1
|
Kovács-Simon A, Fones HN. Use of chitin:DNA ratio to assess growth form in fungal cells. BMC Biol 2024; 22:10. [PMID: 38233847 PMCID: PMC10795418 DOI: 10.1186/s12915-024-01815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Dimorphism, the ability to switch between a 'yeast-like' and a hyphal growth form, is an important feature of certain fungi, including important plant and human pathogens. The switch to hyphal growth is often associated with virulence, pathogenicity, biofilm formation and stress resistance. Thus, the ability to accurately and efficiently measure fungal growth form is key to research into these fungi, especially for discovery of potential drug targets. To date, fungal growth form has been assessed microscopically, a process that is both labour intensive and costly. RESULTS Here, we unite quantification of the chitin in fungal cell walls and the DNA in nuclei to produce a methodology that allows fungal cell shape to be estimated by calculation of the ratio between cell wall quantity and number of nuclei present in a sample of fungus or infected host tissue. Using the wheat pathogen Zymoseptoria tritici as a test case, with confirmation in the distantly related Fusarium oxysporum, we demonstrate a close, linear relationship between the chitin:DNA ratio and the average polarity index (length/width) of fungal cells. We show the utility of the method for estimating growth form in infected wheat leaves, differentiating between the timing of germination in two different Z. tritici isolates using this ratio. We also show that the method is robust to the occurrence of thick-walled chlamydospores, which show a chitin:DNA ratio that is distinct from either 'yeast-like' blastospores or hyphae. CONCLUSIONS The chitin:DNA ratio provides a simple methodology for determining fungal growth form in bulk tissue samples, reducing the need for labour-intensive microscopic studies requiring specific staining or GFP-tags to visualise the fungus within host tissues. It is applicable to a range of dimorphic fungi under various experimental conditions.
Collapse
|
2
|
Fones HN, Soanes D, Gurr SJ. Epiphytic proliferation of Zymoseptoria tritici isolates on resistant wheat leaves. Fungal Genet Biol 2023; 168:103822. [PMID: 37343618 DOI: 10.1016/j.fgb.2023.103822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/04/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
The wheat pathogen Zymoseptoria tritici is capable of a long period of pre-invasive epiphytic growth. Studies have shown that virulent isolates vary in the extent, duration and growth form of this epiphytic growth, and the fungus has been observed to undergo behaviours such as asexual reproduction by budding and vegetative fusion of hyphae on the leaf surface. This epiphytic colonisation has been investigated very little during interactions in which an isolate of Z. tritici is unable to colonise the apoplast, as occurs during avirulence. However, avirulent isolates have been seen to undergo sexual crosses in the absense of leaf penetration, and it is widely accepted that the main point of distinction between virulent and avirulent isolates occurs at the point of attempted leaf penetration or attempted apoplastic growth, which fails in the avirulent case. In this work, we describe extensive epiphytic growth in three isolates which are unable or have very limited ability to invade the leaf, and show that growth form is as variable as for fully virulent isolates. We demonstrate that during certain interactions, Z. tritici isolates rarely invade the leaf and form pycnidia, but induce necrosis. These isolates are able to achieve higher epiphytic biomass than fully virulent isolates during asymptomatic growth, and may undergo very extensive asexual reproduction on the leaf surface. These findings have implications for open questions such as whether and how Z. tritici obtains nutrients on the leaf surface and the nature of its interaction with wheat defences.
Collapse
Affiliation(s)
- H N Fones
- Biosciences, University of Exeter, Exeter, UK
| | - D Soanes
- University of Exeter Medical School, Exeter, UK
| | - S J Gurr
- Biosciences, University of Exeter, Exeter, UK; Department of Biosciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Dong H, Shang X, Zhao X, Yu H, Jiang N, Zhang M, Tan Q, Zhou C, Zhang L. Construction of a genetic linkage map of Lentinula edodes based on SSR, SRAP and TRAP markers. BREEDING SCIENCE 2019; 69:585-591. [PMID: 31988622 PMCID: PMC6977451 DOI: 10.1270/jsbbs.18123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. It allows the localization of genes or quantitative trait loci (QTLs) and map-based cloning. In this study, we constructed a linkage map based on DNA samples from a commercial strain L808, including two parental monokaryons and 93 single spore isolates considered with segregating to 1:1:1:1 at four mating types (A1B1, A1B2, A2B1 and A2B2). Using Simple Sequence Repeats (SSR), Sequence Related Amplified Polymorphism (SRAP), Target Region Amplified Polymorphism (TRAP) molecular markers, 182 molecular markers and two mating factors were located on 11 linkage groups (LGs). The total length of the map was 948.083 centimorgan (cM), with an average marker interval distance of 4.817 cM. Only two gaps spanning more than 20 cM was observed. The probability of 20 cM, 10 cM, 5 cM genetic distance cover one marker was 99.68%, 94.36%, 76.43% in our genetic linkage map, respectively. This is the first linkage map of Lentinula edodes using SSR markers, which provides essential information for quantitative trait analyses and improvement of genome assembly.
Collapse
Affiliation(s)
- Hui Dong
- Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Laboratory of Agro-Food Quality and Safety Risk Assessment at Shanghai,
Shanghai, 201403,
China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Xiaoyan Zhao
- Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Laboratory of Agro-Food Quality and Safety Risk Assessment at Shanghai,
Shanghai, 201403,
China
| | - Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Ning Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Meiyan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| | - Changyan Zhou
- Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Laboratory of Agro-Food Quality and Safety Risk Assessment at Shanghai,
Shanghai, 201403,
China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Research Center of Edible Fungi Biotechnology and Engineering,
Shanghai, 201403,
China
| |
Collapse
|
4
|
Hassine M, Siah A, Hellin P, Cadalen T, Halama P, Hilbert JL, Hamada W, Baraket M, Yahyaoui A, Legrève A, Duvivier M. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. Fungal Biol 2019; 123:763-772. [PMID: 31542193 DOI: 10.1016/j.funbio.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/05/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Septoria tritici blotch (STB) caused by the heterothallic ascomycete Zymoseptoria tritici is currently one of the most devastating diseases of wheat worldwide. The extent of sexual reproduction of this pathogen is well documented on bread wheat, but not on durum wheat. The objective of the present study was to quantify the occurrence of Z. tritici sexual reproduction on durum wheat in the Tunisian environment. The assessment was undertaken using a triple approach combining fruiting body assessment, ascospore trapping and population genetic analyses. The results highlighted the formation of pseudothecia on leaves and stubble from the autumn until the end of the growing season. Likewise, qPCR monitoring highlighted a constant release of Z. tritici airborne inoculum during the wheat-growing season, with a peak of production at the end of the season. Genetic investigations using microsatellites revealed high levels of gene and genotypic diversities, an equal distribution of mating types, and a lack of genetic clustering within and between growing seasons. Taken together, these findings indicate that Z. tritici undergoes sexual reproduction on durum wheat in Tunisia at least to the same extent than on bread wheat in Western Europe, and that the dry and warm climate does not affect the mating process of the fungus. Frequent occurrence of sexual reproduction is a valuable knowledge to take into account in STB control strategies on durum wheat.
Collapse
Affiliation(s)
- M Hassine
- University of Carthage, National Agronomic Institute of Tunisia, LR14AGR01, Laboratory of Genetics and Cereal Breeding, National Agronomic Institute of Tunisia, Avenue Charles Nicolle 43, 1082 Tunis, Tunisia.
| | - A Siah
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - P Hellin
- Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2 Box L7.05.03, 1348 Louvain-la-Neuve, Belgium; Plant Protection and Ecotoxicology Unit, Walloon Agricultural Research Center, Rue du Bordia 11, 5030 Gembloux, Belgium.
| | - T Cadalen
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - P Halama
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - J-L Hilbert
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - W Hamada
- University of Carthage, National Agronomic Institute of Tunisia, LR14AGR01, Laboratory of Genetics and Cereal Breeding, National Agronomic Institute of Tunisia, Avenue Charles Nicolle 43, 1082 Tunis, Tunisia.
| | - M Baraket
- National Research Institute of Rural Engineering, Water and Forestry, Rue Hédi EL Karray El Menzah IV 1004 2080 Ariana, Tunisia.
| | - A Yahyaoui
- International Maize and Wheat Improvement Center, Carretera México-Veracruz Km. 45, El Batán, 56237 Texcoco, México.
| | - A Legrève
- Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2 Box L7.05.03, 1348 Louvain-la-Neuve, Belgium.
| | - M Duvivier
- Plant Protection and Ecotoxicology Unit, Walloon Agricultural Research Center, Rue du Bordia 11, 5030 Gembloux, Belgium.
| |
Collapse
|
5
|
Habig M, Kema GHJ, Holtgrewe Stukenbrock E. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. eLife 2018; 7:e40251. [PMID: 30543518 PMCID: PMC6331196 DOI: 10.7554/elife.40251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/13/2018] [Indexed: 01/03/2023] Open
Abstract
Meiosis is a key cellular process of sexual reproduction that includes pairing of homologous sequences. In many species however, meiosis can also involve the segregation of supernumerary chromosomes, which can lack a homolog. How these unpaired chromosomes undergo meiosis is largely unknown. In this study we investigated chromosome segregation during meiosis in the haploid fungus Zymoseptoria tritici that possesses a large complement of supernumerary chromosomes. We used isogenic whole chromosome deletion strains to compare meiotic transmission of chromosomes when paired and unpaired. Unpaired chromosomes inherited from the male parent as well as paired supernumerary chromosomes in general showed Mendelian inheritance. In contrast, unpaired chromosomes inherited from the female parent showed non-Mendelian inheritance but were amplified and transmitted to all meiotic products. We concluded that the supernumerary chromosomes of Z. tritici show a meiotic drive and propose an additional feedback mechanism during meiosis, which initiates amplification of unpaired female-inherited chromosomes.
Collapse
Affiliation(s)
- Michael Habig
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Gert HJ Kema
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of PhytopathologyWageningen University and ResearchWageningenThe Netherlands
| | - Eva Holtgrewe Stukenbrock
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| |
Collapse
|
6
|
Siah A, Bomble M, Tisserant B, Cadalen T, Holvoet M, Hilbert JL, Halama P, Reignault P. Genetic Structure of Zymoseptoria tritici in Northern France at Region, Field, Plant, and Leaf Layer Scales. PHYTOPATHOLOGY 2018; 108:1114-1123. [PMID: 29658841 DOI: 10.1094/phyto-09-17-0322-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Population genetic structure of the worldwide-distributed wheat pathogen Zymoseptoria tritici has been extensively studied at large geographical scales, but to a much less extent at small or local spatial scales. A total of 627 single-conidial fungal isolates were sampled from several locations in northern France (Hauts-de-France Region) to assess fungal genetic structure at region, field, plant, and leaf layer scales, using highly polymorphic microsatellite markers and mating type idiomorphs. Important and overall similar levels of both gene and genotype diversities (gene diversity values of ≥0.44 and haplotype frequencies of ≥94%) were found at all the examined scales. Such rates of diversity are likely due to an active sexual recombination in the investigated areas, as revealed by equal proportions of the two mating types scored in all sampled populations. Interestingly, a rare occurrence of clones among lesions from a same leaf, as well as among leaves from different plant leaf layers (e.g., upper versus lower leaves), was highlighted, indicating that ascospores contribute much more than expected to Z. tritici epidemics, compared with pycnidiospores. Population structure and analyses of molecular variance revealed significant genetic differentiation at the regional scale (GST = 0.23) and, as expected, not at the other more local scales (GST ≤ 0.01). Further analyses using Bayesian and unweighted neighbor-joining statistical methods detected six genetic clusters within the regional population, overall distributed according to the locations from which the isolates were sampled. Neither clear directional relative migration linked to the geographical distribution of the locations, nor isolation by distance, were observed. Separate evolutionary trajectories caused by selection and adaptations to habitat heterogeneity could be the main forces shaping such structuration. This study provides new insights into the epidemiology and the genetic structure of Z. tritici at small local and, for the first time, at single plant and leaf layer scales. Such findings would be helpful in implementing effective control strategies.
Collapse
Affiliation(s)
- Ali Siah
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Myriam Bomble
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Benoit Tisserant
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Thierry Cadalen
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Maxime Holvoet
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Jean-Louis Hilbert
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Patrice Halama
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Philippe Reignault
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| |
Collapse
|
7
|
Hartmann FE, Croll D. Distinct Trajectories of Massive Recent Gene Gains and Losses in Populations of a Microbial Eukaryotic Pathogen. Mol Biol Evol 2018; 34:2808-2822. [PMID: 28981698 PMCID: PMC5850472 DOI: 10.1093/molbev/msx208] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Differences in gene content are a significant source of variability within species and have an impact on phenotypic traits. However, little is known about the mechanisms responsible for the most recent gene gains and losses. We screened the genomes of 123 worldwide isolates of the major pathogen of wheat Zymoseptoria tritici for robust evidence of gene copy number variation. Based on orthology relationships in three closely related fungi, we identified 599 gene gains and 1,024 gene losses that have not yet reached fixation within the focal species. Our analyses of gene gains and losses segregating in populations showed that gene copy number variation arose preferentially in subtelomeres and in proximity to transposable elements. Recently lost genes were enriched in virulence factors and secondary metabolite gene clusters. In contrast, recently gained genes encoded mostly secreted protein lacking a conserved domain. We analyzed the frequency spectrum at loci segregating a gene presence–absence polymorphism in four worldwide populations. Recent gene losses showed a significant excess in low-frequency variants compared with genome-wide single nucleotide polymorphism, which is indicative of strong negative selection against gene losses. Recent gene gains were either under weak negative selection or neutral. We found evidence for strong divergent selection among populations at individual loci segregating a gene presence–absence polymorphism. Hence, gene gains and losses likely contributed to local adaptation. Our study shows that microbial eukaryotes harbor extensive copy number variation within populations and that functional differences among recently gained and lost genes led to distinct evolutionary trajectories.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
8
|
Mehrabi R, Taga M, Kema GH. Electrophoretic and cytological karyotyping of the foliar wheat pathogenMycosphaerella graminicolareveals many chromosomes with a large size range. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rahim Mehrabi
- Wageningen University and Research Centre, Plant Research International B.V., P.O. Box 16, 6700 AA, Wageningen, the Netherlands
| | - Masatoki Taga
- Department of Biology, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Gert H.J. Kema
- Plant Research International B.V., P.O. Box 16, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
9
|
El Chartouni L, Tisserant B, Siah A, Duyme F, Leducq JB, Deweer C, Fichter-Roisin C, Sanssené J, Durand R, Halama P, Reignault P. Genetic diversity and population structure in French populations ofMycosphaerella graminicola. Mycologia 2017; 103:764-74. [DOI: 10.3852/10-184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Benoît Tisserant
- Université Lille-Nord de France, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, B.P. 699, F-62228 Calais cedex, France. GIS PhyNoPi: Groupement d’Intérêt Scientifique Phytopathologie Nord-Picardie
| | - Ali Siah
- Université Lille-Nord de France, Biotechnologie des Microorganismes, ISA de Lille, 48 Boulevard Vauban, F-59046 Lille, France. GIS PhyNoPi: Groupement d’Intérêt Scientifique Phytopathologie Nord-Picardie
| | - Florent Duyme
- Université Lille-Nord de France, Laboratoire Statistiques et Informatique, ISA de Lille, 48 Boulevard Vauban, F-59046 Lille, France
| | - Jean-Baptiste Leducq
- Université Laval, Institut de Biologie Intégrative et des Systèmes, 1030 Avenue de la Médecine, Québec (Québec) G1V0A6, Canada
| | - Caroline Deweer
- Université Lille-Nord de France, Biotechnologie des Microorganismes, ISA de Lille, 48 Boulevard Vauban, F-59046 Lille, France. GIS PhyNoPi: Groupement d’Intérêt Scientifique Phytopathologie Nord-Picardie
| | | | - Jean Sanssené
- Institut Polytechnique Lasalle-Beauvais, Rue Pierre Waguet, B.P. 30313, F-60026, Beauvais cedex, France. GIS PhyNoPi: Groupement d’Intérêt Scientifique Phytopathologie Nord-Picardie
| | - Roger Durand
- Université Lille-Nord de France, Unité de Chimie Environnementale et Interactions sur le vivant, Université du Littoral Côte d’Opale, B.P. 699, F-62228 Calais cedex, France. GIS PhyNoPi: Groupement d’Intérêt Scientifique Phytopathologie Nord-Picardie
| | - Patrice Halama
- Université Lille-Nord de France, Biotechnologie des Microorganismes, ISA de Lille, 48 Boulevard Vauban, F-59046 Lille, France. GIS PhyNoPi: Groupement d’Intérêt Scientifique Phytopathologie Nord-Picardie
| | - Philippe Reignault
- Université Lille-Nord de France, Unité de Chimie Environnementale et Interactions sur le vivant, Université du Littoral Côte d’Opale, B.P. 699, F-62228 Calais cedex, France. GIS PhyNoPi: Groupement d’Intérêt Scientifique Phytopathologie Nord-Picardie
| |
Collapse
|
10
|
Gautier A, Marcel TC, Confais J, Crane C, Kema G, Suffert F, Walker AS. Development of a rapid multiplex SSR genotyping method to study populations of the fungal plant pathogen Zymoseptoria tritici. BMC Res Notes 2014; 7:373. [PMID: 24943709 PMCID: PMC4074386 DOI: 10.1186/1756-0500-7-373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/30/2014] [Indexed: 11/29/2022] Open
Abstract
Background Zymoseptoria tritici is a hemibiotrophic ascomycete fungus causing leaf blotch of wheat that often decreases yield severely. Populations of the fungus are known to be highly diverse and poorly differentiated from each other. However, a genotyping tool is needed to address further questions in large collections of isolates, regarding regional population structure, adaptation to anthropogenic selective pressures, and dynamics of the recently discovered accessory chromosomes. This procedure is limited by costly and time-consuming simplex PCR genotyping. Recent development of genomic approaches and of larger sets of SSRs enabled the optimization of microsatellite multiplexing. Findings We report here a reliable protocol to amplify 24 SSRs organized in three multiplex panels, and covering all Z. tritici chromosomes. We also propose an automatic allele assignment procedure, which allows scoring alleles in a repeatable manner across studies and laboratories. All together, these tools enabled us to characterize local and worldwide populations and to calculate diversity indexes consistent with results reported in the literature. Conclusion This easy-to-use, accurate, repeatable, economical, and faster technical strategy can provide useful genetic information for evolutionary inferences concerning Z. tritici populations. Moreover, it will facilitate the comparison of studies from different scientific groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anne-Sophie Walker
- UR 1290 BIOGER-CPP, INRA, BP01, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France.
| |
Collapse
|
11
|
Yang BJ, Zhong SB. Fourteen polymorphic microsatellite markers for the fungal banana pathogen Mycosphaerella fijiensis. Mol Ecol Resour 2013; 8:910-2. [PMID: 21585927 DOI: 10.1111/j.1755-0998.2008.02113.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fourteen polymorphic microsatellite markers were developed for Mycosphaerella fijiensis, a fungus causing the black sigatoka disease in banana. The sequenced genome of M. fijiensis was screened for sequences with single sequence repeats (SSRs) using a Perl script. Fourteen SSR loci, evaluated on 48 M. fijiensis isolates from Hawaii, were identified to be highly polymorphic. These markers revealed two to 19 alleles, with an average of 6.43 alleles per locus. The estimated gene diversity ranged from 0.091 to 0.930 across the 14 microsatellite loci. The SSR markers developed would be useful for population genetics studies of M. fijiensis.
Collapse
Affiliation(s)
- Bao Jun Yang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Department of Plant Pathology, North Dakota State University, Fargo, ND 55105, USA
| | | |
Collapse
|
12
|
Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet 2013; 9:e1003567. [PMID: 23785303 PMCID: PMC3681731 DOI: 10.1371/journal.pgen.1003567] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in this and other fungal pathogens.
Collapse
|
13
|
Foulongne-Oriol M. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biotechnol 2012; 95:891-904. [PMID: 22743715 DOI: 10.1007/s00253-012-4228-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.
Collapse
|
14
|
Bahkali AH, Abd-Elsalam KA, Guo JR, Khiyami MA, Verreet JA. Characterization of novel di-, tri-, and tetranucleotide microsatellite primers suitable for genotyping various plant pathogenic fungi with special emphasis on Fusaria and Mycospherella graminicola. Int J Mol Sci 2012; 13:2951-2964. [PMID: 22489135 PMCID: PMC3317696 DOI: 10.3390/ijms13032951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 11/30/2022] Open
Abstract
The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM) analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR) yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG)4, (TCC)5 and (CA)7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG)5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi.
Collapse
Affiliation(s)
- Ali H. Bahkali
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box: 2455, Riyadh 1145, Kingdom of Saudi Arabia; E-Mail:
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center, Plant Pathology Research Institute, Giza, Egypt
- Institute of Phytopathology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 9, D-24118, Kiel, Germany; E-Mail: (J.-A.V.)
- King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +966-92-1467-580; Fax: +966-1467-5833
| | - Jian-Rong Guo
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, 71737 Danzhou, Hainan, China; E-Mail: (J.-R.G.)
| | - Mohamed A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia; E-Mail:
| | - Joseph-Alexander Verreet
- Institute of Phytopathology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 9, D-24118, Kiel, Germany; E-Mail: (J.-A.V.)
| |
Collapse
|
15
|
Gurung S, Goodwin SB, Kabbage M, Bockus WW, Adhikari TB. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. PHYTOPATHOLOGY 2011; 101:1251-1259. [PMID: 21692645 DOI: 10.1094/phyto-08-10-0212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mycosphaerella graminicola causes Septoria tritici blotch (STB) in wheat (Triticum aestivum) and is considered one of the most devastating pathogens of that crop in the United States. Although the genetic structures of M. graminicola populations from different countries have been analyzed using various molecular markers, relatively little is known about M. graminicola populations from geographically distinct areas of the United States and, in particular, of those from spring versus winter wheat. These are exposed to great differences in environmental conditions, length and season of host-free periods, and resistance sources used in geographically separated wheat breeding programs. Thus, there is more likely to be genetic differentiation between populations from spring versus winter wheat than there is among those within each region. To test this hypothesis, 330 single-spore isolates of M. graminicola representing 11 populations (1 from facultative winter wheat in California, 2 from spring wheat in North Dakota, and 8 from winter wheat in Indiana and Kansas) were analyzed for mating type frequency and for genetic variation at 17 microsatellite or simple-sequence repeat (SSR) loci. Analysis of clone-corrected data revealed an equal distribution of both mating types in the populations from Kansas, Indiana, and North Dakota, but a deviation from a 1:1 ratio in the California population. In total, 306 haplotypes were detected, almost all of which were unique in all 11 populations. High levels of gene diversity (H = 0.31 to 0.56) were observed within the 11 populations. Significant (P ≤ 0.05) gametic disequilibrium, as measured by the index of association (rBarD), was observed in California, one Indiana population (IN1), and three populations (KS1, KS2, and KS3) in Kansas that could not be explained by linkage. Corrected standardized fixation index (G″(ST)) values were 0.000 to 0.621 between the 11 populations and the majority of pairwise comparisons were statistically significant (P ≤ 0.001), suggesting some differentiation between populations. Analysis of molecular variance showed that there was a small but statistically significant level of genetic differentiation between populations from spring versus winter wheat. However, most of the total genetic variation (>98%) occurred within spring and winter wheat regions while <2% was due to genetic differentiation between these regions. Taken together, these results provide evidence that sexual recombination occurs frequently in the M. graminicola populations sampled and that most populations are genetically differentiated over the major spring- and winter-wheat-growing regions of the United States.
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | | | | | | | | |
Collapse
|
16
|
Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia - Molecular Phylogeny and Evolution of Fungi 2011; 26:57-69. [PMID: 22025804 PMCID: PMC3160802 DOI: 10.3767/003158511x571841] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
Abstract
The Mycosphaerella complex is both poly- and paraphyletic, containing several different families and genera. The genus Mycosphaerella is restricted to species with Ramularia anamorphs, while Septoria is restricted to taxa that cluster with the type species of Septoria, S. cytisi, being closely related to Cercospora in the Mycosphaerellaceae. Species that occur on graminicolous hosts represent an as yet undescribed genus, for which the name Zymoseptoria is proposed. Based on the 28S nrDNA phylogeny derived in this study, Zymoseptoria is shown to cluster apart from Septoria. Morphologically species of Zymoseptoria can also be distinguished by their yeast-like growth in culture, and the formation of different conidial types that are absent in Septoria s.str. Other than the well-known pathogens such as Z. tritici, the causal agent of septoria tritici blotch on wheat, and Z. passerinii, the causal agent of septoria speckled leaf blotch of barley, both for which epitypes are designated, two leaf blotch pathogens are also described on graminicolous hosts from Iran. Zymoseptoria brevis sp. nov. is described from Phalaris minor, and Z. halophila comb. nov. from leaves of Hordeum glaucum. Further collections are now required to elucidate the relative importance, host range and distribution of these species.
Collapse
|
17
|
Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. PLoS One 2009; 4:e5863. [PMID: 19516898 PMCID: PMC2689623 DOI: 10.1371/journal.pone.0005863] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/27/2009] [Indexed: 11/24/2022] Open
Abstract
Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.
Collapse
|
18
|
Foulongne-Oriol M, Spataro C, Savoie JM. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus. Appl Microbiol Biotechnol 2009; 84:1125-35. [DOI: 10.1007/s00253-009-2030-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 01/15/2023]
|
19
|
Zhong S, Leng Y, Friesen TL, Faris JD, Szabo LJ. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. PHYTOPATHOLOGY 2009; 99:282-289. [PMID: 19203281 DOI: 10.1094/phyto-99-3-0282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Puccinia graminis f. sp. tritici is the causal agent of stem rust disease in wheat. The rust fungus has caused devastating disease epidemics throughout history and is still posing a potential threat to wheat production in some regions of the world due to the appearance of new races. To develop microsatellite or simple sequence repeat (SSR) markers for use in population genetics studies, a total of 60,579 expressed sequence tag (EST) sequences (reads) generated from P. graminis f. sp. tritici were screened for tandemly repeated di- and tri-nucleotide units using a bioinformatics approach and 708 unisequences containing putative SSR loci with six or more repeat units were identified. Flanking primers were designed for 384 unique SSR loci, which mapped to different locations of the draft genome sequence of the fungus. Of the 384 primer pairs tested, 72 EST-SSR markers were eventually developed, which showed polymorphism among 19 isolates of P. graminis f. sp. tritici and 4 isolates of P. graminis f. sp. secalis evaluated. Thirty-two of the SSR loci were also evaluated in three other rust fungi (P. triticina, P. hordei, and P. coronata f. sp. hordei) for cross-species transferability. These SSR markers derived from ESTs will be useful for characterization of population structures and for gene mapping in P. graminis.
Collapse
Affiliation(s)
- S Zhong
- Department of Plant Pathology, North Dakota State University, Fargo 58105, USA.
| | | | | | | | | |
Collapse
|
20
|
Kema GHJ, van der Lee TAJ, Mendes O, Verstappen ECP, Lankhorst RK, Sandbrink H, van der Burgt A, Zwiers LH, Csukai M, Waalwijk C. Large-scale gene discovery in the septoria tritici blotch fungus Mycosphaerella graminicola with a focus on in planta expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1249-1260. [PMID: 18700829 DOI: 10.1094/mpmi-21-9-1249] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The foliar disease septoria tritici blotch, caused by the fungus Mycosphaerella graminicola, is currently the most important wheat disease in Europe. Gene expression was examined under highly different conditions, using 10 expressed sequence tag libraries generated from M. graminicola isolate IPO323 using seven in vitro and three in planta growth conditions. To identify fungal clones in the interaction libraries, we developed a selection method based on hybridization with the entire genomic DNA of M. graminicola, to selectively enrich these libraries for fungal genes. Assembly of the 27,007 expressed sequence tags resulted in 9,190 unigenes, representing 5.2 Mb of the estimated 39-Mb genome size of M. graminicola. All libraries contributed significantly to the number of unigenes, especially the in planta libraries representing different stages of pathogenesis, which covered 15% of the library-specific unigenes. Even under presymptomatic conditions (5 days postinoculation), when fungal biomass is less than 5%, this method enabled us to efficiently capture fungal genes expressed during pathogenesis. Many of these genes were uniquely expressed in planta, indicating that in planta gene expression significantly differed from in vitro expression. Examples of gene discovery included a number of cell wall-degrading enzymes, a broad set of genes involved in signal transduction (n=11) and a range of ATP-binding cassette (n=20) and major facilitator superfamily transporter genes (n=12) potentially involved in protection against antifungal compounds or the secretion of pathogenicity factors. In addition, evidence is provided for a mycovirus in M. graminicola that is highly expressed under various stress conditions, in particular, under nitrogen starvation. Our analyses provide a unique window on in vitro and in planta gene expression of M. graminicola.
Collapse
Affiliation(s)
- Gert H J Kema
- Plant Research International B.V., Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. Fungal Genet Biol 2008; 45:628-37. [DOI: 10.1016/j.fgb.2007.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022]
|
22
|
Manzo-Sánchez G, Zapater MF, Luna-Martínez F, Conde-Ferráez L, Carlier J, James-Kay A, Simpson J. Construction of a genetic linkage map of the fungal pathogen of banana Mycosphaerella fijiensis, causal agent of black leaf streak disease. Curr Genet 2008; 53:299-311. [PMID: 18365202 DOI: 10.1007/s00294-008-0186-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 12/15/2022]
Abstract
A genetic linkage map of the fungal plant pathogen Mycosphaerella fijiensis, causal agent of black leaf streak disease of banana was developed. A cross between the isolates CIRAD86 (from Cameroon) and CIRAD139A (from Colombia) was analyzed using molecular markers and the MAT locus. The genetic linkage map consists of 298 AFLP and 16 SSR markers with 23 linkage groups, containing five or more markers, covering 1,879 cM. Markers are separated on average by around 5.9 cM. The MAT locus was shown to segregate in a 1:1 ratio but could not be successfully mapped. An estimate of the relation between physical size and genetic distance was approximately 39.0 kb/cM. The estimated total haploid genome size was calculated using the genetic mapping data at 4,298.2 cM. This is the first genetic linkage map reported for this important foliar pathogen of banana. The great utility of the map will be for anchoring contigs in the genome sequence, evolutionary studies in comparison with other fungi, to identify quantitative trait loci (QTLs) associated with aggressiveness or oxidative stress resistance and with the recently available genome sequence, for positional cloning.
Collapse
Affiliation(s)
- Gilberto Manzo-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Colonia Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Adhikari TB, Ali S, Burlakoti RR, Singh PK, Mergoum M, Goodwin SB. Genetic structure of Phaeosphaeria nodorum populations in the north-central and midwestern United States. PHYTOPATHOLOGY 2008; 98:101-107. [PMID: 18943244 DOI: 10.1094/phyto-98-1-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stagonospora nodorum blotch, caused by Phaeosphaeria nodorum, is considered one of the most destructive foliar diseases of wheat in the United States. However, relatively little is known about the population biology of this fungus in the major wheat-growing regions of the central United States. To rectify this situation, 308 single-spore isolates of P. nodorum were analyzed from 12 populations, five from hard red spring wheat cultivars in Minnesota and North Dakota and seven from soft red winter wheat in Indiana and Ohio. The genetic structure of the sampled populations was determined by analyzing polymorphisms at five microsatellite or simple-sequence repeat (SSR) loci and the mating type locus. Although a few clones were identified, most P. nodorum populations had high levels of gene (H(S) = 0.175 to 0.519) and genotype (D = 0.600 to 0.972) diversity. Gene diversity was higher among isolates collected from spring wheat cultivars in North Dakota and Minnesota (mean H(S) = 0.503) than in those from winter wheat cultivars in Indiana and Ohio (H(S) = 0.269). Analyses of clone-corrected data sets showed equal frequencies of both mating types in both regional and local populations, indicating that sexual recombination may occur regularly. However, significant gametic disequilibrium occurred in three of the four populations from North Dakota, and there was genetic differentiation both within and among locations. Genetic differentiation between the hard red spring and soft red winter wheat production regions was moderate (F(ST) = 0.168), but whether this is due to differences in wheat production or to geographical variation cannot be determined. These results suggest that sexual reproduction occurs in P. nodorum populations in the major wheat-growing regions of the central United States, and that geographically separated populations can be genetically differentiated, reflecting either restrictions on gene flow or selection.
Collapse
Affiliation(s)
- T B Adhikari
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58105, USA.
| | | | | | | | | | | |
Collapse
|