1
|
Xiong L, Chen S, Wang J, Ma Q, Wang P, Ma Z, Dang X, Xu J, Zhou Z. NcPTP2, a polar tube protein, interacts with spore wall protein in the parasitic microsporidian Nosema ceranae. Mol Biol Rep 2024; 51:1142. [PMID: 39531195 DOI: 10.1007/s11033-024-10087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Microsporidia is an obligate intracellular eukaryote, which is capable of parasitizing vertebrates and invertebrates. Nosema ceranae, which can infect both Apis mellifera and Apis cerana, poses a serious threat and causes heavy losses to the worldwide apiculture. During infection, polar tube, a highly specialized invasion structure, ejected from the spore to deliver the sporoplasm into host cells to cause infection. Although seven different polar tube proteins (PTP1 ~ 7) have been reported from various microsporidia and showed key functions associated with spore invasion and proliferation, no systematic analysis on identification and characterization of polar tube proteins from N. ceranae was found. METHODS AND RESULTS The polar tube proteins 2 (NcPTP2) was identified from the total polar tube proteins of N. ceranae by LC_MS/MS and the transcriptional profile was performed by RT-PCR. Sequence characterization analysis revealed that NcPTP2 was rich in lysine and had a signal peptide at the N-terminal. It had 3 potential O-glycosylation sites and 6 potential N-glycosylation sites. 25 phosphorylation sites were found on serine, tyrosine and threonine sites. Sequence alignment analysis revealed that NcPTP2 was homologous and had conserved cysteine residues with PTP2 proteins from other microsporidia. Indirect immunofuorescence analysis (IFA) and Immunoelectron Microscopy analysis (IEM) confirmed that NcPTP2 was localized on the polar tube of the germinated spores. The interaction between NcPTP2 and spore wall protein in N. ceranae indicated its potential function in anchoring and coiling of polar tube in spore. CONCLUSION NcPTP2 was the first subcellular localized polar tube protein in N. ceranae and this work could provide an important basis for further analyzing the biological functions of polar tube proteins and uncovering the infection mechanism of N. ceranae to the host cells.
Collapse
Affiliation(s)
- Liang Xiong
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Sheng Chen
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jinglin Wang
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qiang Ma
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Pengfei Wang
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhengang Ma
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China.
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Xiaoqun Dang
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jinshan Xu
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zeyang Zhou
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
2
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024; 71:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
3
|
Fayet M, Long M, Han B, Belkorchia A, Delbac F, Polonais V. New insights into Microsporidia polar tube function and invasion mechanism. J Eukaryot Microbiol 2024; 71:e13043. [PMID: 38973152 DOI: 10.1111/jeu.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Microsporidia comprise a large phylum of single-cell and obligate intracellular parasites that can infect a wide range of invertebrate and vertebrate hosts including humans. These fungal-related parasites are characterized by a highly reduced genome, a strong energy dependence on their host, but also by their unique invasion organelle known as the polar tube which is coiled within the resistant spore. Upon appropriate environmental stimulation, the long hollow polar tube (ranging from 50 to 500 μm in length) is extruded at ultra-fast speeds (300 μm/s) from the spore acting as a harpoon-like organelle to transport and deliver the infectious material or sporoplasm into the host cell. To date, seven polar tube proteins (PTPs) with distinct localizations along the extruded polar tube have been described. For example, the specific location of PTP4 and PTP7 at the tip of the polar tube supports their role in interacting with cellular receptor(s). This chapter provides a brief overview on the current understanding of polar tube structure and dynamics of extrusion, primarily through recent advancements in cryo-tomography and 3D reconstruction. It also explores the various mechanisms used for host cell invasion. Finally, recent studies on the structure and maturation of sporoplasm and its moving through the tube are discussed.
Collapse
Affiliation(s)
- Maurine Fayet
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Bing Han
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Abdel Belkorchia
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Delbac
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Valerie Polonais
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Zhang S, Zhang L, Liu T, Qiao Y, Cao X, Cheng J, Wu H, Shen H. Investigating the transcriptomic variances in two phases Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei. J Invertebr Pathol 2024; 203:108061. [PMID: 38244837 DOI: 10.1016/j.jip.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
This study explores the transcriptomic differences in two distinct phases of Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei, a crucial aspect in shrimp health management. We employed high-throughput sequencing to categorize samples into two phases, 'Phase A' and 'Phase B', defined by the differential expression of PTP2 and TPS1 genes. Our analysis identified 2057 genes, with 78 exhibiting significant variances, including 62 upregulated and 16 downregulated genes. Enrichment analyses via GO and KEGG pathways highlighted these genes' roles in cellular metabolism, signal transduction, and immune responses. Notably, genes like IQGAP2, Rhob, Pim1, and PCM1 emerged as potentially crucial in EHP's infection process and lifecycle. We hypothesize that these genes may influence trehalose metabolism and glucose provision, impacting the biological activities within EHP during different phases. Interestingly, a lower transcript count in 'Phase A' EHP suggests a reduction in biological activities, likely preparing for host cell invasion. This research provides a foundational understanding of EHP infection mechanisms, offering vital insights for future studies and therapeutic interventions.
Collapse
Affiliation(s)
- Sheng Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Jiangsu Ocean University, Lianyungang 222005, China
| | - Leiting Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Nanjing Normal University, Nanjing 210023, China
| | - Tingyue Liu
- Nanjing Normal University, Nanjing 210023, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Hailong Wu
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Shen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Jiangsu Ocean University, Lianyungang 222005, China; Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Yuanlae S, Prasartset T, Reamtong O, Munkongwongsiri N, Panphloi M, Preechakul T, Suebsing R, Thitamadee S, Prachumwat A, Itsathitphaisarn O, Taengchaiyaphum S, Kasamechotchung C. Shrimp injection with dsRNA targeting the microsporidian EHP polar tube protein reduces internal and external parasite amplification. Sci Rep 2024; 14:4830. [PMID: 38413745 PMCID: PMC10899260 DOI: 10.1038/s41598-024-55400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is a major threat to shrimp health worldwide. Severe EHP infections in shrimp cause growth retardation and increase susceptibility to opportunistic infections. EHP produces spores with a chitin wall that enables them to survive prolonged environmental exposure. Previous studies showed that polar tube extrusion is a prerequisite for EHP infection, such that inhibiting extrusion should prevent infection. Using a proteomic approach, polar tube protein 2 of EHP (EhPTP2) was found abundantly in protein extracts obtained from extruded spores. Using an immunofluorescent antibody against EhPTP2 for immunohistochemistry, extruded spores were found in the shrimp hepatopancreas (HP) and intestine, but not in the stomach. We hypothesized that presence of EhPTP2 might be required for successful EHP spore extrusion. To test this hypothesis, we injected EhPTP2-specific double-stranded RNA (dsRNA) and found that it significantly diminished EHP copy numbers in infected shrimp. This indicated reduced amplification of EHP-infected cells in the HP by spores released from previously infected cells. In addition, injection of the dsRNA into EHP-infected shrimp prior to their use in cohabitation with naïve shrimp significantly (p < 0.05) reduced the rate of EHP transmission to naïve shrimp. The results revealed that EhPTP2 plays a crucial role in the life cycle of EHP and that dsRNA targeting EHP mRNA can effectively reach the parasite developing in host cells. This approach is a model for future investigations to identify critical genes for EHP survival and spread as potential targets for preventative and therapeutic measures in shrimp.
Collapse
Affiliation(s)
- Satika Yuanlae
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Tharinthon Prasartset
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Muthita Panphloi
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Thanchanok Preechakul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Rungkarn Suebsing
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Siripong Thitamadee
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Analytical Sciences and National Doping Test Institute, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand.
| | - Chanadda Kasamechotchung
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology Tawan-ok, Chonburi, 20110, Thailand.
| |
Collapse
|
6
|
Tournayre J, Polonais V, Wawrzyniak I, Akossi RF, Parisot N, Lerat E, Delbac F, Souvignet P, Reichstadt M, Peyretaillade E. MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation. Int J Mol Sci 2024; 25:880. [PMID: 38255958 PMCID: PMC10815200 DOI: 10.3390/ijms25020880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.
Collapse
Affiliation(s)
- Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Valérie Polonais
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Reginald Florian Akossi
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Nicolas Parisot
- UMR 203, BF2I, INRAE, INSA Lyon, Université de Lyon, 69621 Villeurbanne, France
| | - Emmanuelle Lerat
- VAS, CNRS, UMR5558, LBBE, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France;
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Pierre Souvignet
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Matthieu Reichstadt
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Eric Peyretaillade
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| |
Collapse
|
7
|
Antao NV, Lam C, Davydov A, Riggi M, Sall J, Petzold C, Liang FX, Iwasa JH, Ekiert DC, Bhabha G. 3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen Encephalitozoon intestinalis. Nat Commun 2023; 14:7662. [PMID: 37996434 PMCID: PMC10667486 DOI: 10.1038/s41467-023-43215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Microsporidia are an early-diverging group of fungal pathogens with a wide host range. Several microsporidian species cause opportunistic infections in humans that can be fatal. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on host metabolites for successful replication and development. Our knowledge of microsporidian intracellular development remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has relied on 2D TEM images and light microscopy. Here, we use serial block-face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting species, Encephalitozoon intestinalis, within host cells. We track E. intestinalis development through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled de novo in developing spores. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during E. intestinalis infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Our data provide insights into parasite development, polar tube assembly, and microsporidia-induced host mitochondria remodeling.
Collapse
Affiliation(s)
- Noelle V Antao
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Cherry Lam
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Ari Davydov
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Margot Riggi
- Department of Biochemistry, University of Utah, Salt Lake City, USA
| | - Joseph Sall
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Christopher Petzold
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Janet H Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Chen Y, Lv Q, Liao H, Xie Z, Hong L, Qi L, Pan G, Long M, Zhou Z. The microsporidian polar tube: origin, structure, composition, function, and application. Parasit Vectors 2023; 16:305. [PMID: 37649053 PMCID: PMC10468886 DOI: 10.1186/s13071-023-05908-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Microsporidia are a class of obligate intracellular parasitic unicellular eukaryotes that infect a variety of hosts, even including humans. Although different species of microsporidia differ in host range and specificity, they all share a similar infection organelle, the polar tube, which is also defined as the polar filament in mature spores. In response to the appropriate environmental stimulation, the spore germinates with the polar filament everted, forming a hollow polar tube, and then the infectious cargo is transported into host cells via the polar tube. Hence, the polar tube plays a key role in microsporidian infection. Here, we review the origin, structure, composition, function, and application of the microsporidian polar tube, focusing on the origin of the polar filament, the structural differences between the polar filament and polar tube, and the characteristics of polar tube proteins. Comparing the three-dimensional structure of PTP6 homologous proteins provides new insight for the screening of additional novel polar tube proteins with low sequence similarity in microsporidia. In addition, the interaction of the polar tube with the spore wall and the host are summarized to better understand the infection mechanism of microsporidia. Due to the specificity of polar tube proteins, they are also used as the target in the diagnosis and prevention of microsporidiosis. With the present findings, we propose a future study on the polar tube of microsporidia.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Hongjie Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Zhengkai Xie
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Liuyi Hong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Lei Qi
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan, 250012, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
9
|
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. Germination of Microsporidian Spores: The Known and Unknown. J Fungi (Basel) 2023; 9:774. [PMID: 37504762 PMCID: PMC10381864 DOI: 10.3390/jof9070774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
10
|
Antao NV, Lam C, Davydov A, Riggi M, Sall J, Petzold C, Liang FX, Iwasa J, Ekiert DC, Bhabha G. 3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen E. intestinalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547383. [PMID: 37425741 PMCID: PMC10327200 DOI: 10.1101/2023.07.02.547383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Microsporidia are an early-diverging group of fungal pathogens that infect a wide range of hosts. Several microsporidian species infect humans, and infections can lead to fatal disease in immunocompromised individuals. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on metabolites from their hosts for successful replication and development. Our knowledge of how microsporidian parasites develop inside the host remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has thus far relied largely on 2D TEM images and light microscopy. Here, we use serial block face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting microsporidian, Encephalitozoon intestinalis , within host cells. We track the development of E. intestinalis through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled de novo in each developing spore. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during E. intestinalis infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Together, our data provide insights into parasite development, polar tube assembly, and microsporidia-induced mitochondrial remodeling in the host cell.
Collapse
|
11
|
Fayet M, Prybylski N, Collin ML, Peyretaillade E, Wawrzyniak I, Belkorchia A, Akossi RF, Diogon M, El Alaoui H, Polonais V, Delbac F. Identification and localization of polar tube proteins in the extruded polar tube of the microsporidian Anncaliia algerae. Sci Rep 2023; 13:8773. [PMID: 37253964 DOI: 10.1038/s41598-023-35511-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
Microsporidia are obligate intracellular parasites able to infect a wide range of hosts from invertebrates to vertebrates. The success of their invasion process is based on an original organelle, the polar tube, which is suddenly extruded from the spore to inoculate the sporoplasm into the host cytoplasm. The polar tube is mainly composed of proteins named polar tube proteins (PTPs). A comparative analysis allowed us to identify genes coding for 5 PTPs (PTP1 to PTP5) in the genome of the microsporidian Anncaliia algerae. While PTP1 and PTP2 are found on the whole polar tube, PTP3 is present in a large part of the extruded polar tube except at its end-terminal part. On the contrary, PTP4 is specifically detected at the end-terminal part of the polar tube. To complete PTPs repertoire, sequential sporal protein extractions were done with high concentration of reducing agents. In addition, a method to purify polar tubes was developed. Mass spectrometry analysis conducted on both samples led to the identification of a PTP3-like protein (PTP3b), and a new PTP (PTP7) only found at the extremity of the polar tube. The specific localization of PTPs asks the question of their roles in cell invasion processes used by A. algerae.
Collapse
Affiliation(s)
- Maurine Fayet
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Nastasia Prybylski
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Marie-Laure Collin
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Eric Peyretaillade
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Abdel Belkorchia
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Reginald Florian Akossi
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Marie Diogon
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Hicham El Alaoui
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Valérie Polonais
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| | - Frédéric Delbac
- "Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Lv Q, Zhou B, Liao H, He X, Chen Y, Pan G, Long M, Zhou Z. Proteomic profile of polar filament and polar tube from fungal pathogen microsporidium Nosema bombycis provides new insights into its unique invasion organelle. J Proteomics 2022; 263:104617. [PMID: 35595055 DOI: 10.1016/j.jprot.2022.104617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/17/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Microsporidium is a kind of intracellular fungal pathogen that greatly threatens the human health, breeding industry, and food security. All members of microsporidia possess a unique, highly specialized invasion organelle, described as the polar filament. Like "reversing a finger of gloves", the polar filament discharges out of mature spores to transform as the polar tube, and pathogenic sporoplasm is transported to host cell through polar tube to complete infection. During the invasion process, the structure of polar filament and polar tube has changed, so does the protein composition on them? In this study, we firstly proposed a purification method for polar filament and polar tube from microsporidium Nosema bombycis which was infected silkworm Bombyx mori, and it was also found that the structure of polar filament and polar tube was obviously different. Therefore, the proteome of these two structures was comparatively analyzed. A total of 881 and 1216 proteins were respectively identified from the polar filament and polar tube. Ten potential novel polar tube proteins (PTPs) were screened, providing a reference for the novel PTPs identification. Compared with the polar filament, there were 35 upregulated and 41 downregulated proteins on the polar tube. GO and KEGG pathway analysis of all proteins from the polar filament and polar tube provided us with a profound understanding for the microsporidian germination process, which was of great significance for clarifying the infection mechanism of microsporidia. SIGNIFICANCE: Microsporidia are obligate intracellular parasites that infect a wide variety of hosts, including humans. The polar filament is a unique invasion organelle for microsporidia, and it is also one of the important indexes of microsporidian taxonomy. The polar tube is deformed from the primitive polar filament in mature spores. During the germination, the polar filament turns into a polar tube, like "reversing a finger of gloves", through which pathogenic sporoplasm is transported to host cells to complete infection. Since the structure of the polar filament and polar tube has changed, what about their protein composition? In this study, it was the first time to purify the polar filament and the polar tube from microsporidium Nosema bombycis that was infected silkworm Bombyx mori, which provided new insights for studying the invasion organelle of microsporidia. Comparing the fine structure of polar filament and polar tube, we found that their structure was obviously different. Therefore, the protein composition of these two structures is supposed to be varied. In this case, the proteome of these two structures was comparatively analyzed. A total of 881 and 1216 proteins were respectively identified from the polar filament and polar tube. Ten potential novel polar tube proteins (PTPs) were screened, providing a reference for the novel PTPs identification. Compared with the polar filament, there were 35 upregulated and 41 downregulated proteins on the polar tube. GO and KEGG pathway analysis of all proteins from the polar filament and polar tube provided us with a profound understanding for the microsporidian germination process, which was of great significance for clarifying the infection mechanism of microsporidia.
Collapse
Affiliation(s)
- Qing Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Bingqian Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Hongjie Liao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xiuli He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yuqing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Sciences, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
13
|
Han B, Takvorian PM, Weiss LM. The Function and Structure of the Microsporidia Polar Tube. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:179-213. [PMID: 35544004 PMCID: PMC10037675 DOI: 10.1007/978-3-030-93306-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microsporidia are obligate intracellular pathogens that were initially identified about 160 years ago. Current phylogenetic analysis suggests that they are grouped with Cryptomycota as a basal branch or sister group to the fungi. Microsporidia are found worldwide and can infect a wide range of animals from invertebrates to vertebrates, including humans. They are responsible for a variety of diseases once thought to be restricted to immunocompromised patients but also occur in immunocompetent individuals. The small oval spore containing a coiled polar filament, which is part of the extrusion and invasion apparatus that transfers the infective sporoplasm to a new host, is a defining characteristic of all microsporidia. When the spore becomes activated, the polar filament uncoils and undergoes a rapid transition into a hollow tube that will transport the sporoplasm into a new cell. The polar tube has the ability to increase its diameter from approximately 100 nm to over 600 nm to accommodate the passage of an intact sporoplasm and penetrate the plasmalemma of the new host cell. During this process, various polar tube proteins appear to be involved in polar tube attachment to host cell and can interact with host proteins. These various interactions act to promote host cell infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Peter M Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
14
|
Lv Q, Wang L, Fan Y, Meng X, Liu K, Zhou B, Chen J, Pan G, Long M, Zhou Z. Identification and characterization a novel polar tube protein (NbPTP6) from the microsporidian Nosema bombycis. Parasit Vectors 2020; 13:475. [PMID: 32933572 PMCID: PMC7493173 DOI: 10.1186/s13071-020-04348-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/05/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Microsporidians are opportunistic pathogens with a wide range of hosts, including invertebrates, vertebrates and even humans. Microsporidians possess a highly specialized invasion structure, the polar tube. When spores encounter an appropriate environmental stimulation, the polar tube rapidly everts out of the spore, forming a 50-500 µm hollow tube that serves as a conduit for sporoplasm passage into host cells. The polar tube is mainly composed of polar tube proteins (PTPs). So far, five major polar tube proteins have been isolated from microsporidians. Nosema bombycis, the first identified microsporidian, infects the economically important insect silkworm and causes heavy financial loss to the sericulture industry annually. RESULTS A novel polar tube protein of N. bombycis (NbPTP6) was identified. NbPTP6 was rich in histidine (H) and serine (S), which contained a signal peptide of 16 amino acids at the N-terminus. NbPTP6 also had 6 potential O-glycosylation sites and 1 potential N-glycosylation site. The sequence alignment analysis revealed that NbPTP6 was homologous with uncharacterized proteins from other microsporidians (Encephalitozoon cuniculi, E. hellem and N. ceranae). Additionally, the NbPTP6 gene was expressed in mature N. bombycis spores. Indirect immunofluorescence analysis (IFA) result showed that NbPTP6 is localized on the whole polar tube of the germinated spores. Moreover, IFA, enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays results revealed that NbPTP6 had cell-binding ability. CONCLUSIONS Based on our results, we have confirmed that NbPTP6 is a novel microsporidian polar tube protein. This protein could adhere with the host cell surface, so we speculated it might play an important role in the process of microsporidian infection.
Collapse
Affiliation(s)
- Qing Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Lijun Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Youpeng Fan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Keke Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Bingqian Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715 China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047 China
| |
Collapse
|
15
|
Wang L, Lv Q, He Y, Gu R, Zhou B, Chen J, Fan X, Pan G, Long M, Zhou Z. Integrated qPCR and Staining Methods for Detection and Quantification of Enterocytozoon hepatopenaei in Shrimp Litopenaeus vannamei. Microorganisms 2020; 8:microorganisms8091366. [PMID: 32906623 PMCID: PMC7565997 DOI: 10.3390/microorganisms8091366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is an obligate, intracellular, spore-forming parasite, which mainly infects the gastrointestinal tract of shrimp. It significantly hinders the growth of shrimp, which causes substantial economic losses in farming. In this study, we established and optimized a SYBR Green I fluorescent quantitative PCR (qPCR) assay based on the polar tube protein 2 (PTP2) gene for the quantitative analysis of EHP-infected shrimp. The result showed that the optimum annealing temperature was 60 °C for the corresponding relation between the amplification quantitative (Cq) and the logarithmic of the initial template quantity (x), conformed to Cq = −3.2751x + 31.269 with a correlation coefficient R2 = 0.993. The amplification efficiency was 102%. This qPCR method also showed high sensitivity, specificity, and repeatability. Moreover, a microscopy method was developed to observe and count EHP spores in hepatopancreas tissue of EHP-infected shrimp using Fluorescent Brightener 28 staining. By comparing the PTP2-qPCR and microscopy method, the microscopic examination was easier to operate whereas PTP2-qPCR was more sensitive for analysis. And we found that there was a correspondence between the results of these two methods. In summary, the PTP2-qPCR method integrated microscopy could serve for EHP detection during the whole period of shrimp farming and satisfy different requirements for detecting EHP in shrimp farming.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Qing Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Yantong He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Ruocheng Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Bingqian Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Xiaodong Fan
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- Correspondence:
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
16
|
Jaroenlak P, Cammer M, Davydov A, Sall J, Usmani M, Liang FX, Ekiert DC, Bhabha G. 3-Dimensional organization and dynamics of the microsporidian polar tube invasion machinery. PLoS Pathog 2020; 16:e1008738. [PMID: 32946515 PMCID: PMC7526891 DOI: 10.1371/journal.ppat.1008738] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023] Open
Abstract
Microsporidia, a divergent group of single-celled eukaryotic parasites, harness a specialized harpoon-like invasion apparatus called the polar tube (PT) to gain entry into host cells. The PT is tightly coiled within the transmissible extracellular spore, and is about 20 times the length of the spore. Once triggered, the PT is rapidly ejected and is thought to penetrate the host cell, acting as a conduit for the transfer of infectious cargo into the host. The organization of this specialized infection apparatus in the spore, how it is deployed, and how the nucleus and other large cargo are transported through the narrow PT are not well understood. Here we use serial block-face scanning electron microscopy to reveal the 3-dimensional architecture of the PT and its relative spatial orientation to other organelles within the spore. Using high-speed optical microscopy, we also capture and quantify the entire PT germination process of three human-infecting microsporidian species in vitro: Anncaliia algerae, Encephalitozoon hellem and E. intestinalis. Our results show that the emerging PT experiences very high accelerating forces to reach velocities exceeding 300 μm⋅s-1, and that firing kinetics differ markedly between species. Live-cell imaging reveals that the nucleus, which is at least 7 times larger than the diameter of the PT, undergoes extreme deformation to fit through the narrow tube, and moves at speeds comparable to PT extension. Our study sheds new light on the 3-dimensional organization, dynamics, and mechanism of PT extrusion, and shows how infectious cargo moves through the tube to initiate infection.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Alina Davydov
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Mahrukh Usmani
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
17
|
Takvorian P, Han B, Cali A, Rice W, Gunther L, Macaluso F, Weiss L. An Ultrastructural Study of the Extruded Polar Tube of Anncaliia algerae (Microsporidia). J Eukaryot Microbiol 2020; 67:28-44. [PMID: 31332877 PMCID: PMC6944765 DOI: 10.1111/jeu.12751] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
All microsporidia share a unique, extracellular spore stage, containing the infective sporoplasm and the apparatus for initiating infection. The polar filament/polar tube when exiting the spore transports the sporoplasm through it into a host cell. While universal, these structures and processes have been enigmatic. This study utilized several types of microscopy, describing and extending our understanding of these structures and their functions. Cryogenically preserved polar tubes vary in diameter from 155 to over 200 nm, noticeably larger than fixed-sectioned or negatively stained samples. The polar tube surface is pleated and covered with fine fibrillar material that projects from the surface and is organized in clusters or tufts. These fibrils may be the sites of glycoproteins providing protection and aiding infectivity. The polar tube surface is ridged with 5-6 nm spacing between ridges, enabling the polar tube to rapidly increase its diameter to facilitate the passage of the various cargo including cylinders, sacs or vesicles filled with particulate material and the intact sporoplasm containing a diplokaryon. The lumen of the tube is lined with a membrane that facilitates this passage. Careful examination of the terminus of the tube indicates that it has a closed tip where the membranes for the terminal sac are located.
Collapse
Affiliation(s)
- P.M. Takvorian
- Department of Biological Sciences Rutgers University, 195 University Ave., Newark, NJ 07733 USA,Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461 USA,Corresponding author P. Takvorian, Department of Biological Sciences, Rutgers University, 195 University Ave., Newark, NJ 07733 USA, , Telephone number 973-353-5364, Peter M. Takvorian,
| | - B. Han
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461 USA
| | - A Cali
- Department of Biological Sciences Rutgers University, 195 University Ave., Newark, NJ 07733 USA
| | - W.J. Rice
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York USA
| | - L. Gunther
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461 USA
| | - F. Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461 USA
| | - L.M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461 USA,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461 USA
| |
Collapse
|
18
|
Wang Y, Ma Y, Wang D, Liu W, Chen J, Jiang Y, Yang R, Qin L. Polar tube structure and three polar tube proteins identified from Nosema pernyi. J Invertebr Pathol 2019; 168:107272. [DOI: 10.1016/j.jip.2019.107272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
|
19
|
Liu F, Chen J, Dang X, Meng X, Wang R, Bao J, Long M, Li T, Ma Q, Huang J, Pan G, Zhou Z. Nbseptin2 Expression Pattern and Its Interaction with Nb
PTP
1 during Microsporidia
Nosema bombycis
Polar Tube Extrusion. J Eukaryot Microbiol 2019; 67:45-53. [DOI: 10.1111/jeu.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Fangyan Liu
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Xiaoqun Dang
- Laboratory of Animal Biology Chongqing Normal University Chongqing 400047 China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Rong Wang
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Qiang Ma
- Research Laboratory Center Chongqing Three Gorges Medical College Chongqing 404120 China
| | - Jun Huang
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
- Laboratory of Animal Biology Chongqing Normal University Chongqing 400047 China
| |
Collapse
|
20
|
Han B, Ma Y, Tu V, Tomita T, Mayoral J, Williams T, Horta A, Huang H, Weiss LM. Microsporidia Interact with Host Cell Mitochondria via Voltage-Dependent Anion Channels Using Sporoplasm Surface Protein 1. mBio 2019; 10:e01944-19. [PMID: 31431557 PMCID: PMC6703431 DOI: 10.1128/mbio.01944-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Microsporidia are opportunistic intracellular pathogens that can infect a wide variety of hosts ranging from invertebrates to vertebrates. During invasion, the microsporidian polar tube pushes into the host cell, creating a protective microenvironment, the invasion synapse, into which the sporoplasm extrudes. Within the synapse, the sporoplasm then invades the host cell, forming a parasitophorous vacuole (PV). Using a proteomic approach, we identified Encephalitozoon hellem sporoplasm surface protein 1 (EhSSP1), which localized to the surface of extruded sporoplasms. EhSSP1 was also found to interact with polar tube protein 4 (PTP4). Recombinant EhSSP1 (rEhSSP1) bound to human foreskin fibroblasts, and both anti-EhSSP1 and rEhSSP1 caused decreased levels of host cell invasion, suggesting that interaction of SSP1 with the host cell was involved in invasion. Coimmunoprecipitation (Co-IP) followed by proteomic analysis identified host cell voltage-dependent anion channels (VDACs) as EhSSP1 interacting proteins. Yeast two-hybrid assays demonstrated that EhSSP1 was able to interact with VDAC1, VDAC2, and VDAC3. rEhSSP1 colocalized with the host mitochondria which were associated with microsporidian PVs in infected cells. Transmission electron microscopy revealed that the outer mitochondrial membrane interacted with meronts and the PV membrane, mitochondria clustered around meronts, and the VDACs were concentrated at the interface of mitochondria and parasite. Knockdown of VDAC1, VDAC2, and VDAC3 in host cells resulted in significant decreases in the number and size of the PVs and a decrease in mitochondrial PV association. The interaction of EhSSP1 with VDAC probably plays an important part in energy acquisition by microsporidia via its role in the association of mitochondria with the PV.IMPORTANCE Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Tere Williams
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Aline Horta
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
21
|
Abstract
Microsporidia are obligate intracellular pathogens related to Fungi. These organisms have a unique invasion organelle, the polar tube, which upon appropriate environmental stimulation rapidly discharges out of the spore, pierces a host cell's membrane, and serves as a conduit for sporoplasm passage into the host cell. Phylogenetic analysis suggests that microsporidia are related to the Fungi, being either a basal branch or sister group. Despite the description of microsporidia over 150 years ago, we still lack an understanding of the mechanism of invasion, including the role of various polar tube proteins, spore wall proteins, and host cell proteins in the formation and function of the invasion synapse. Recent advances in ultrastructural techniques are helping to better define the formation and functioning of the invasion synapse. Over the past 2 decades, proteomic approaches have helped define polar tube proteins and spore wall proteins as well as the importance of posttranslational modifications such as glycosylation in the functioning of these proteins, but the absence of genetic techniques for the manipulation of microsporidia has hampered research on the function of these various proteins. The study of the mechanism of invasion should provide fundamental insights into the biology of these ubiquitous intracellular pathogens that can be integrated into studies aimed at treating or controlling microsporidiosis.
Collapse
|
22
|
Han B, Polonais V, Sugi T, Yakubu R, Takvorian PM, Cali A, Maier K, Long M, Levy M, Tanowitz HB, Pan G, Delbac F, Zhou Z, Weiss LM. The role of microsporidian polar tube protein 4 (PTP4) in host cell infection. PLoS Pathog 2017; 13:e1006341. [PMID: 28426751 PMCID: PMC5413088 DOI: 10.1371/journal.ppat.1006341] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/02/2017] [Accepted: 04/08/2017] [Indexed: 12/02/2022] Open
Abstract
Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens. Microsporidia are obligate intracellular parasites that cause disease in immune suppressed individuals such as those with HIV/AIDS and recipients of organ transplants. The microsporidia are defined by a unique invasion organelle, the polar tube. The formation of this organelle and its role in the mechanism of infection remain unknown. Herein, we have identified a role for Encephalitozoon hellem polar tube protein 4 (PTP4) in infection demonstrating that PTP4 can bind to the host cell surface via the host transferrin receptor 1 (TfR1) protein. Interfering with the interaction of PTP4 and TfR1 causes a significant decrease in microsporidian infection of host cells. These data suggest that PTP4 functions as an important microsporidian protein during host cell infection by this pathogen.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Valérie Polonais
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Tatsuki Sugi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Peter M. Takvorian
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Ann Cali
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Keith Maier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Frédéric Delbac
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
- College of Life Sciences, Chongqing Normal University, Chongqing, P. R. China
- * E-mail: (LMW); (ZZ)
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LMW); (ZZ)
| |
Collapse
|
23
|
Reinke AW, Balla KM, Bennett EJ, Troemel ER. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat Commun 2017; 8:14023. [PMID: 28067236 PMCID: PMC5423893 DOI: 10.1038/ncomms14023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023] Open
Abstract
Pathogens use a variety of secreted and surface proteins to interact with and manipulate their hosts, but a systematic approach for identifying such proteins has been lacking. To identify these ‘host-exposed' proteins, we used spatially restricted enzymatic tagging followed by mass spectrometry analysis of Caenorhabditis elegans infected with two species of Nematocida microsporidia. We identified 82 microsporidia proteins inside of intestinal cells, including several pathogen proteins in the nucleus. These microsporidia proteins are enriched in targeting signals, are rapidly evolving and belong to large Nematocida-specific gene families. We also find that large, species-specific families are common throughout microsporidia species. Our data suggest that the use of a large number of rapidly evolving species-specific proteins represents a common strategy for microsporidia to interact with their hosts. The unbiased method described here for identifying potential pathogen effectors represents a powerful approach to study a broad range of pathogens. Unbiased identification of proteins from pathogens that are exposed to a host can provide insight into host–pathogen interaction. Here, the authors use an enzymatic tagging method and mass spectrometry to identify rapidly evolving Nematocida microsporidia proteins when infecting C. elegans.
Collapse
Affiliation(s)
- Aaron W Reinke
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Keir M Balla
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Eric J Bennett
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Emily R Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
24
|
Maside X, Gómez-Moracho T, Jara L, Martín-Hernández R, De la Rúa P, Higes M, Bartolomé C. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories. PLoS One 2015; 10:e0145609. [PMID: 26720131 PMCID: PMC4699903 DOI: 10.1371/journal.pone.0145609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/07/2015] [Indexed: 12/26/2022] Open
Abstract
Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.
Collapse
Affiliation(s)
- Xulio Maside
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Galicia, Spain
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Tamara Gómez-Moracho
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Galicia, Spain
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Guadalajara, Spain
| | - Laura Jara
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Guadalajara, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, Albacete, Spain
| | - Pilar De la Rúa
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Guadalajara, Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
25
|
The Prediction and Validation of Small CDSs Expand the Gene Repertoire of the Smallest Known Eukaryotic Genomes. PLoS One 2015; 10:e0139075. [PMID: 26421846 PMCID: PMC4589312 DOI: 10.1371/journal.pone.0139075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023] Open
Abstract
The proper prediction of the gene catalogue of an organism is essential to obtain a representative snapshot of its overall lifestyle, especially when it is not amenable to culturing. Microsporidia are obligate intracellular, sometimes hard to culture, eukaryotic parasites known to infect members of every animal phylum. To date, sequencing and annotation of microsporidian genomes have revealed a poor gene complement with highly reduced gene sizes. In the present paper, we investigated whether such gene sizes may have induced biases for the methodologies used for genome annotation, with an emphasis on small coding sequence (CDS) gene prediction. Using better delineated intergenic regions from four Encephalitozoon genomes, we predicted de novo new small CDSs with sizes ranging from 78 to 255 bp (median 168) and corroborated these predictions by RACE-PCR experiments in Encephalitozoon cuniculi. Most of the newly found genes are present in other distantly related microsporidian species, suggesting their biological relevance. The present study provides a better framework for annotating microsporidian genomes and to train and evaluate new computational methods dedicated at detecting ultra-small genes in various organisms.
Collapse
|
26
|
Polonais V, Belkorchia A, Roussel M, Peyretaillade E, Peyret P, Diogon M, Delbac F. Identification of two new polar tube proteins related to polar tube protein 2 in the microsporidian Antonospora locustae. FEMS Microbiol Lett 2013; 346:36-44. [PMID: 23763358 DOI: 10.1111/1574-6968.12198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 01/25/2023] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites with a broad host spectrum characterized by a unique and highly sophisticated invasion apparatus, the polar tube (PT). In a previous study, two PT proteins, named AlPTP1 (50 kDa) and AlPTP2 (35 kDa), were identified in Antonospora locustae, an orthoptera parasite that is used as a biological control agent against locusts. Antibodies raised against AlPTP2 cross-reacted with a band migrating at ~70 kDa, suggesting that this 70-kDa antigen is closely related to AlPTP2. A blastp search against the A. locustae genome database allowed the identification of two further PTP2-like proteins named AlPTP2b (568 aa) and AlPTP2c (599 aa). Both proteins are characterized by a specific serine- and glycine-rich N-terminal extension with elastomeric structural features and share a common C-terminal end conserved with AlPTP2 (~88% identity for the last 250 aa). MS analysis of the 70-kDa band revealed the presence of AlPTP2b. Specific anti-AlPTP2b antibodies labelled the extruded PTs of the A. locustae spores, confirming that this antigen is a PT component. Finally, we showed that several PTP2-like proteins are also present in other phylogenetically related insect microsporidia, including Anncaliia algerae and Paranosema grylli.
Collapse
Affiliation(s)
- Valérie Polonais
- Clermont Université, Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, Clermont-ferrand, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
28
|
The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 2012; 8:e1002979. [PMID: 23133373 PMCID: PMC3486916 DOI: 10.1371/journal.ppat.1002979] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. Microsporidians are enormously successful obligate intracellular parasites of animals, including humans. Despite their economic and medical importance, there are major gaps in our understanding of how microsporidians have made the transition from a free-living organism to one that can only complete its life cycle by living inside another cell. We present the larger genome of Trachipleistophora hominis isolated from a human patient with HIV/AIDS. Our analyses provide insights into the gene content, genome architecture and intergenic regions of a known opportunistic pathogen, and will facilitate the development of T. hominis as a much-needed model species that can also be grown in co-culture. The genome of T. hominis has more genes than other microsporidians, it has diverse regulatory motifs, and it contains a variety of transposable elements coupled with the machinery for RNA interference, which may eventually allow experimental down-regulation of T. hominis genes. Comparison of the genome of T. hominis with other microsporidians allowed us to infer properties of their common ancestor. Our analyses predict an ancestral microsporidian that was already an intracellular parasite with a reduced core proteome but one with a relatively large genome populated with diverse repetitive elements and a complex transcriptional regulatory network.
Collapse
|
29
|
Peyretaillade E, Parisot N, Polonais V, Terrat S, Denonfoux J, Dugat-Bony E, Wawrzyniak I, Biderre-Petit C, Mahul A, Rimour S, Gonçalves O, Bornes S, Delbac F, Chebance B, Duprat S, Samson G, Katinka M, Weissenbach J, Wincker P, Peyret P. Annotation of microsporidian genomes using transcriptional signals. Nat Commun 2012; 3:1137. [DOI: 10.1038/ncomms2156] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
|
30
|
Peyretaillade E, El Alaoui H, Diogon M, Polonais V, Parisot N, Biron DG, Peyret P, Delbac F. Extreme reduction and compaction of microsporidian genomes. Res Microbiol 2011; 162:598-606. [PMID: 21426934 DOI: 10.1016/j.resmic.2011.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/21/2011] [Indexed: 12/19/2022]
Abstract
Microsporidia are fungi-related obligate intracellular parasites with a highly reduced and compact genome, as for Encephalitozoon species which harbor a genome smaller than 3 Mbp. Genome compaction is reflected by high gene density and, for larger microsporidian genomes, size variation is due to repeat elements that do not drastically affect gene density. Furthermore, these pathogens present strong host dependency illustrated by extensive gene loss. Such adaptations associated with genome compaction induced gene size reduction but also simplification of cellular processes such as transcription. Thus, microsporidia are excellent models for eukaryotic genome evolution and gene expression in the context of host-pathogen relationships.
Collapse
Affiliation(s)
- Eric Peyretaillade
- Clermont Université, Université d'Auvergne, Laboratoire Microorganismes Génome et Environnement, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bouzahzah B, Weiss LM. Glycosylation of the major polar tube protein of Encephalitozoon cuniculi. Parasitol Res 2010; 107:761-4. [PMID: 20556427 DOI: 10.1007/s00436-010-1950-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
To infect their host cells the Microsporidia use a unique invasion organelle, the polar tube complex. During infection, the organism is injected into the host cell through the hollow polar tube formed during spore germination. Currently, three proteins, PTP1, PTP2, and PTP3 have been identified by immunological and molecular techniques as being components of this structure. Genomic data suggests that Microsporidia are capable of O-linked, but not N-linked glycosylation as a post-translational protein modification. Cells were infected with Encephalitozoon cunicuili, labeled with radioactive mannose or glucosamine, and the polar tube proteins were examined for glycosylation. PTP1 was clearly demonstrated to be mannosylated consistent with 0-glycosylation. In addition, it was evident that several other proteins were mannosylated, but no labeling was seen with glucosamine. The observed post-translational mannosylation of PTP1 may be involved in the functional properties of the polar tube, including its adherence to host cells during penetration.
Collapse
Affiliation(s)
- Boumediene Bouzahzah
- Department of Pathology, Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
32
|
Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ, Heitman J. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One 2010; 5:e10539. [PMID: 20479876 PMCID: PMC2866331 DOI: 10.1371/journal.pone.0010539] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Sylvia Doan
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
33
|
The human microsporidian Encephalitozoon hellem synthesizes two spore wall polymorphic proteins useful for epidemiological studies. Infect Immun 2010; 78:2221-30. [PMID: 20231418 DOI: 10.1128/iai.01225-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are obligate intracellular fungus-related parasites considered as emerging opportunistic human pathogens. Their extracellular infective and resistance stage is a spore surrounded by a unique plasma membrane protected by a thick cell wall consisting of two layers: the electron-lucent inner endospore which contains chitin and protein components and the outer-electron-dense and mainly proteinaceous exospore. We identified the whole sequences of two spore wall proteins in the microsporidian species Encephalitozoon hellem, designated EhSWP1a and EhSWP1b. Isolation of the genes encoding these SWP1-like proteins was performed using degenerate oligonucleotides based on the amino acid sequence alignment of the previously reported Encephalitozoon cuniculi and Encephalitozoon intestinalis SWP1s. Sequences lacking the 5' and 3' ends were then identified by PCR and reverse transcription (RT)-PCR amplifications. The swp1a and swp1b genes encode proteins of 509 and 533 amino acids, respectively, which present an identical N-terminal domain of 382 residues and a variable C-terminal extension mainly characterized by a 26-amino-acid (aa) deletion/insertion containing glutamate- and lysine-rich repeats. Using polyclonal antibodies raised against recombinant polypeptides, we showed that EhSWP1a and EhSWP1b appear as dithiothreitol (DTT)-soluble bands of 55 and 60 kDa in size, respectively. Immunolocalization experiments by IFA and transmission electron microscopy (TEM) indicated that both proteins are present at the onset of sporogony and are specifically located to the spore wall exospore in mature spores. Analysis of four E. hellem human isolates revealed that the C-terminal regions of both EhSWP1a and EhSWP1b are polymorphic, which is of interest for epidemiological studies.
Collapse
|
34
|
Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI, Evans JD. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 2009; 5:e1000466. [PMID: 19503607 PMCID: PMC2685015 DOI: 10.1371/journal.ppat.1000466] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022] Open
Abstract
Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee–Nosema interactions. Honey bee colonies are in decline in many parts of the world, in part due to pressures from a diverse assemblage of parasites and pathogens. The range and prevalence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we describe the N. ceranae genome, presenting genome traits, gene models and regulatory motifs. N. ceranae has an extremely reduced and AT-biased genome, yet one with substantial numbers of repetitive elements. We identify novel genes that appear to be conserved among microsporidia but undetected outside this phylum, which are of special interest as potential virulence factors for these obligate pathogens. A previously unrecognized motif is found upstream of many start codons and likely plays a role in gene regulation across the microsporidia. These and other comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and provide the first genetic tools for understanding how this pathogen interacts with honey bee hosts.
Collapse
Affiliation(s)
- R. Scott Cornman
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Michael C. Schatz
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Craig Street
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Yan Zhao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Brian Desany
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Michael Egholm
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Stephen Hutchison
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Jeffery S. Pettis
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Williams BAP, Lee RCH, Becnel JJ, Weiss LM, Fast NM, Keeling PJ. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics 2008; 9:200. [PMID: 18445287 PMCID: PMC2387174 DOI: 10.1186/1471-2164-9-200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsporidia are well known models of extreme nuclear genome reduction and compaction. The smallest microsporidian genomes have received the most attention, but genomes of different species range in size from 2.3 Mb to 19.5 Mb and the nature of the larger genomes remains unknown. RESULTS Here we have undertaken genome sequence surveys of two diverse microsporidia, Brachiola algerae and Edhazardia aedis. In both species we find very large intergenic regions, many transposable elements, and a low gene-density, all in contrast to the small, model microsporidian genomes. We also find no recognizable genes that are not also found in other surveyed or sequenced microsporidian genomes. CONCLUSION Our results demonstrate that microsporidian genome architecture varies greatly between microsporidia. Much of the genome size difference could be accounted for by non-coding material, such as intergenic spaces and retrotransposons, and this suggests that the forces dictating genome size may vary across the phylum.
Collapse
Affiliation(s)
- Bryony A P Williams
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Frédéric Delbac
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais 63177 Aubière, France.
| | | |
Collapse
|
37
|
Wang JY, Chambon C, Lu CD, Huang KW, Vivarès CP, Texier C. A proteomic-based approach for the characterization of some major structural proteins involved in host–parasite relationships from the silkworm parasiteNosema bombycis (Microsporidia). Proteomics 2007; 7:1461-72. [PMID: 17407187 DOI: 10.1002/pmic.200600825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nosema bombycis is the causative agent of the silkworm Bombyx mori pebrine disease which inflicts severe worldwide economical losses in sericulture. Little is known about host-parasite interactions at the molecular level for this spore-forming obligate intracellular parasite which belongs to the fungi-related Microsporidia phylum. Major microsporidian structural proteins from the spore wall (SW) and the polar tube (PT) are known to be involved in host invasion. We developed a proteomic-based approach to identify few N. bombycis proteins belonging to these cell structures. Protein extraction protocols were optimized and four N. bombycis spore protein extracts were compared by SDS-PAGE and 2-DE to establish complementary proteomic profiles. Three proteins were shown to be located at the parasite SW. Moreover, 17 polyclonal antibodies were raised against major N. bombycis proteins from all extracts, and three spots were shown to correspond to polar tube proteins (PTPs) by immunofluorescent assay and transmission electron microscopy immunocytochemistry on cryosections. Specific patterns for each PTP were obtained by MALDI-TOF-MS and MS/MS. Peptide sequence tags were deduced by de novo sequencing using Peaks Online and DeNovoX, then evaluated by MASCOT and SEQUEST searches. Identification parameters were higher than false-positive hits, strengthening our strategy that could be enlarged to a nongenomic context.
Collapse
Affiliation(s)
- Jian-Yang Wang
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Microsporidiosis is an emerging and opportunistic infection associated with a wide range of clinical syndromes in humans. This review highlights the research on microsporidiosis in humans during the previous 2 years. RECENT FINDINGS The reduced and compact microsporidian genome has generated much interest for better understanding the evolution of these parasites, and comparative molecular phylogenetic studies continue to support a relationship between the microsporidia and fungi. Through increased awareness and improved diagnostics, microsporidiosis has been identified in a broader range of human populations that, in addition to persons with HIV infection, includes travelers, children, organ transplant recipients, and the elderly. SUMMARY Effective commercial therapies for Enterocytozoon bieneusi, the most common microsporidian species identified in humans, are still lacking, making the need to develop tissue culture and small animal models increasingly urgent. Environmental transport modeling and disinfection strategies are being addressed for improving water safety. Questions still exist about whether microsporidia infections remain persistent in asymptomatic immune-competent individuals, reactivate during conditions of immune compromise, or may be transmitted to others at risk, such as during pregnancy or through organ donation. Reliable serological diagnostic methods are needed to supplement polymerase chain reaction or histochemistry when spore shedding may be sporadic.
Collapse
Affiliation(s)
- Elizabeth S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA.
| | | |
Collapse
|
39
|
Slamovits CH, Burri L, Keeling PJ. Characterization of a divergent Sec61beta gene in microsporidia. J Mol Biol 2006; 359:1196-202. [PMID: 16650859 DOI: 10.1016/j.jmb.2006.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/04/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
The general secretory (Sec) pathway is the main mechanism for protein secretion and insertion into endoplasmic reticulum and plasma membrane in prokaryotes and eukaryotes. However, the complete genome of the highly specialized microsporidian parasite Encephalitozoon cuniculi appears to lack a gene for Sec61beta, one of three universally conserved proteins that form the core of the Sec translocon. We have identified a putative, highly divergent homologue of Sec61beta in the genome of another microsporidian, Antonospora locustae, and used this to identify a previously unrecognized Sec61beta in E. cuniculi. The identity of these genes is supported by evidence from secondary structure prediction and gene order conservation. Their functional conservation is confirmed by expressing both microsporidian homologues in yeast, where they are localized to the endoplasmic reticulum and rescue a yeast Sec61beta deletion mutant.
Collapse
Affiliation(s)
- Claudio H Slamovits
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver, BC
| | | | | |
Collapse
|