of breed specificity. Further analysis showed that there were 641 significant differentially expressed circRNAs (SDEcircRNAs) in EH12 compared with YK12 (FDR < 0.05). Functional enrichment of differential circRNA host genes revealed many pathways and genes associated with reproduction and regulation of embryo development. Network analysis of circRNA-miRNA interactions further supported the idea that circRNAs act as sponges for miRNAs to regulate gene expression. The prediction of differential circRNA binding proteins further explored the potential regulatory pathways of circRNAs. Analysis of SDEcircRNAs suggested a possible reason for the difference in embryo survival between the two breeds at the peri-implantation stage. CONCLUSIONS Together, these data suggest that circRNAs are abundantly expressed in the endometrium during the peri-implantation period in pigs and are important regulators of related genes. The results of this study will help to further understand the differences in molecular pathways between the two breeds during the critical implantation period of pregnancy, and will help to provide insight into the molecular mechanisms that contribute to the establishment of pregnancy and embryo loss in pigs.
Collapse
Affiliation(s)
- Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyan Cheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
| | - Yongzhong Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyun Luo
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| |
Collapse
|
3
|
Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022; 27:molecules27082411. [PMID: 35458608 PMCID: PMC9031286 DOI: 10.3390/molecules27082411] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.
Collapse
|
4
|
Leiva NL, Nolly MB, Ávila Maniero M, Losinno AD, Damiani MT. Rab Proteins: Insights into Intracellular Trafficking in Endometrium. Reprod Sci 2020; 28:12-22. [PMID: 32638281 DOI: 10.1007/s43032-020-00256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 02/01/2023]
Abstract
Rab proteins belong to the Ras superfamily of small monomeric GTPases. These G proteins are the main controllers of vesicular transport in every tissue, among them, the endometrium. They are in charge of to the functional subcellular compartmentalization and cargo transport between organelles and the plasma membrane. In turn, intracellular trafficking contributes to endometrial changes during the menstrual cycle, secretion to the uterine fluid, and trophoblast implantation; however, few reports analyze the role of Rab proteins in the uterus. In general, Rab proteins control the release of cytokines, growth factors, enzymes, hormones, cell adhesion molecules, and mucus. Further, the secretion of multiple compounds into the uterine cavity is required for successful implantation. Therefore, alterations in Rab-controlled intracellular transport likely impair secretory processes to the uterine fluid that may correlate with abnormal endometrial development and failed reproductive outcomes. Overall, they could explain recurrent miscarriages, female infertility, and/or assisted reproductive failure. Interestingly, estrogen (E2) and progesterone (P) regulate gene expression of Rab proteins involved in secretory pathways. This review aims to gather information regarding the role of Rab proteins and intracellular trafficking in the endometrium during the different menstrual phases, and in the generation of a receptive stage for embryo implantation, modulated by E2 and P. This knowledge might be useful for the development of novel reproductive therapies that overcome low implantation rates of assisted reproductive procedures.
Collapse
Affiliation(s)
- Natalia L Leiva
- CONICET-UNCuyo-IMBECU, 5500, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Mariela B Nolly
- CONICET-UNCuyo-IMBECU, 5500, Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Laboratorio de Bioquímica e Inmunidad, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Mariángeles Ávila Maniero
- Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Laboratorio de Bioquímica e Inmunidad, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Antonella D Losinno
- Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Laboratorio de Bioquímica e Inmunidad, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Maria Teresa Damiani
- CONICET-UNCuyo-IMBECU, 5500, Mendoza, Argentina. .,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Laboratorio de Bioquímica e Inmunidad, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina. .,Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, IMBECU-CONICET-UNCuyo, Universidad Nacional de Cuyo, Centro Universitario, 5500, Mendoza, Argentina.
| |
Collapse
|
5
|
The role of LNPEP and ANPEP gene polymorphisms in the pathogenesis of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 2020; 252:160-165. [PMID: 32619880 DOI: 10.1016/j.ejogrb.2020.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The exact role of renin angiotensin system (RAS) in the pathogenesis of pre-eclampsia has not been established. Gene polymorphisms, however, have been implicated in the pathophysiology. Therefore, the aim of this study was to investigate the association of the Angiotensin IV receptor and aminopeptidase-N in the pathogenesis of pre-eclampsia. STUDY DESIGN Stored blood samples of 637 South African women of African ancestry were utilized. The study population was divided into controls (n = 280) and pre-eclampsia (n = 357). Pre-eclampsia was sub-divided into early (n = 187) and late (n = 170) onset subtypes. DNA was extracted from whole blood and genotyped. Odds ratio and 95 % confidence intervals were used to assess the association. RESULTS The allele and genotype frequencies of the angiotensin receptor IV and aminopeptidase-N showed no significant difference between the control versus the pre-eclampsia groups. Similarly, allele and genotype distributions of the control group versus the subtypes of pre-eclampsia (early onset and late onset pre-eclampsia) showed no significant differences. CONCLUSION The single nucleotide polymorphisms of angiotensin IV receptor (rs18059) and aminopeptidase-N (rs6496603) are not associated with the pathogenesis of pre-eclampsia in women of African ancestry.
Collapse
|
6
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
7
|
Shui LJ, Meng Y, Huang C, Qian Y, Liu JY. Aminopeptidase N expression in the endometrium could affect endometrial receptivity. Biochem Biophys Res Commun 2019; 514:469-474. [PMID: 31056265 DOI: 10.1016/j.bbrc.2019.04.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 11/26/2022]
Abstract
Aminopeptidase N (ANPEP) is a membrane-bound zinc-dependent peptidase. Although it is widely believed that ANPEP acts as an important angiogenesis regulatory factor, there are few studies about its function in the female reproductive system. In our previous research, we applied Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to analyze the influence of different controlled superovulation treatments for Assisted Reproductive Technology, In Vitro Fertilization and Embryo Transfer (IVF-ET)) patients from a global proteomic perspective to search for potential biomarkers associated with endometrium receptivity and embryo implantation. ANPEP is one of the proteins that demonstrated differential expression between different treatment groups and may be closely associated with endometrial receptivity. In this study, we assessed the expression of ANPEP in the endometrium of mice at different ages and found it to be highest in the mature period. We also detected ANPEP expression in the endometrium of IVF-ET patients in the proliferative, preimplantation and implantation stages, and the highest expression level of ANPEP was found in the last group. Human primary endometrial stromal cells were infected with an adenovirus expression vector containing the ANPEP gene and a green fluorescent protein (GFP) fusion protein; the mRNA levels of HOXA-10, LIF, and integrin β3 were found to be increased. Therefore, we conclude that ANPEP could be involved in the regulation of endometrial receptivity.
Collapse
Affiliation(s)
- Li-Jun Shui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Clinical Center of Reproductive Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Meng
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cun Huang
- Clinical Center of Reproductive Medicine, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, China
| | - Yi Qian
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jia-Yin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Lindeberg H, Burchmore RJS, Kennedy MW. Pulse of inflammatory proteins in the pregnant uterus of European polecats ( Mustela putorius) leading to the time of implantation. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161085. [PMID: 28405395 PMCID: PMC5383852 DOI: 10.1098/rsos.161085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Uterine secretory proteins protect the uterus and conceptuses against infection, facilitate implantation, control cellular damage resulting from implantation, and supply pre-implantation embryos with nutrients. Unlike in humans, the early conceptus of the European polecat (Mustela putorius; ferret) grows and develops free in the uterus until implanting at about 12 days after mating. We found that the proteins appearing in polecat uteri changed dramatically with time leading to implantation. Several of these proteins have also been found in pregnant uteri of other eutherian mammals. However, we found a combination of two increasingly abundant proteins that have not been recorded before in pre-placentation uteri. First, the broad-spectrum proteinase inhibitor α2-macroglobulin rose to dominate the protein profile by the time of implantation. Its functions may be to limit damage caused by the release of proteinases during implantation or infection, and to control other processes around sites of implantation. Second, lipocalin-1 (also known as tear lipocalin) also increased substantially in concentration. This protein has not previously been recorded as a uterine secretion in pregnancy in any species. If polecat lipocalin-1 has similar biological properties to that of humans, then it may have a combined function in antimicrobial protection and transporting or scavenging lipids. The changes in the uterine secretory protein repertoire of European polecats is therefore unusual, and may be representative of pre-placentation supportive uterine secretions in mustelids (otters, weasels, badgers, mink, wolverines) in general.
Collapse
Affiliation(s)
- Heli Lindeberg
- Natural Resources Institute Finland (Luke), Green Technology, Halolantie 31 A, 71750 Maaninka, Finland
| | - Richard J. S. Burchmore
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow G61 1QH, Scotland, UK
| | - Malcolm W. Kennedy
- Institute of Biodiversity, Animal Health and Comparative Medicine, and the Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
9
|
Greening DW, Nguyen HPT, Evans J, Simpson RJ, Salamonsen LA. Modulating the endometrial epithelial proteome and secretome in preparation for pregnancy: The role of ovarian steroid and pregnancy hormones. J Proteomics 2016; 144:99-112. [PMID: 27262222 DOI: 10.1016/j.jprot.2016.05.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/21/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Dialogue between an appropriately developed embryo and hormonally-primed endometrium is essential to achieve implantation and establish pregnancy. Importantly, the point-of-first-contact between the embryo and the maternal endometrium occurs at the endometrial luminal epithelium (LE). Implantation events occur within the uterine cavity microenvironment regulated by local factors. Defects in embryo-endometrial communication likely underlie unexplained infertility; enhanced knowledge of this communication, specifically at initial maternal-fetal contact may reveal targets to improve fertility. Using a human endometrial luminal-epithelial (LE) cell line (ECC1), this targeted proteomic study reveals unique protein changes in both cellular (98% unique identifications) and secreted (96% unique identifications) proteins in the transition to the progesterone-dominated secretory (receptive) phase and subsequently to pregnancy, mediated by embryo-derived human chorionic gonadotropin (hCG). This analysis identified 157 progesterone-regulated cellular proteins, with further 193 significantly altered in response to hCG. Cellular changes were associated with metabolism, basement membrane and cell connectivity, proliferation and differentiation. Secretome analysis identified 1059 proteins; 123 significantly altered by progesterone, and 43 proteins altered by hCG, including proteins associated with cellular adhesion, extracellular-matrix organization, developmental growth, growth factor regulation, and cell signaling. Collectively, our findings reveal dynamic intracellular and secreted protein changes in the endometrium that may modulate successful establishment of pregnancy. BIOLOGICAL SIGNIFICANCE This study provides unique insights into the developmental biology of embryo implantation using targeted proteomics by identifying endometrial epithelial cellular and secreted protein changes in response to ovarian steroid hormones and pregnancy hormones that are essential for receptivity and implantation.
Collapse
Affiliation(s)
- David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Hong P T Nguyen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria 3168, Australia.
| | - Jemma Evans
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria 3168, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria 3168, Australia
| |
Collapse
|
10
|
Greening DW, Nguyen HPT, Elgass K, Simpson RJ, Salamonsen LA. Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions. Biol Reprod 2016; 94:38. [PMID: 26764347 DOI: 10.1095/biolreprod.115.134890] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
Embryo implantation into receptive endometrium requires synergistic endometrial-blastocyst interactions within the uterine cavity and is essential for establishing pregnancy. We demonstrate that exosomes (40-150 nm nanovesicles) released from endometrial epithelial cells are an important component of these interactions. We defined the proteome of purified endometrial epithelial-derived exosomes (Exos) influenced by menstrual cycle hormones estrogen (E; proliferative phase) and estrogen plus progesterone (EP; receptive phase) and examined their potential to modify trophoblast function. E-/EP-Exos were uniquely enriched with 254 and 126 proteins, respectively, with 35% newly identified proteins not previously reported in exosome databases. Importantly, EP-Exos protein cargo was related to fundamental changes in implantation: adhesion, migration, invasion, and extracellular matrix remodeling. These findings from hormonally treated ECC1 endometrial cancer cells were validated in human primary uterine epithelial cell-derived exosomes. Functionally, exosomes were internalized by human trophoblast cells and enhanced their adhesive capacity, a response mediated partially through active focal adhesion kinase (FAK) signaling. Thus, exosomes contribute to the endometrial-embryo interactions within the human uterine microenvironment essential for successful implantation.
Collapse
Affiliation(s)
- David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Hong P T Nguyen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - Kirstin Elgass
- Monash Micro Imaging, Monash University, Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| |
Collapse
|